TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4"

Transkript

1 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 4 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie

2 Gliederung Normierung Schritte der Normierung 1. Prüfung Verteilungseigenschaften 2. Umrechnung in Normwerte

3 Normierung Wie kann ich das individuelle Ergebnis mit anderen vergleichen? Normorientierte Testauswertung

4 Prüfung Verteilungseigenschaften Normalverteilung

5 Normalverteilung Prüfung Normalverteilung (KS-Test) NV vorhanden NV nicht vorhanden z-transformation Lineare Transformation in andere Normskalen Flächentransformation Prozentrangnormen Stanine-Werte

6 Prüfung Verteilungseigenschaften Prüfung Normalverteilung

7 Prüfung Normalverteilung Nichtparametrische Tests > Alte Dialogfelder -> K-S bei einer Stichprobe p < 0.05, dann signifikant; d.h. keine NV p > 0.05, dann normalverteilt, da nicht signifikant

8 Prüfung Normalverteilung Schaut in euren Unterlagen welche Skalen normalverteilt waren!

9 Umrechnung in Normwerte Normalverteilung vorhanden z-werte mit SPSS

10 z-werte mit SPSS Beispiel Skala als einzige normalverteilt Analysieren Deskriptive Statistik Deskriptive Statistik

11 z-werte mit SPSS neu erstellte Variable Grundlage für lineare Transformation in andere Normwerte

12 Umrechnung in Normwerte Normalverteilung vorhanden lineare Transformation

13 Lineare Transformation gebräuchlichste Normen Bühner (2006)

14 Lineare Transformation Umrechnung z-wert in andere gebräuchliche Normen Standardnormwerte = MW + SD * z SW = * z T = * z IQ = * z C = * z

15 Umrechnung in Normwerte Normalverteilung vorhanden lineare Transformation mit SPSS

16 Lineare Transformation mit SPSS Beispiel Skala Umrechnung des z-wertes in T-Wert Transformieren Variable berechnen Neuer Variablenname Formel für Standardwert (hier T-Wert) Variable z-werte der Skala

17 Lineare Transformation mit SPSS neu erstellte Variable T-Werte der Skala

18 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation nach McCall

19 Flächentransformation eingesetzt, wenn keine Normalverteilung vorhanden erfolgt Anpassung des Histogramms an die Normalverteilung Ablauf Flächentransformation 1. Prozentränge bilden 2. in z-werte transformieren 3. Umrechnung in andere Standardnormen möglich bei nicht-linearen Transformationen vor allem Stanine benutzt

20 Flächentransformation Ablauf Flächentransformation nach verschiedenen Autoren 1. Tent & Stelzl 2. Lienert 3. Bortz

21 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 1. Tent & Stelzl

22 1. Tent und Stelzl (1993) 1. Berechnung kumulative Häufigkeiten und Prozentränge 2. Umwandlung in Standardnormen (hier: Stanine)

23 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 1. Tent & Stelzl 1.1 Prozentränge bilden

24 1.1 Prozentränge bilden f = beobachtete Häufigkeit Cf = kumulierte Häufigkeit N= Anzahl Probanden Beispiel Skala Lebenszufriedenheit Analysieren -> Deskriptive Statistik -> Häufigkeiten

25 1.1 Prozentränge bilden (leb_skala) Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0, ,5 3, PR gesamt

26 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 1. Tent & Stelzl 1.1 Prozentränge bilden mit SPSS

27 1.1 Prozentränge bilden mit SPSS Beispiel Skala Lebenszufriedenheit Transformieren Rangfolge bilden

28 1.1 Prozentränge bilden mit SPSS Beispiel Skala Lebenszufriedenheit Nur Prozentränge auswählen ausreichend Cf - f/2 PR

29 1.1 Prozentränge bilden mit SPSS Errechnet die Prozentränge für alle Skalen mithilfe von SPSS! Syntaxschreibweise: RANK VARIABLES=leb_skala (A) /PERCENT /PRINT=YES /TIES=MEAN.

