3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor"

Transkript

1 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-1

2 3. Kreisbewegung 3.1 Winkelgeschwindigkeit und -beschleunigung 3.2 Beschreibung in kartesischen Koordinaten 3.3 Gleichförmige Kreisbewegung 3.4 Gleichmäßig beschleunigte Kreisbewegung Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-2

3 3.1 Winkelgeschwindigkeit und -beschleunigung Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf der Kreisbahn zurückgelegten Weg gilt: P s t =r t Dabei muss der Winkel im Bogenmaß angegeben werden. Die Bahngeschwindigkeit berechnet sich zu v t = ds dt t =ṡ t =r t r φ s Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-3

4 3.1 Winkelgeschwindigkeit und -beschleunigung Die zeitliche Ableitung des Winkels wird als Winkelgeschwindigkeit bezeichnet: t = t Zwischen Bahngeschwindigkeit und Winkelgeschwindigkeit besteht also die Beziehung Die Einheit der Winkelgeschwindigkeit ist 1 pro Zeiteinheit. Geläufige Einheiten: v t = t r 1 s = 60 min, 1 min = s Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-4

5 3.1 Winkelgeschwindigkeit und -beschleunigung Bahnbeschleunigung und Winkelbeschleunigung: Die Bahnbeschleunigung ist die zeitliche Ableitung der Bahngeschwindigkeit: a t t = v t = s t =r t Die zeitliche Ableitung der Winkelgeschwindigkeit wird als Winkelbeschleunigung bezeichnet: t = t Zwischen Bahnbeschleunigung und Winkelbeschleunigung besteht die Beziehung a t t =r t Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-5

6 3.1 Winkelgeschwindigkeit und -beschleunigung Die Einheit der Winkelbeschleunigung ist 1 pro Zeit zum Quadrat. Eine gängige Einheit ist 1/s 2. Starre rotierende Scheibe: Auf einer starren rotierenden Scheibe haben alle Punkte die gleiche Winkelgeschwindigkeit und die gleiche Winkelbeschleunigung. Bahngeschwindigkeit und Bahnbeschleunigung sind für Punkte mit unterschiedlichem Radius verschieden. Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-6

7 3.2 Beschreibung in kartesischen Koordinaten Ortsvektor: y Für die Ortskoordinaten eines Punktes auf der Kreisbahn gilt: x t =r cos t y t =r sin t y(t) r φ x(t) x Die Ortskoordinaten sind die Komponenten des Ortsvektors: r t =r cos t e x r sin t e y oder [ r t ]=[ r cos t Für den Betrag gilt: r sin t ] r t = r 2 sin 2 t r 2 cos 2 t =r sin 2 t cos 2 t =r Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-7

8 3.2 Beschreibung in kartesischen Koordinaten Geschwindigkeitsvektor: v t =ṙ t = r t sin t e x r t cos t e y =r t sin t e x cos t e y =v t sin t e x cos t e y Der Geschwindigkeitsvektor ist tangential zur Kreisbahn und steht daher senkrecht auf dem Ortsvektor: [ r t ]=r [ cos t sin t ], [ v t ]=v t [ sin t cos t ] r t v t =r v t [ cos t sin t sin t cos t ]=0 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-8

9 3.2 Beschreibung in kartesischen Koordinaten y v v sin(φ) ψ φ v cos(φ) r sin(φ) r φ φ x =90 r cos(φ) Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik 1.3-9

10 3.2 Beschreibung in kartesischen Koordinaten Bahngeschwindigkeit: Für den Betrag des Geschwindigkeitsvektors gilt: v = v x 2 v y 2 =r sin 2 cos 2 =r =r Der Tangenteneinheitsvektor berechnet sich zu e t = d r ds = d ds r cos s r e x r sin s r e y = sin s r e x cos s r e y = sin e x cos e y Damit folgt für den Geschwindigkeitsvektor: v=v e t Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

11 3.2 Beschreibung in kartesischen Koordinaten Beschleunigungsvektor: Die zeitliche Ableitung des Geschwindigkeitsvektors führt auf a t = v t = d dt v t e t t = v t e t t v t ė t t =a t t v t t cos t e x sin t e y =a t t 2 t r cos t e x sin t e y =a t t 2 t r t =a t t a n t a t a n Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

