Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Numerische Simulation von Differential-Gleichungen der Himmelsmechanik"

Transkript

1 Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule) Arne Scilling (Herder-Oberscule) Felix Willamowski (Andreas-Oberscule) Gruppenleiter: André Backes (Humboldt-Universität) Die Gruppe bescäftigte sic am Beispiel der Bewegung eines Planeten um die Sonne mit dem grundlegenden Prozess, ein pysikalisces Pänomen matematisc zu analysieren mit dem Ziel einer Simulation am Computer. Wir bescäftigten uns zunäcst mit dem grundlegenden Begriff der Differential-Gleicung und lernten mit dem expliziten und dem impliziten Euler-Verfaren an einfacen Beispielen eine erste Möglickeit kennen, Differential-Gleicungen auc numerisc mit Hilfe des Computers zu lösen. Dann bescäfigten wir uns intensiver mit dem Differentialgleicungssystem, welces die Bewegung eines Planeten um die Sonne bescreibt und welces aus dem Gravitations-Gesetz von Newton abgeleitet werden kann. Wir mussten einseen, dass die numerisce Lösung der Planeten- Gleicung mit Hilfe des expliziten Euler-Verfarens ier eine nict zufriedenstellende Lösung liefert. Wir überlegten zusammen, wie wir unser numerisces Verfaren verbessern könnten. Somit kamen wir auf das symplektisce Euler- Verfaren, welces für unser Problem einfac programmiert werden kann und dennoc ein wesentlic besseres Resultat liefert. Scließlic wollten wir versteen, warum das symplektisce Euler-Verfaren ier so gute Ergebnisse erzielt. Wir aben gelernt, dass das Differentialgleicungssystem des Planeten ein sogenanntes Hamilton-System ist und dass ein symplektisces Verfaren ser gut zu der Hamiltonscen Struktur der Differentialgleicung passt. Die zur Differentialgleicung geörige Hamilton-Funktion aben wir benutzt, um die berecneten 1

2 Näerungslösungen für die Ban des Planeten und somit die Qualität des numeriscen Verfarens zu bewerten. 1 Differentialgleicungen Definition 1 Bestet zwiscen einer Funktion und einer irer Ableitungen eine Bezieung in der Gestalt einer Gleicung, in der auc die unabängigen Veränderlicen noc vorkommen können, so sprict man von einer Differentialgleicung. Beispiel 1 zum Lösen einer Differentialgleicung x = x x(0) = x 0 x x = 1 x x = 1dt ln( t ) + c = t c ɛ R x + e c = e t x = e t 1 e c x(t) = 1 e c et Da 1 e c konstant ist, folgern wir die allgemeine Lösung der Differentialgleicung: x(t) = x 0 e t. 2 Numerisce Verfaren zur Lösung einer Differential-Gleicung Wir betracten eine Differential-Gleicung der Form ẋ = f(x), x(0) = x 0 und wollen diese mit einem numeriscen Verfaren lösen. Dazu betracten wir diskrete Zeitpunkte 0 = t 0 < t 1 < t 2 <... 2

3 aus dem Zeitintervall I = [0, [, an denen wir die Funktionswerte der Lösung berecnen wollen. Unser Ziel ist es, Näerungswerte x 1, x 2, x 3,... für die Funktionswerte x(t 1 ), x(t 2 ), x(t 3 ),... zu berecnen. Eine Möglickeit ist es, die Zeitpunkte äquidistant zu wälen, das eißt, es ist t i+1 = t i +, i = 1, 2, 3,... Die Scrittweite nennen wir auc Diskretisierungs-Scrittweite. Als Idee für ein numerisces Verfaren wollen wir die Ableitung der Lösung x(t) an der Stelle t i durc einen Differenzen-Quotienten approximieren. Wir nemen an also ẋ(t i ) x(t i + ) x(t i ) f(x(t i )) x(t i + ) x(t i ) Aus diesem Ansatz entnemen wir die Verfarens-Vorscrift f(x i ) = x i+1 x i x i+1 = x i + f(x i ) Wir eralten damit das sogenannte explizite Euler-Verfaren x i+1 = x i + f(x i ), i = 1, 2, 3,... Als Abwandlung dieses Verfarens überlegen wir uns, dass der Differenzen-Quotient auc eine Approximation an die Ableitung der Lösung x(t) an der Stelle t i+1 ist. Dann aben wir also ẋ(t i+1 ) x(t i + ) x(t i ) f(x(t i+1 )) x(t i + ) x(t i ) Aus diesem Ansatz entnemen wir die Verfarens-Vorscrift f(x i+1 ) = x i+1 x i x i+1 = x i + f(x i+1 ) Wir eralten damit das sogenannte implizite Euler-Verfaren x i+1 = x i + f(x i+1 ), i = 1, 2, 3,... 3