30 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 1. Tent & Stelzl 1.2 Stanine-Werte bilden

31 1.2 Umwandlung in Stanine Umrechnung von Prozenträngen in Stanine PR Stanine Prozent % > % > % > % > % > % > % > % > % Bühner (2011) nach Tent und Stelzl (1993)

32 1.2 Umwandlung in Stanine (leb_skala) Testwert (Cf - f/2) * 100 N PR Stanine 0 0, , , , , , , , , , , , ,4402 gesamt

33 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 2. Lienert

34 2. Lienert 1. Berechnung kumulative Häufigkeiten (Cf) und Prozentränge (PR) 2. Umwandlung in normalisierten (flächentransformierten) z-wert 3. Umwandlung in Standardnorm (hier: Stanine)

35 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 2. Lienert 2.1 Berechnung Cf und PR

36 2.1 Berechnung Cf und PR Cf = kumulative Häufigkeit Analysieren -> Deskriptive Statistik -> Häufigkeiten

37 Beispiel Skala Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0, ,5 3, ,5 8, ,5 14, , ,5 28, , , , ,5 76, ,5 88, , ,5 99,4402 gesamt

38 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 2. Lienert 2.2 Umwandlung in normalisierten z-wert

39 2.2 Umwandlung in normalisierten z-wert Prozentränge werden in z-äquivalente der Standardnormalverteilung umgewandelt (normalisiert) dafür Tabellen von Standardnormalverteilungswerten und der dazugehörigen Flächen benutzen

40 T cum f% PR z 20 0,13 0-3,0 21 0,19 0-2,9 22 0,26 0-2,8 23 0,33 0-2,7 24 0,47 0-2,6 25 0,62 1-2,5 Auszug aus Transformation von Testnormen (Lienert, 1998, S. 410) Beispiel Skalenwert Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0,5597-2,6 z

41 Beispiel Skala Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0,5597-2, ,5 3, ,5 8, ,5 14, , ,5 28, , , , ,5 76, ,5 88, , ,5 99,4402 gesamt z

42 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 2. Lienert 2.3 Stanine bilden

43 2.3 Stanine bilden Stanine = Verkürzung der Centil-Normen von 13 auf 9 Wertpunkte daraus folgt: C-Werte -1 bis +1 Stanine 1 C-Werte 9 bis 11 Stanine 9 restliche Werte identisch

44 T cum f% PR z C Stanine 20 0,13 0-3,0 21 0,19 0-2,9 22 0,26 0-2,8 23 0,33 0-2, ,47 0-2,6 25 0,62 1-2,5 Auszug aus Tabelle Transformation von Testnormen (Lienert, 1998, S. 410) Beispiel Skalenwert Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N z Stanine ,5 0,5597-2,6 1

45 Beispiel Skala Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N z Stanine ,5 0,5597-2, ,5 3, ,5 8, ,5 14, , ,5 28, , , , ,5 76, ,5 88, , ,5 99,4402 gesamt

46 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 3. Bortz

47 3. Bortz 1. Berechnung kumulative Häufigkeiten (Cf) und Prozentränge (PR) 2. Umwandlung in normalisierten (flächentransformierten) z-wert 3. Umwandlung in Standardnorm (hier: Stanine)

48 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 3. Bortz 3.1 Berechnung Cf und PR

49 3.1 Berechnung Cf und PR Cf = kumulative Häufigkeit Analysieren -> Deskriptive Statistik -> Häufigkeiten

50 Beispiel Skala Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0, ,5 3, ,5 8, ,5 14, , ,5 28, , , , ,5 76, ,5 88, , ,5 99,4402 gesamt

51 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 3. Bortz 3.2 Umwandlung in normalisierten z-wert mit zwei Dezimalstellen

52 3.2 Umwandlung in normalisierten z-wert Prozentränge werden in z-äquivalente der Standardnormalverteilung umgewandelt (normalisiert) dafür Tabellen von Standardnormalverteilungswerten und der dazugehörigen Flächen benutzen