12 3.2 Beschreibung in kartesischen Koordinaten Normalbeschleunigung: Die Normalbeschleunigung a n ist entgegen dem Ortsvektor r gerichtet. Sie wird daher als Zentripetalbeschleunigung bezeichnet. Für den Betrag der Normalbeschleunigung gilt: Bahnbeschleunigung: a n = 2 r a n = a n = 2 r= v2 v2 2 r= r r a t = v e t Für den Betrag der Bahnbeschleunigung gilt: a t = a t = v =r =r Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

13 3.2 Beschreibung in kartesischen Koordinaten Drehachse: Die Gerade durch den Mittelpunkt des Kreises, die senkrecht auf der Kreisebene steht, wird als Drehachse bezeichnet. M r v m Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

14 3.2 Beschreibung in kartesischen Koordinaten Vektor der Winkelgeschwindigkeit: Der Betrag stimmt mit der Winkelgeschwindigkeit überein: ω M r v = m Die Richtung stimmt mit der Drehachse überein. Die Orientierung wird durch die Rechthandregel festgelegt. Dann gilt: v= r Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

15 3.2 Beschreibung in kartesischen Koordinaten Nachweis: Der Vektor r zeigt in Richtung von v. Für den Betrag gilt: r = r sin, r = r sin 90 = r= v Für den Beschleunigungsvektor folgt: a= v= r ṙ= r v=a t a n Bahnbeschleunigung: Zentripetalbeschleunigung: a t = r a n = v= r Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

16 3.3 Gleichförmige Kreisbewegung Definition: Bei einer gleichförmigen Kreisbewegung ist die Winkelgeschwindigkeit ω konstant: t = 0 =const. Überstrichener Winkel: Der Massenpunkt bewegt sich mit der konstanten Bahngeschwindigkeit v 0 = 0 r auf der Kreisbahn. Für den zurückgelegten Weg gilt: s t s 0 =v 0 t t 0 r t 0 = 0 r t t 0 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

17 3.3 Gleichförmige Kreisbewegung Daraus folgt für den Winkel: Umlaufzeit und Drehzahl: t = 0 0 t t 0 Während einer Umdrehung wird ein Winkel von 2π überstrichen. Die dafür benötigte Umlaufzeit T berechnet sich aus 2 = t T t = 0 T T = 2 0 Die Drehzahl n gibt die Anzahl der Umdrehungen pro Zeit an: n= 1 T = 0 2 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

18 3.3 Gleichförmige Kreisbewegung Die Drehzahl wird in Umdrehungen pro Minute angegeben. Der Zusammenhang zwischen Drehzahl n in 1/min und Winkelgeschwindigkeit in 1/s ist gegeben durch 0 = 2 n 60 s/ min = n 30 s/min Geschwindigkeit und Beschleunigung: Bahngeschwindigkeit: Zentripetalbeschleunigung: Bahnbeschleunigung: v=ṡ= 0 r=const. a n = 0 2 r= v2 r =const. a t = r=0 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

19 3.3 Gleichförmige Kreisbewegung Beispiel: Die beiden Rollen sind durch einen dehnstarren Riemen verbunden. Punkt P hängt an einem dehnstarren Seil, das auf Rolle 2 aufgewickelt wird. Gesucht: Winkelgeschwindigkeit ω 2 von Rolle 2 und Geschwindigkeit v P von Punkt P ω 1 r r 3 1 r 2 Gegeben: ω 2 v P Winkelgeschwindigkeit ω 1 von Rolle 1 P Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

20 3.3 Gleichförmige Kreisbewegung Punkt A bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit Radius r 1. Daher gilt: v A = 1 r 1 v A v B v C A B r r 3 1 r 2 C Die Punkte A und B sind durch einen dehnstarren Riemen verbunden. Daher gilt: v B =v A ω 1 ω 2 v P P Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

21 3.3 Gleichförmige Kreisbewegung Punkt B bewegt sich mit der Winkelgeschwindigkeit ω 2 auf einer Kreisbahn mit Radius r 3. Daher gilt: v A =v B = 2 r 3 1 r 1 = 2 r 3 2 = 1 r 1 r 3 Punkt C bewegt sich mit der Winkelgeschwindigkeit ω 2 auf einer Kreisbahn mit Radius r 2. Daher gilt: v C = 2 r 2 = 1 r 1 r 2 r 3 Punkt P ist über ein dehnstarres Seil mit Punkt C verbunden. Daher gilt: r 1 r 2 v P =v C = 1 r 3 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