4 Aufgabe: Betracte die Differential-Gleicung ẋ = x, x(0) = x 0 Betracte die explizite Lösung und überlege dir, dass lim x(t) = 0 t gilt. Zur numeriscen Lösung der Gleicung betracte eine Diskretisierungs-Scrittweite und untersuce, welce Werte das explizite und das implizite Euler-Verfaren liefert. Untersuce die Frage, ob für die Werte x i der beiden Verfaren auc die Eigenscaft gilt. lim x i = 0 i Lösung: x = x x 0 x x = 1 x x dt = 1dt ln( x ) = t + c c ɛ R x = e (t+c) x = ec e t lim ( x(t) ) = lim x x lim ( x(t) ) = 0 x e c e t explizites Verfaren: x i+1 = x i + f(x i ) = x i x i = (1 )x i = (1 ) i x 0 lim (x i+1) = lim ((1 ) i+1 x 0 ) = 0 gilt genau dann, wenn (1 ) vom Betrage i i er kleiner als 1 ist. Somit muss gelten 1 < 1 0 < < 2. 4

5 implizites Verfaren: x i+1 = x i + f(x i+1 ) = x i x i+1 (1 + )x i+1 = x i x i+1 = 1 ( ) i x i = x lim x i+1 = lim ( 1 i i +1 )i+1 x 0 = 0 gilt genau dann, wenn ( 1 ) vom Betrage er kleiner als 1 ist. Da > 0 bereits in den Voraussetzungen festgelegt ist, gilt somit +1 ( 1 ) < 1 > 0. Man erkennt sofort, dass beim impliziten Euler-Verfaren +1 keine Einscränkungen für die Scrittweite besteen und man at einen Analtspunkt, dass dieses Verfaren besser als das explizitie Euler-Verfaren sein könnte. 3 Die Differentialgleicung zur Berecnung der Planetenbewegung Um die Berecnung der elliptiscen Banen von Planeten vornemen zu können, ist ein Gleicungssystem notwendig, das alle erforderlicen Komponenten entält. Daer wälten wir als Ausgangspunkt das Gravitationgesetz F = γmm r 2 Mit Zerlegung der Kraft sowie der Rictung in ire Komponenten erält man folgende Gleicung: ( ) Fx = γmm ( ) x x2 + y 23 y F y Durc die Nutzung des Grundgesetzes der Mecanik, welces besagt, dass F = m a und die 2. Ableitung vom Weg nac der Zeit gleic der Bescleunigung ist, ergibt sic folgendes Gleicungssystem: γm ẍ = ) 3 x ( x 2 +y 2 r r. γm ÿ = ) 3 y ( x 2 +y 2 Da wir nun ein Differentialgleicungssystem (DGS) 2. Ordnung aben, welces wir nict lösen können, aben wir uns einen kleinen,,trick überlegt, wodurc 5