53 z Fläche = (Cf - f/2) N Ordinate -2,55 0,0054 0,0154-2,54 0,0055 0,0158-2,53 0,0057 0,0163-2,52 0,0059 0,0167-2,51 0,0060 0,0171 Auszug aus der Tabelle Verteilungsfunktion der Standardnormalverteilung (Bortz, 2005, S. 812) Beispiel Skalenwert Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0,5597-2,54 z

54 Beispiel Skala Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N ,5 0,5597-2, ,5 3, ,5 8, ,5 14, , ,5 28, , , , ,5 76, ,5 88, , ,5 99,4402 gesamt z

55 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation 3. Bortz 3.3 Stanine bilden

56 3.3 Stanine bilden Transformation z-wert in Standardnormwert Stanine = * z Beispiel Skalenwert Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N z Stanine ,5 0,5597-2,54 0,08 ~ 1 da Stanine-Bereich von 1 bis 9

57 Beispiel Skala Lebenszufriedenheit Testwert f Cf Cf - f/2 (Cf - f/2) * 100 N z Stanine ,5 0,5597-2,54 0,08 ~ ,5 3, ,5 8, ,5 14, , ,5 28, , , , ,5 76, ,5 88, , ,5 99,4402 gesamt

58 Umrechnung in Normwerte Normalverteilung nicht vorhanden Flächentransformation nach McCall

59 Normierung Führt eine Normierung mit den drei unterschiedlichen Vorgehensweisen für die Skala Soziale Orientierung durch. Verwendet als Standardnorm Stanine-Werte. Erstellt eine Tabelle in der sich alle drei Normierungsvarianten mit den Stanine-Werten gegenüber stehen.

60 Skala soziale Orientierung Testwert (Cf - f/2) * 100 N Stanine Tent & Stelzl Stanine Lienert Stanine Bortz 0 0, gesamt 100

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION

Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION Prof. Dr. Gabriele Helga Franke TESTTHEORIE UND TESTKONSTRUKTION 1. FS Master Rehabilitationspsychologie, SoSe 2012 Normierung 2 Begriffsbestimmung Zweck der Normierung Vorgehen bei der Normierung Exkurs:

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Einführung in Datensatz Stichprobenbeschreibung

Mehr

Beispielberechnung Normierung

Beispielberechnung Normierung 1 Beispielberechnung Normierung Auszug Kursunterlagen MAS ZFH in Berufs-, Studien- und Laufbahnberatung Prof. Dr. Marc Schreiber, Dezember 2016 Verschiedene Formen der Normierung (interaktiv) Referenz:

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Reliabilität 1. Überblick 2. Berechnung

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

Norm- vs. Kriteriumsorientiertes Testen

Norm- vs. Kriteriumsorientiertes Testen Norm- vs. Kriteriumsorientiertes Testen Aus psychologischen Test ergibt sich in der Regel ein numerisches Testergebnis, das Auskunft über die Merkmalsausprägung der Testperson geben soll. Die aus der Testauswertung

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Normwerte der Testdiagnostik

Normwerte der Testdiagnostik Normwerte der Testdiagnostik ihre Berechnungen und Umrechnungen ineinander Aufsatz und Excel-Projekt zum Gebrauch neben der Lehrveranstaltung "Konventionelle und computergestützte Testdiagnostik" sowie

Mehr

Übung 3 im Fach "Biometrie / Q1"

Übung 3 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Klausur zur Vorlesung Wahrscheinlichkeitsrechnung

Klausur zur Vorlesung Wahrscheinlichkeitsrechnung FH Karlsruhe - Hochschule Technik Name: 3. Februar 2005, 10.30-12.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 90 min, 1,5 Zeitstunden Skriptum, Taschenrechner Schreiben Sie

Mehr

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion Dr. Quapp: Statistik für Mathematiker mit SPSS Lösungs Hinweise. Übung Beschreibende Statistik & Verteilungsfunktion. Die folgende Tabelle enthält die Pulsfrequenz einer Versuchsgruppe von 39 Personen:

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Übung 2 im Fach "Biometrie / Q1"

Übung 2 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-897 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 3, 8975 Ulm Tel. +49

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Prüfung & Tutorium. Der 1. Prüfungstermin findet am 27. Juni 2011 um 10h im Audimaxstatt. Anmeldung in UNIVIS vom Juni

Prüfung & Tutorium. Der 1. Prüfungstermin findet am 27. Juni 2011 um 10h im Audimaxstatt. Anmeldung in UNIVIS vom Juni Prüfung & Tutorium Der 1. Prüfungstermin findet am 27. Juni 2011 um 10h im Audimaxstatt Anmeldung in UNIVIS vom 14.-22. Juni Die Prüfung wird aus 30 Multiple Choice Fragen(5 Antwortalternativen, 1-3 Richtige)

Mehr

Übung 5 im Fach "Biometrie / Q1" Thema: Wilcoxon, Chi-Quadrat, multiples Testen

Übung 5 im Fach Biometrie / Q1 Thema: Wilcoxon, Chi-Quadrat, multiples Testen Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

IV. Die Schülerbefragung

IV. Die Schülerbefragung IV. Die Schülerbefragung Im Rahmen der Schülerbefragung wurden der Prognostische und ein Schülerfragebogen eingesetzt. Beide Instrumente sowie das Vorgehen werden im Folgenden dargestellt. IV.1 Der Schülerfragebogen

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

3.2 Grundlagen der Testtheorie Methoden der Reliabilitätsbestimmung

3.2 Grundlagen der Testtheorie Methoden der Reliabilitätsbestimmung 3.2 Grundlagen der Testtheorie 3.2.6 Methoden der Reliabilitätsbestimmung 6.1 Was ist Reliabilität? 6.2 Retest-Reliabilität 6.3 Paralleltest-Reliabilität 6.4 Splithalf-(Testhalbierungs-)Reliabilität 6.5

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Forschungsstatistik I

Forschungsstatistik I Psychologie Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser Kolmogorov-Smirnov-Test Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz 1 Kolmogorov- Smirnov Test Andrei Nikolajewitsch Kolmogorov * 25.4.1903-20.10.1987 2 Kolmogorov-

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

Messen im psychologischen Kontext I. Testentwicklung, Entwicklung von Items, Trennschärfeanalyse und Normierung

Messen im psychologischen Kontext I. Testentwicklung, Entwicklung von Items, Trennschärfeanalyse und Normierung Messen im psychologischen Kontext I Testentwicklung, Entwicklung von Items, Trennschärfeanalyse und Normierung Messen im psychologischen Kontext I 1. Psychologische Tests 2. Die Klassische Testtheorie

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Chi-Quadrat Verfahren

Chi-Quadrat Verfahren Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

Übung 1 im Fach "Biometrie / Q1"

Übung 1 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

j K j d j m j h j f j

j K j d j m j h j f j Für eine stetige Zufallsvariable X in einem Intervall [ a ; b ] kann X jeden beliebigen Wert annehmen. Die Wahrscheinlichkeiten werden in diesem Fall nicht mehr wie bei einer diskreten Zufallsvariable

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Spezielle Eigenschaften der Binomialverteilung

Spezielle Eigenschaften der Binomialverteilung Spezielle Eigenschaften der Binomialverteilung Wir unterscheiden: 1) die Wahrscheinlichkeitsfunktion einer diskreten Variablen 2) die Verteilungsfunktion einer diskreten Variablen. 1) Die Wahrscheinlichkeitsfunktion

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Klausur Mathematik 2, Teil Statistik und Finanzmathematik Lösungen

Klausur Mathematik 2, Teil Statistik und Finanzmathematik Lösungen Fachhochschule Ravensburg-Weingarten, Fachbereich Elektrotechnik und Informatik Klausur Mathematik 2, Teil Statistik und Finanzmathematik Lösungen Aufgaben (Punkte) 1. Für eine Voraussage der Bürgermeisterwahl

Mehr

Bootstrap: Konfidenzintervalle

Bootstrap: Konfidenzintervalle Resampling Methoden Dortmund, 2005 (Jenő Reicigel) Bootstrap: Konfidenintervalle Konfidenintervall Sei T ein Schäter für θ, und nehmen wir an, dass die Verteilung von T θ bekannt ist. Notwendige Bedingung

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Eigene MC-Fragen Testgütekriterien (X aus 5) 2. Das Ausmaß der Auswertungsobjektivität lässt sich in welcher statistischen Kennzahl angeben?