22 3.4 Gleichmäßig beschleunigte Kreisbewegung Definition: Bei einer gleichmäßig beschleunigten Kreisbewegung ist die Winkelbeschleunigung konstant: t = 0 =const. Winkelgeschwindigkeit und Winkel: Der Massenpunkt führt auf der Kreisbahn eine gleichmäßig beschleunigte Bewegung mit der konstanten Bahnbeschleunigung a t = 0 r aus. Für die Bahngeschwindigkeit gilt: v t v 0 =a t t t 0 r t 0 = 0 r t t 0 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

23 3.4 Gleichmäßig beschleunigte Kreisbewegung Daraus folgt für die Winkelgeschwindigkeit: t = 0 0 t t 0 Für die Ortskoordinate gilt: s t s 0 =v 0 t t a t t t 0 2 r t 0 = 0 r t t r t t 0 2 Daraus folgt für den Winkel: t = 0 0 t t t t 0 2 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

24 3.4 Gleichmäßig beschleunigte Kreisbewegung Beispiel: Ein Schwungrad (Durchmesser d = 60cm) wird aus der Ruhelage gleichmäßig beschleunigt und hat nach t 2 = 20s eine Drehzahl von n = 1000min -1 erreicht. Gesucht: Winkelbeschleunigung Anzahl der Umdrehungen in der Zeit t 2 Geschwindigkeit und Beschleunigung eines Punktes auf dem Umfang zur Zeit t 1 = 1s nach dem Anlaufen Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

25 3.4 Gleichmäßig beschleunigte Kreisbewegung Anfangsbedingungen: Die Zeit wird ab Beginn des Anlaufens gemessen: t 0 = 0 Der Winkel wird ab der Ruhelage gemessen: φ 0 = 0 Die Bewegung startet aus der Ruhelage: ω 0 = 0 Winkelbeschleunigung: Mit den gegebenen Anfangsbedingungen gilt: 2 = t 2 = 0 t 2 0 = 2 Für die Winkelgeschwindigkeit gilt: 2 = n 30 s/ min = s =104,7 1 s t 2 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

26 3.4 Gleichmäßig beschleunigte Kreisbewegung Damit berechnet sich die Winkelbeschleunigung zu 0 = 104,7 s 1 20 s Anzahl der Umdrehungen: =5,235 1 s 2 Für den überstrichenen Winkel gilt: 2 = t 2 = t 2 2 = t 2 Zahlenwert: 2 = , s=1047 s Bei einer Umdrehung wird ein Winkel von 2π überstrichen. Damit gilt für die Anzahl der Umdrehungen: N 2 = 2 2 = =166,6 Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

27 3.4 Gleichmäßig beschleunigte Kreisbewegung Geschwindigkeit und Beschleunigung eines Punktes auf dem Umfang: Die Winkelgeschwindigkeit zum Zeitpunkt t 1 = 1s beträgt 1 = t 1 = 0 t 1 =5,235 1 s 2 1 s=5,235 1 s Ein Punkt auf dem Umfang hat den Radius r=d /2=30 cm=0,3 m Seine Geschwindigkeit beträgt v 1 = 1 r=5, ,3 m=1,571 m /s s Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

28 3.4 Gleichmäßig beschleunigte Kreisbewegung Seine Normalbeschleunigung (Zentripetalbeschleunigung) beträgt a n 1 = 2 1 r=5, s 2 0,3 m=8,221 m/ s2 =0,8380 g Seine Bahnbeschleunigung beträgt a t 1 = 0 r=5,235 1 s 2 0,3m=1,571 m/s2 =0,1601 g Der Betrag der Gesamtbeschleunigung ist a 1 = a 2 n 1 a 2 t 1 =8,370 m /s 2 =0,8532 g Prof. Dr. Wandinger 1. Kinematik des Massenpunkts Dynamik

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht

Mehr

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation

5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches

Mehr

Technische Mechanik 3

Technische Mechanik 3 Technische Mechanik 3 2. Kinematik eines Massenpunktes 2.1. Grundbegriffe, kartesische Koordinaten 2.2. Geradlinige Bewegung 2.3. Ebene Bewegung, Polarkoordinaten 2.4. räumliche Bewegung, natürliche Koordinaten

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

1.2 Räumliche Bewegung. Aufgaben

1.2 Räumliche Bewegung. Aufgaben Technische Mechanik 3 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht mit

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Physikalische Anwendungen Kinematik

Physikalische Anwendungen Kinematik Physikalische Anwendungen Kinematik Zum Mathematik-Lehrbuch Notwendig und zunächst hinreichend (Shaker Verlag, Aachen) gibt es mehrere PDF-Dokumente mit ergänzenden Beispielen und Aufgaben, die die Anwendung

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung).

einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt also den kinematischen Kurvendurchlauf (κ ι ν ε µ α = Bewegung). 10.4. Raumkurven Kinematik Wir betrachten eine zweimal differenzierbare Parameterdarstellung w( t) x( t ) y( t ) z( t ) einer Raumkurve, wobei t als Zeitparameter interpretiert wird. w( t ) beschreibt

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

I. Mechanik. Die Lehre von den Bewegungen und den Kräften. I.1 Kinematik Die Lehre von den Bewegungen. Physik für Mediziner 1

I. Mechanik. Die Lehre von den Bewegungen und den Kräften. I.1 Kinematik Die Lehre von den Bewegungen. Physik für Mediziner 1 I. Mechanik Die Lehre von den Bewegungen und den Kräften I.1 Kinematik Die Lehre von den Bewegungen Physik für Mediziner 1 Mechanik I: Bewegung in einer Dimension Idealisierung: Massenpunkt ( Punktmasse)

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

1. Prinzip von d'alembert

1. Prinzip von d'alembert 1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Bewegung in Systemen mit mehreren Massenpunkten

Bewegung in Systemen mit mehreren Massenpunkten Bewegung in Systemen mit mehreren Massenpunkten Wir betrachten ein System mit mehreren Massenpunkten. Für jeden Massenpunkt i einzeln gilt nach Newton 2: F i = d p i dt. Für n Massenpunkte muss also ein

Mehr

FORMELSAMMLUNG PHYSIK. by Marcel Laube

FORMELSAMMLUNG PHYSIK. by Marcel Laube FORMELSAMMLUNG PHYSIK by Marcel Laube INHALTSVERZEICHNIS INHALTSVERZEICHNIS 1 Die gradlinige Bewegung: 3 Die gleichförmig gradlinige Bewegung: 3 Zurückgelegter Weg: 3 Die gleichmässig beschleunigte geradlinige

Mehr

Mechanik. Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt. Version: 15. Februar 2017

Mechanik. Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt. Version: 15. Februar 2017 Mechanik Labor Technische Physik Dipl. Ing. (FH) Michael Schmidt Version: 15. Februar 2017 nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung

Mehr

28.1 Definition der Beschleunigung, Hodograph. charakterisierte Bahnkurve C (Fig. 28.1). Die Geschwindigkeit zur Zeit t ist gemäß Band 1 als (28.

28.1 Definition der Beschleunigung, Hodograph. charakterisierte Bahnkurve C (Fig. 28.1). Die Geschwindigkeit zur Zeit t ist gemäß Band 1 als (28. 8 Beschleunigung Die Beschleunigung eines materiellen Punktes soll die Veränderung der Geschwindigkeit charakterisieren. Ähnlich wie bei der Definition der Geschwindigkeit in Kapitel, Band 1 hängt der

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

2 Kinematik eines Massenpunkts in 2D und 3D

2 Kinematik eines Massenpunkts in 2D und 3D 2 Kinematik eines Massenpunkts in 2D und 3D Wir wollen die räumliche Bewegung eines Massenpunkts (Fliege im Zimmer, geworfener Stein, Planet im Sonnensystem, Stern in einem dichten Sternhaufen, etc.) mathematisch

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

2.5 Ausgleichswellen im Verbrennungsmotor

2.5 Ausgleichswellen im Verbrennungsmotor 78 2 Dnamik der starren Maschine 2.5 Ausgleichswellen im Verbrennungsmotor Die periodische Hubbewegung der Kolben in Verbrennungsmotoren verursacht Massenkräfte in Zlinderachsenrichtung. Die periodischen

Mehr

2.5 Ausgleichswellen im Verbrennungsmotor

2.5 Ausgleichswellen im Verbrennungsmotor 90 2 Dynamik der starren Maschine 2.5 Ausgleichswellen im Verbrennungsmotor Die periodische Hubbewegung der Kolben in Verbrennungsmotoren verursacht Massenkräfte in Zylinderachsenrichtung. Die periodischen

Mehr

Kreisbewegung Ein Bild sagt mehr als tausend Worte.

Kreisbewegung Ein Bild sagt mehr als tausend Worte. Kreisbewegung Ex. 20.4 (3. Gebot) Du sollst Dir keine Bilder machen von Dingen, die im Himmel, auf der Erde, im Wasser oder unter der Erde sind. Ein Bild sagt mehr als tausend Worte. 1 Einführung Die Erde

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen Staatliche Technikerschule Waldmünchen Fach: Physik Häufig verwendete Formeln aus der Europa-Formelsammlung Lineare Bewegungen: Gleichförmige Bewegung: S. 11/ 2-7 Beschleunigte Bewegung: S. 12 / 2-20,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Technische Mechanik Kinematik und Kinetik Bearbeitet von Hans-Joachim Dreyer, Conrad Eller, Günther Holzmann, Heinz Meyer, Georg Schumpich 1. Auflage 2012. Taschenbuch. xii, 363 S. Paperback ISBN 978 3

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Technische Mechanik Kinematik und Kinetik

Technische Mechanik Kinematik und Kinetik Günther Holzmann Heinz Meyer Georg Schumpich Technische Mechanik Kinematik und Kinetik 10., überarbeitete Auflage Mit 315 Abbildungen, 138 Beispielen und 172 Aufgaben Von Prof. Dr.-Ing. Heinz Meyer unter

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Kinematik des Viergelenk-Koppelgetriebes

Kinematik des Viergelenk-Koppelgetriebes HTL-LiTec Viergelenk - Koppelgetriebe Seite 1 von 7 Dipl.-Ing. Paul MOHR email: p.mohr@eduhi.at Kinematik des Viergelenk-Koppelgetriebes Mathematische / Fachliche Inhalte in Stichworten: Kinematik; Getriebelehre;

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Übungen zur Vorlesung PN1 Lösung zu Blatt 5

Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Aufgabe 1: Geostationärer Satellit Übungen zur Vorlesung PN1 Lösung zu Blatt 5 Ein geostationärer Satellit zeichnet sich dadurch aus, dass er eine Umlaufdauer von einem Tag besitzt und sich folglich seine

Mehr

Übung zu Mechanik 3 Seite 7

Übung zu Mechanik 3 Seite 7 Übung zu Mechanik 3 Seite 7 Aufgabe 7 Gegeben ist der skizzierte Brückenträger aus geschweißten Flachstählen. Er wird im ungünstigsten Lastfall durch die Schnittgrößen max N 1, max Q 3 und max M 2 beansprucht.

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

6. Knappstein Kinematik und Kinetik

6. Knappstein Kinematik und Kinetik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. 6. Knappstein Kinematik und Kinetik Inhaltsverzeichnis 0 Einleitung

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

Physik für Pharmazeuten und Biologen MECHANIK I. Kinematik Dynamik

Physik für Pharmazeuten und Biologen MECHANIK I. Kinematik Dynamik Physik für Pharmazeuten und Biologen MECHANIK I Kinematik Dynamik MECHANIK Bewegungslehre (Kinematik) Gleichförmige Bewegung Beschleunigte Bewegung Kräfte Mechanik I 1.1 Kinematik Kinematik beschreibt

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Modell Punktmasse 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

10.3. Krümmung ebener Kurven

10.3. Krümmung ebener Kurven 0.3. Krümmung ebener Kurven Jeder der einmal beim Durchfahren einer Kurve bremsen oder beschleunigen mußte hat im wahrsten Sinne des Wortes erfahren daß die lokale Krümmung einen ganz wesentlichen Einfluß

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Teil 3 Bewegung in 2D und 3D

Teil 3 Bewegung in 2D und 3D Tipler-Mosca 3. Motion in two and three dimensions 3.1 Der Verschiebungsvektor (The displacement vector) 3.2 Allgemeine Eigenschaften von Vektoren (General properties of vectors) 3.3 Ort, Geschwindigkeit,

Mehr