6 wir dieses Gleicungsystem zu einem System 1. Ordnung umwandeln: v = ẋ w = ẏ v = ẍ ẇ = ÿ Durc Einsetzen unserer Gleicungen eralten wir somit das 4-dimensoniale Differentialgleicungssystem 1. Ordnung. Wobei γ M für die Lösung des DGS keine Rolle spielt und desalb vernaclässigt wird. x v = ( ẇ = ẋ = v ẏ = w ( x 2 +y 2 ) 3 y x 2 +y 2 ) 3 Dieses DGS wäre nun konkret zu lösen. Da dies jedoc ziemlicen Aufwand bedeuten würde, wollen wir es,,nur numerisc lösen. Durc die bereits im Vorerigen bescriebenen numeriscen Verfaren besitzen wir auc die nötigen Mittel für dieses Unterfangen. Somit passen wir die Euler-Verfaren unserem Problem an und eralten folgende Verfarens-Vorscriften: v i+1 = v i w explizit i+1 = w i x i+1 = x i + v i y i+1 = y i + w i x i ( x 2 i +y2 i )3 y i ( x 2 i +y2 i )3 implizit v i+1 = v i w i+1 = w i x i+1 = x i + v i+1 y i+1 = y i + w i+1 x i+1 ( x 2 i+1 +y2 i+1 )3 y i+1 ( x 2 i+1 +y2 i+1 )3 Nac der Entwicklung dieser Verfaren ließen wir die Ergebnisse am Computer grafisc darstellen und stellten fest, dass selbst bei optimalen Werten das explizite Euler-Verfaren einen zunemenden Feler aufwies, der zur Folge atte, dass der Planet von seiner Ban ins Unendlice abdriftete (siee Anang). Da uns das implizite Verfaren zu scwer zu lösen war (es ist ein nictlineares 4-dimensionales GLS 1. Ordnung, welces durc das Newton-Verfaren ätte gelöst werden können), entwickelten wir somit eine neue Metode, welce aus einer Kombination des expliziten und implizitien Euler-Verfarens entstand. 6

7 Dieses Verfaren eißt symplektisces Euler-Verfaren und lieferte deutlic bessere Werte (siee Anang). v i+1 = v i x i ( x 2 i +y2 i )3 w symplektisc i+1 = w i y i ( x 2 i +y2 i )3 x i+1 = x i + v i+1 y i+1 = y i + w i+1 Die Visualisierung der versciedenen numeriscen Verfaren ielten wir nict für ausreicend, so dass wir eine matematisce Kontrolle für die Qualität der versciedenen Verfaren entwickelten. Dabei stießen wir,,zufällig auf die sogenannte Hamilton-Funktion, welce folgende Eigenscaften besitzt: H(x; y) R ẋ = dh (x; y) x dy ẏ = dh (x; y) y dx H : R 2 R Rn Rn Diese Eigenscaften der Hamilton-Funktion füren zu einer Besondereit, die in unserem Fall natürlic ser von Vorteil ist: Wir setzen eine Lösung des DGS in die Hamilton-Funktion ein und leiten diese ab: d dt [H(x(t); (y(t))] = dh ( ) x(t); (y(t) ẋ(t) + dh dt dy = ẏ(t)ẋ(t) ẋ(t)ẏ(t) = 0 ( ) x(t); (y(t) ẏ(t) Wie man erkennen kann, ist die Hamilton-Funktion somit für alle Lösungen des DGS konstant, da die erste Ableitung der Hamilton-Funktion gleic 0 ist. Da diese Konstante durc die Startwerte x 0, w 0 festgelegt wird, aben wir eine Möglickeit, die Qualität unserer numeriscen Verfaren zu bestimmen. Dazu müssen wir die zugeörige Hamilton-Funktion für unser Beispiel bestimmen und die jeweiligen Werte in diese Funktion einsetzen. Daer berecnen wir nun unsere benötigte Hamilton-Funktion: x v = ( x = dh 2 +y 2 ) 3 dx ẇ = x = dh 2 +y 2 ) 3 ( y ẋ = v = dh dv ẏ = w = dh dw dy 7

8 Durc diese Gleicungen lässt sic unsere Hamilton-Funktion ganz einfac bilden: H(x, y, v, w) = 1 2 v w2 1 x2 + y 2 Pysikalisc geseen gibt uns die Hamilton-Funktion die gesamte Energie des Systems an und muss desalb auc nac dem Energieeraltungssatz konstant sein. 4 Symplektisce Abbildungen symplektisces Euler-Verfaren Im R 2 ordnet eine symplektisce Abbildung einer Fläce A einer Fläce B zu, die den selben Fläceninalt at. Diese Eigenscaft ist analog zu dem zweiten Keplerscen-Gesetz: In selben Zeiten werden gleic große Fläcen überstricen (siee Anang). Unsere Iterationsvorscrift ist also symplektisc und wird desalb symplektisces Eulerverfaren genannt. 8

9 Anang 9

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

3.2 Spline Interpolation

3.2 Spline Interpolation 3.2 Spline Interpolation 3.2 Spline Interpolation Ein wesentlicer Defekt der globalen Interpolation aus dem vorerigen Abscnitt ist, dass die interpolierenden Polynome starke Oszillationen zwiscen den Stützstellen

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f ''

mathphys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN y-achse x-achse Graph von f Graph von f ' Graph von f '' matpys-online DIFFERENTIALRECHNUNG BEI GANZRATIONALEN FUNKTIONEN 5 Grap von f Grap von f ' Grap von f '' matpys-online bei ganzrationalen Funktionen Inaltsverzeicnis Kapitel Inalt Seite Der Ableitungsbegriff.

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Das Mehrgitterverfahren

Das Mehrgitterverfahren KAPITEL 3 Das Mergitterverfaren Mergitterverfaren kombinieren ein iteratives Lösungsverfaren mit einer Hierarcie untersciedlicer Diskretisierungsgitter. Ausgeend von einer Näerungslösung auf einem feinen

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Andreas Platen

Andreas Platen Seminar zur Approximationsteorie im Wintersemester 2009/2010 Monge-Ampère-Gleicung Numerisce Verfaren zur Lösung der Monge-Ampère-Gleicung, Teil II Andreas Platen 29.01.2010 1 Inaltsverzeicnis Inaltsverzeicnis

Mehr

Teil 1: 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr Friedrich Buckel. Stand 29.

Teil 1: 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr Friedrich Buckel. Stand 29. Teil 1: Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 1180 Friedric Buckel Stand 9. Juni 016 Lineare Gleicungssysteme Demo-Text für www.mate-cd.de Dieser Text stet

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur

Skulptur. 0,25 m. 1,65 m 1,7 m Sockel. 0,6 m 0,6 m 10 m. Aufgabe 1: Die Skulptur Aufgabe 1: Die Skulptur Um die Höe einer Skulptur zu bestimmen, die auf einem Sockel stet, stellt sic eine Person (Augenöe 1,70 m) in einer Entfernung von 10 m mit dem Rücken zur Skulptur und ält sic einen

Mehr

Elastizitätsmodul. 1. Aufgabenstellung

Elastizitätsmodul. 1. Aufgabenstellung M Elastizitätsmodul 1. Aufgabenstellung 1.1 Bestimmen Sie den Elastizitätsmodul E versciedener Metalle aus der Biegung von Stäben. 1. Stellen Sie den Biegepfeil s in Abängigkeit von der Belastung grafisc

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizscule Hannover - Seminararbeit - Modellierung von Ausflussvorgängen J I Sculjar: 2010 Fac: Matematik Inaltsverzeicnis 1 Einleitung 2 11 Vorwort 2 12 Vorbereitung 2 2 Ausflussvorgang bei konstantem

Mehr

Musterlösung Übung 1

Musterlösung Übung 1 Allgemeine Cemie PC) Musterlösung Übung HS 07 Musterlösung Übung Aufgabe : Molmasse von Sauerstoff Da die Summe der natürlicen Häufigkeiten aller stabilen Isotope Σ i i = sein muss, ist die Häufigkeit

Mehr

Physik I Übung 7, Teil 2 - Lösungshinweise

Physik I Übung 7, Teil 2 - Lösungshinweise Pysik I Übung 7, Teil - Lösungsinweise Stefan Reutter SoSe 0 Moritz Kütt Stand:.06.0 Franz Fujara Aufgabe Clausius- Klappermann Clapeyron Revisited (Vorsict, Aufgabe vom Cef!) Da sic Prof. Fujara wie immer

Mehr

Diagramm 1 Diagramm 2

Diagramm 1 Diagramm 2 Zweijärige zur Prüfung der Facsculreife fürende Berufsfacscule (BFS) Matematik (9) Hauptprüfung 008 Aufgaben Aufgabe 1 A. 1. Bestimmen Sie die Gleicungen der Geraden g und.. Geben Sie die Koordinaten der

Mehr

Numerik partieller Differentialgleichungen

Numerik partieller Differentialgleichungen Numerik partieller Differentialgleicungen Oliver Ernst Professur Numerisce Matematik Sommersemester 2015 Inalt I Oliver Ernst (Numerisce Matematik) Numerik partieller Differentialgleicungen Sommersemester

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Einfürung in die Differentialrecnung J. Sperling Uni-Rostock, WS 2015/2016 Inaltsverzeicnis 1 Differentialrecnung 3 1.1 Zur Gescicte.......................................... 3 1.2 Notation und Definition.....................................

Mehr

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22

9 Anhang. 9.1 Verhältnisgleichungen. 9.2 Strahlensätze. Elemente der Geometrie 22 Elemente der Geometrie 9 Anang 9.1 Verältnisgleicungen Verältnisgleicungen sind spezielle Formen von Gleicungen. Es a werden zwei Quotienten gleic gesetzt. Die Gleicung! b = c d kann man auc screiben als!a:b

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner Biostatistik, WS 200/20 Differential- und Integralrecnung Mattias Birkner ttp://www.matematik.uni-mainz.de/~birkner/biostatistik0/ 2..200 Inalt Ableitung Änderung und Steigung Recenregeln Anmerkungen 2

Mehr

1 Berechnung einer Geschwindigkeitskonstanten mit der Theorie des Übergangszustandes

1 Berechnung einer Geschwindigkeitskonstanten mit der Theorie des Übergangszustandes Pysikalisce Cemie II Lösung 11 4. Dezember 215 1 Berecnung einer Gescwindigkeitskonstanten mit der eorie des Übergangszustandes Mit Gl. 4.97 1. Eyringsce Gleicung ergibt sic für die termiscen Gescwindigkeitskonstanten

Mehr

Einführung in die Differentialrechnung

Einführung in die Differentialrechnung Reiner Winter Einfürung in die Differentialrecnung. Das Tangentenproblem als ein Grundproblem der Differentialrecnung Wir betracten im folgenden die quadratisce Normalparabel, d.. den Grapen GI f der Funktionsgleicung

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

6 Numerische Integration (Quadratur)

6 Numerische Integration (Quadratur) 6 Numerisce Integrtion (Qudrtur) In diesem Kpitel get es um die pproximtive Berecnung des Wertes eines bestimmten Integrls Anwendungen sind zb die Berecnung von Oberfläcen, Volumin, Wrsceinlickeiten, ber

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Differentialrechnung

Differentialrechnung 6 Differentialrecnung 6.1 Einfürung Newton und Leibniz Ableitung Maxima und Minima Newton sces Verfaren Die Differentialrecnung wurde von Newton (1643-1727) und von Leibniz (1646-1716) unabängig voneinander

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

Finanzmarktökonometrie: Zeitreihenanalyse Sommersemester 2010 Dr. Martin Becker

Finanzmarktökonometrie: Zeitreihenanalyse Sommersemester 2010 Dr. Martin Becker Wirtscaftswissenscaftlices Prüfungssekretariat Diplomprüfung Finanzmarktökonometrie: Zeitreienanalyse Sommersemester 2010 Dr. Martin Becker Name, Vorname: Matrikelnummer: B i t t e b e a c t e n S i e

Mehr

Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleichungen

Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleichungen Über Formen des konvektiven Terms in Finite-Elemente-Diskretisierungen der inkompressiblen Navier-Stokes-Gleicungen Diplomarbeit zur Erlangung des akademiscen Grades Diplom-Matematikerin Freie-Universität

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Nichtkonforme finite Elemente und Doedel-Kollokation für elliptische Differentialgleichungen

Nichtkonforme finite Elemente und Doedel-Kollokation für elliptische Differentialgleichungen Nictkonforme finite Elemente und Doedel-Kollokation für elliptisce Differentialgleicungen - Diplomarbeit - Eingereict am Facbereic Matematik und Informatik der Pilipps-Universität Marburg von Bastian Goldlücke

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Überholen mit konstanter Beschleunigung

Überholen mit konstanter Beschleunigung HTL Überolen mit konstanter Seite 1 von 7 Nietrost Bernard bernard.nietrost@tl-steyr.ac.at Überolen mit konstanter Bescleunigung Matematisce / Faclice Inalte in Sticworten: Modellieren kinematiscer Vorgänge;

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

Die Exponentialfunktion und ihre Verwandschaft

Die Exponentialfunktion und ihre Verwandschaft Die Exponentialfuntion und ire Verwandscaft Pilipp-Andreas Kaufmann 6. August 06 Inaltsverzeicnis Die Exponentialfuntion. Wie findet man nun so eine Folgenvorscrift?........................ Die Eigenscaften

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Mathematik I. J. Hellmich

Mathematik I. J. Hellmich Matematik I J. Hellmic Stuttgart Sommer 008 Autor: Dr. Jürgen Hellmic 7070 Tübingen Matematik I c Jürgen Hellmic Alle Recte vorbealten, auc die der fotomecaniscen Wiedergabe und der Speicerung in elektroniscen

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Lösung Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Lösung Aufgabe A www.mate-aufgaben.com Abiturprüfung Matematik 5 (Baden-Württemberg) Beruflice Gymnasien one TG Analysis Gruppe I, Lösung Aufgabe A f () ( ) ( ) ( ) f () ( ) f () ( ) und f () Wendepunkte: f () ( ) f (

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

10. Elliptische Regularitätstheorie.

10. Elliptische Regularitätstheorie. 10. Elliptisce Regularitätsteorie. Wir disutieren zunäcst die Fragestellung, um die es in diesem Paragrapen get. Sei u 0 scwace Lsg. des elliptiscen RWPs { Lu = f in, u = 0 auf, 10.1) d.., es sei u 0 H

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

Vertauschen von Limiten

Vertauschen von Limiten Vertauscen von Limiten W. Herfort December 28, 25 Contents Die Mutter aller Sclacten 2 2 Anwendungen in Beispielen 2 2. Vertauscen von GW in ANA 2................... 2 2.. Aufgabe............................

Mehr

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2 Das Delta-Potential Quantenmecanik Projekt Gruppe PLANCK Anton Hörl Tomas Kloiber Bernd Kollmann Miriam Mutici Jakob Scwarz Max Planck (1858 1947) 4.4 Delta-Potential Ist die räumlice Ausdenung eines Potentials

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Differenzialrechnung Skript für den Brückenkurs zum Studiengang Holztechnik

Differenzialrechnung Skript für den Brückenkurs zum Studiengang Holztechnik Differenzialrecnung Skript für den Brückenkurs zum Studiengang Holztecnik Joannes Creutziger Hocscule für nacaltige Entwicklung Eberswalde (FH) Facbereic Holztecnik Version 0.2, 06.10.2011; kleine Korrekturen

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

Betrachten wir die zeitabhängige Schrödinger-Gleichung für Ψ 1 auf der linken Seite:?

Betrachten wir die zeitabhängige Schrödinger-Gleichung für Ψ 1 auf der linken Seite:? . Suraflüssigkeit..4. Joseson-Effekte 78 Betracten wir die zeitabängige Scrödinger-Gleicung für Ψ auf der linken Seite:? i H? E t? Da ψ Eigenzustand von H ist, ist? zeitunabängig. Damit ist? dt? e it i

Mehr

Differenzenverfahren für Partielle Differentialgleichungen. Wolf Hofmann

Differenzenverfahren für Partielle Differentialgleichungen. Wolf Hofmann Differenzenverfaren für Partielle Differentialgleicungen Wolf Hofmann 5. August 005 Inaltsverzeicnis I Parabolisce Differentialgleicungen Die Wärmeleitungsgleicung Diskretisierung (einfacster Fall) 4

Mehr

Heute schon gepoppt?

Heute schon gepoppt? Heute scon gepoppt? Benno Grabinger, Neustadt/Weinstraße, www.bennograbinger.de www.pringles.de Benno Grabinger: Pringles 1 Wie ann die Form eines Pringle matematisc bescrieben werden? Wo entsteen solce

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Numerik partieller Differentialgleichungen

Numerik partieller Differentialgleichungen Sriptum zur Vorlesung Numeri partieller Differentialgleicungen Wintersemester 26/7 Martin Burger Institut für Numerisce und Angewandte Matemati martin.burger@uni-muenster.de ttp://www.mat.uni-muenster.de/u/burger/

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik. - Ersttermin -

Schriftliche Abiturprüfung Leistungskursfach Mathematik. - Ersttermin - Säcsisces Staatsministerium für Kultus Sculjar 200/02 Geltungsbereic: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Sculfremde Prüfungsteilnemer Scriftlice Abiturprüfung Leistungsursfac

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena

Das Goethe-Barometer Luftdruckmessungen mit einem historischen Gerät von Helmut Jena Das Goete-Barometer uftdruckmessungen mit einem istoriscen Gerät von Helmut Jena Das Goete-Barometer als attraktiver und istoriscer uftdruck- Anzeiger fasziniert besonders den naturwissenscaftlic interessierten

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Schriftliche Abschlussprüfung Physik

Schriftliche Abschlussprüfung Physik Säcsisces Staatsministerium für Kultus Sculjar 2001/2002 Geltungsbereic: für Klassen 10 an - Mittelsculen - Fördersculen - Abendmittelsculen Scriftlice Absclussprüfung Pysik Realsculabscluss Allgemeine

Mehr

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an.

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an. Anwendungsaufgaben - Größen und Eineiten 1 Gib jeweils die Messgenauigkeit und die Anzal der gültigen Ziffern an. Messgerät Messwert Messgenauigkeit gültige Ziffern Maßband Lineal Messscieber Mikrometer

Mehr

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma

Charaktere. 1 Wiederholung. 2 Charaktere verschiedener Darstellungen. 1.1 Zerlegung von Darstellungen. 1.2 Schursches Lemma Caraktere 1 Wiederolung 1.1 Zerlegung von Darstellungen Jede Darstellung läßt sic Zelegen in V = V a1 1 V a Wobei die V i irreduzible Darstellungen von G sind und a i N. Die Sätze der Carakterteorie liefern

Mehr

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y

1.06 Druck an gekrümmten Flächen y y = f(x) p = γ. (h-y) h y 1.06 Druck an gekrümmten läcen f() p γ. (-) p p ds p 0 0 Es andelt sic um ein zweidimensionales Problem in der -- Ebene. ür die Ermittlung von Kräften muss auc die Dimension senkrect zur Tafelebene berücksictigt

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

kleinsten mittleren Fehlerquadrats und die Maximum-a-posteriori-Schätzung. Die Bayes-Schätzung basiert auf dem Satz von Bayes:

kleinsten mittleren Fehlerquadrats und die Maximum-a-posteriori-Schätzung. Die Bayes-Schätzung basiert auf dem Satz von Bayes: 4 Bayes-Scätzung 4.1 Überblick Die Bayes-Scätzung geört zu den wictigsten Konzepten der Signalverarbeitung. Sie stellt die Verallgemeinerung und damit ein Ramenwerk für einen Großteil klassiscer und moderner

Mehr

Finite-Elemente-Verfahren und schnelle Löser

Finite-Elemente-Verfahren und schnelle Löser Finite-Elemente-Verfaren und scnelle Löser Peter Bastian Universität Stuttgart, Institut für Parallele und Verteilte Systeme Universitätsstraße 38, D-70569 Stuttgart email: Peter.Bastian@ipvs.uni-stuttgart.de

Mehr

Numerische und stochastische Grundlagen der Informatik

Numerische und stochastische Grundlagen der Informatik Numerisce und stocastisce Grundlagen der Informatik Peter Bastian Universität Stuttgart, Institut für Parallele und Verteilte Systeme Universitätsstraße 38, D-70569 Stuttgart email: Peter.Bastian@ipvs.uni-stuttgart.de

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Facharbeit über die Berechnung von Fässern mit Beweis bzw. Herleitung der Berechnungsformeln.

Facharbeit über die Berechnung von Fässern mit Beweis bzw. Herleitung der Berechnungsformeln. Facarbeit über die Berecnung von Fässern mit Beweis bzw. Herleitung der Berecnungsformeln. erfaßt von Ing. Walter Hölubmer im ai 00 und ergänzt im Juni 00, Juni 00 und Dez. 009 Ein besonderer geometriscer

Mehr