Eigene MC-Fragen Testgütekriterien (X aus 5) 2. Das Ausmaß der Auswertungsobjektivität lässt sich in welcher statistischen Kennzahl angeben? Eigene MC-Fragen Testgütekriterien (X aus 5) 1. Wenn verschieden Testanwender bei Testpersonen mit demselben Testwert zu denselben Schlussfolgerungen kommen, entspricht dies dem Gütekriterium a) Durchführungsobjektivität

Mehr

GRUNDLAGEN DER TESTTHEORIE Prof. Dr. habil. Gabriele Helga Franke

GRUNDLAGEN DER TESTTHEORIE Prof. Dr. habil. Gabriele Helga Franke B.Sc. Rehabilitationspsychologie Modul 3.2 WiSe 2013-14 GRUNDLAGEN DER TESTTHEORIE Prof. Dr. habil. Gabriele Helga Franke E-Mail: gabriele.franke@hs-magdeburg.de Internet: www.franke-stendal.de Sprechstunde:

Mehr

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 01 MATHEMATIK 3 STUNDEN DATUM : 11. Juni 01, Vormittag DAUER DER PRÜFUNG : Stunden (10 Minuten) ZUGELASSENE HILFSMITTEL : Prüfung mit technologischem Hilfsmittel 1/5 DE AUFGABE B1 ANALYSIS

Mehr

Kapitel 38 Verteilungsdiagramme

Kapitel 38 Verteilungsdiagramme Kapitel 38 Verteilungsdiagramme Mit Verteilungsdiagrammen können Sie grafisch untersuchen, inwieweit die Stichprobenverteilung einer Variablen mit einer theoretischen Verteilung übereinstimmt. So können

Mehr

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010

I.3. Computergestützte Methoden 1. Deskriptive Statistik. Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 I.3. Computergestützte Methoden 1. Deskriptive Statistik Master of Science Prof. Dr. G. H. Franke WS 2009/ 2010 1 Seminarübersicht Nr. Thema 1 Deskriptive Statistik 1.1 Organisation und Darstellung von

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr

Nachklausur Statistik

Nachklausur Statistik Aufgabe 1 2 3 4 5 6 7 8 9 10 Punkte Summe Punkte Gesamtpunkte: Nachklausur Statistik Hinweise: Die Klausur besteht aus 5 Seiten mit insgesamt 10 Aufgaben. Sie müssen aus jeder der beiden Kategorien jeweils

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : Fehlend 103. v20 GERECHTER ANTEIL A.LEBENSSTANDARD,BEFR.?

1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : Fehlend 103. v20 GERECHTER ANTEIL A.LEBENSSTANDARD,BEFR.? Dr. Renate Prust: Einführung in quantitative Forschungsmethoden Übung zur univariaten Statistik (mit SPSS-Ausgabe) 1. Informieren Sie sich im Codebuch über die Bedeutung der Variablen V20 und : a. Erstellen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Test auf den Erwartungswert

Test auf den Erwartungswert Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen

Mehr

Nachtrag zu Mittelwerten und Maßen der Dispersion

Nachtrag zu Mittelwerten und Maßen der Dispersion dur [ms] 40 60 80 100 120 140 160 Modul G.1 WS 06/07: Statistik 15.11.2006 1 Nachtrag zu Mittelwerten und Maßen der Dispersion Consonant duration Darstellungsmethode Boxplot Strich innerhalb der Boxen:

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr