Übungsblatt 4 - Lösung

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt 4 - Lösung"

Transkript

1 Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd. Whr. In enem determnstschen Automten st zu jedem Zetpunkt endeutg festgelegt, n welchen Zustnd mn durch Lesen enes Alphetssymols gelngt. Ddurch knn es für dssele Wort ne mehr ls enen Pfd geen. 2. Für jeden ncht-determnstschen endlchen Automten (NEA) mt n Zuständen exstert en determnstscher endlcher Automt (DEA) mt mndestens 2 n Zuständen, der desele Sprche erkennt. Flsch. Ncht mt mndestens, sondern mt höchstens 2 n Zuständen. Deser exponentl low-up st lso nur der pthologsche Fll e der Determnserung. In den mesten Fällen snd vele der Telmengen-Zustände ncht errechr. 3. Se Σ = 3. In enem DEA mt Alphet Σ gt es kenen Zustnd, von dem mehr ls dre Üergänge usgehen. Whr. Gngen von enem Zustnd mehr ls Σ Üergnge us, würden mndestens zwe deser Üergänge mt demselen Alphetssymol erfolgen. Der Automt wäre dnn ncht mehr determnstsch. 4. Es gt kene Sprche, de zwr von enem NEA, ncht er von enem DEA erknnt wrd. Whr. DEA können genu desele Menge von Sprchen erkennen (nämlch de regulären Sprchen) we NEA. 1

2 2 Konstrukton enes Automten Konstruere enen determnstschen endlchen Automten, der nur Wörter mt der Endung ng kzeptert, lso z.b. swmmng, etng, sleepng etc. Ds Alphet esteht us llen Buchsten von A-Z. Forml ls 5-Tupel: A = {q 0, q 1, q 2, q 3 }, Σ, q 0, δ, {q 3 } Σ = -z δ = { δ(q 0, ncht ) = q 0, δ(q 0, ) = q 1, δ(q 1, ) = q 1, δ(q 0, ncht oder n) = q 0, δ(q1, n) = q 2, δ(q2, ) = q 1, δ(q2, ncht oder g) = q 0, δ(q 2, g) = g 3, δ(q3, ) = q 1, δ(q 3, ncht ) = q 0 } Gezechnet seht er so us: ncht strt q 0 q 1 n q 2 g q 3 ncht oder n ncht oder g ncht 3 Reguläre Grmmtken und endlche Automten 1. Schre ene Typ-3 Grmmtk zu dem folgenden Automten: q 1 strt q 0 q 3 q 2 c 2

3 G 1 = {0, 1, 2, 3}, {,, c}, P 1, 0 mt folgender Regelmenge P 1 : { c 3 2 ε 3 ε} Alterntv knn P 1 uch ɛ-fre sen: { c 3 3 c} 2. Ws st de llgemene Form der Wörter deser Sprche? G se z.b. ls regulären Ausdruck n. De llgemene Form der Wörter lässt sch ls regulärer Ausdruck schreen: ((() ) ((() ) ) (c )) c (Verenfchungen oder ndere Ausdrücke snd möglch), oder uch nformell: Beleg vele Durchgänge durch de Schlefe 0120, de β erzeugt, woe β für eleg vele Vorkommen von oder steht. Schleßlch muss der Automt n enen Endzustnd fnden: ds geht entweder mt β oder mt und eleg velen c. 3. Ist de Sprche endlch oder unendlch, und wrum? De Sprche st unendlch, d es ene Schlefe gt, de errechr und uch ko-errechr st. 3

4 4. Welchen Üergng müsste mn hnzufügen, dmt der Automt uch ds Wort erkennt? Um ds Wort zu erkennen, muss dem Automten entweder en Üergng von 1 nch 2 mt, von 0 nch 2 mt oder ene Schlefe m Zustnd 1 mt hnzugefügt werden. 5. Blet de Sprche erhlten, wenn mn den -Üergng von 2 nch 1 entfernt? (Wenn ncht, g en Gegenespel.) Nen, de Sprche let ncht erhlten. Der Orgnlutomt knn ds Wort erkennen, ds st ncht mehr möglch, wenn der Üergng entfernt wrd. 4 Frewllge Aufge: Induktonsewes Gegeen st de Bernoullsche Unglechung: (1 + x) n 1 + nx für jede gnze Zhl x 1 Löse de folgenden Aufgen und ewese dmt nduktv de Rchtgket der Unglechung. 1. Fnde ene Vrle n der Unglechung, üer de du den Bewes m esten führen knnst. n 2. Ws st der snnvollste, klenste Wert, den de Vrle nnehmen knn? n = 0, d wr dnn enfche Fälle we x oder (1 + x) 0 etrchten können. 3. Bewese den Bssfll: Setze desen Wert für de Vrle en und zege, dss de Unglechung whr st. Für n = 0 glt: (1 + x) x x 1 1 Der Bssfll st lso whr. 4. Formulere de Induktonsvorussetzung und de Induktonsehuptung. De Induktonsvorussetzung st: (1 + x) n 1 + nx mt n 0 Dher st de Induktonsehuptung, dss de Unglechung uch für n + 1 glt: (1 + x) (n+1) 1 + (n + 1)x 4

5 5. Der schwergste Tel: Bewese, dss de Induktonsehuptung whr st (Induktonsschrtt). (1 + x) (n+1) 1 + (n + 1)x (1 + x) n (1 + x) (1 + nx) (1 + x) 1 + x + nx + nx (n + 1)x De letzte Zele zegt offenschtlch, dss de lnke Sete größer ls de rechte st. Für mehr Infos, schu n den Wkped-Artkel: 5

9 Integration von Funktionen in mehreren Variablen

9 Integration von Funktionen in mehreren Variablen 9 Integrton von Funktonen n mehreren Vrlen 9 9 Integrton von Funktonen n mehreren Vrlen Der Integrlegrff für Funktonen n mehreren Vrlen st wesentlch velfältger ls der e Funktonen n ener Vrlen. Dem unestmmten

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Einführung: Sequence Alignment

Einführung: Sequence Alignment lgorthmsche nendungen - Prktkum WS 7/8 ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 - Hener Klocke Fchhochschule Köln Informtk Prktkum: ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 9 ufge Kptel ynmsche

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

Lineare Gleichungssysteme und ihre Lösung

Lineare Gleichungssysteme und ihre Lösung III Lnee Glechungssysteme und he Lösung In den Kpteln II. und II. wude de Bedeutung von Lneen Glechungssysteme (LGS) fü Poleme de Anlytschen Geomete deutlch. eshl stellt sch de Fge nch systemtschen Lösungsvefhen.

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken Endliche Automten Stoyn Mutfchiev Progrmming Systems L, Universität des Srlndes, Srrücken Astrct Gegenstnd dieser Areit ist der endliche Automt, sowie die Aschlusseigenschften der Sprchen, die von endlichen

Mehr

Strahlensatz, Zentrische Streckung, Vierstreckensatz (Anwendung, Beweis, Konstruktion)

Strahlensatz, Zentrische Streckung, Vierstreckensatz (Anwendung, Beweis, Konstruktion) Gymnsum Strhlenstz, Zentrsche Streckung, Verstreckenstz 1. Berechne us den jewels gegebenen Größen de gesuchten Streckenlängen: Gegeben: ) AB = cm ; ZA = 3cm ; ZA ' = 5cm A 'B' Gesucht: b) ZA = 3,5cm ;

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung . Üungsltt (mit en) 3. VU Formle Modellierung Mrion Brndsteidl, Gernot Slzer 3. Mi 3 (Korrektur 4.6.) Aufge (.3 Punkte) Sei A der folgende Mely-Automt. u/ h/ h/ h/ u/ h/ 3 4 u/ u/ () Geen Sie die Ausge

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier Weihnchtsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache!

R(i,j,0) ist also für alle i,j = 1,...,n endlich und somit eine durch einen regulären Ausdruck beschreibbare Sprache! 1 2 Reguläre Audrücke und reguläre Sprchen Grundlgen der Theoretichen Inormtik Till Mokowki Fkultät ür Inormtik Otto-von-Guericke Univerität Mgdeurg Winteremeter 2014/15 Stz: [Kleene] Die Kle der durch

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Messen kleiner Größen

Messen kleiner Größen Messen klener Größen Negungssensoren Elektronsche Negungssensoren Flüssgketsssteme Pendelssteme Sesmsche Ssteme btstung ener Gsblse btstung ener Flüssgkets -oberfläche Vertklpendel Horzontl -pendel Beschleungungsmesser;

Mehr

1 Der Uncovering-by-bases-Algorithmus

1 Der Uncovering-by-bases-Algorithmus De Komplextät des Uncoverng-y-ases-Algorthmus Peer Hlderandt 1 Der Uncoverng-y-ases-Algorthmus 1.1 Defnton (Der Algorthmus) Se G ene Gruppe, U en Uncoverng durch Basen und w = w 1... w n en empfangenes

Mehr

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel Formle Sprchen Reguläre Sprchen Endliche Automten - Kleene STEPHEN KLEENE (99-994) Rudolf FREUND, Mrion OSWALD 956: Representtion of events in nerve nets nd finite utomt. In: C.E. Shnnon und J. McCrthy

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab Lösungen zu Übungsufgben Angewndte Mthemtk MST Bltt Mtlb Prf.Dr.B.rbwsk Zu Aufgbe ) Errbeten Se sch begefügtes Mterl zur Trpezmethde und zur Smpsnschen Fssregel! (us Ppul, Mthemtk für Ingeneure, Bnd Kp.V.)

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Merkblatt Fenster. Kanton Bern Erziehungsdirektion Denkmalpflege. Stadt Bern Präsidialdirektion Denkmalpflege

Merkblatt Fenster. Kanton Bern Erziehungsdirektion Denkmalpflege. Stadt Bern Präsidialdirektion Denkmalpflege Knton Bern Erzehungsdrekton Denkmlpflege Stdt Bern Präsdldrekton Denkmlpflege Merkbltt Fenster A Grundsätzlches Fenster prägen de äussere Erschenung enes Gebäudes mss gebend und snd oft en ntegrler Bestndtel

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnk Telübung: nbelsteter Spnnungsteler Gruppentelnehmer: jnovc, Pcr Abgbedtum: 25.01.2006 jnovc, Pcr Inhltsverzechns 2HEA INHALTSVEZEICHNIS 1. Aufgbenstellung...

Mehr

Eine Menge G zusammen mit einer Verknüpfung + (+ : G x G folgende Axiome erfüllt sind:

Eine Menge G zusammen mit einer Verknüpfung + (+ : G x G folgende Axiome erfüllt sind: Defntonen und Formelsmmlung Für de Voreretung der Lnere Alger Klusur I e Prof. Krcher Chrstoph Tornu toff@gfoot.de Alle Angen we mmer ohne Gewehr. Defntonen von Mengen mt Verknüpfungen : : Verson Defnton:

Mehr

7 Modellierung von Abläufen 7.1 Endliche Automaten

7 Modellierung von Abläufen 7.1 Endliche Automaten 7 Modellierung von Aläufen 7. Endliche Automten Mod-7. Endlicher Automt: Formler Klkül zur Spezifiktion von relen oder strkten Mschinen. Sie regieren uf äußere Ereignisse, ändern ihren inneren Zustnd,

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Einheit 14: Endliche Automten Thoms Worsch Krlsruher Institut für Technologie, Fkultät für Informtik Wintersemester 2009/2010 1/56 Üerlick Erstes Beispiel: ein Getränkeutomt

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 011/1 Inhlt der Vorlesung Themen dieser VL: Welche Rechenmodelle sind däqut? Welche Proleme

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Terme und Formeln Komplexe Zahlen

Terme und Formeln Komplexe Zahlen Terme und Formeln Komplexe Zhlen e ϕ + = 0 Rchrd Feynmn nnnte dese Glechung n senem Notzbuch de bemerkenswerteste Formel der Welt ; ndere nennen se de schönste Formel der Mthemtk. De Eulersche Identtät

Mehr

Bemerkungen zum LCG Rupert Hartung,

Bemerkungen zum LCG Rupert Hartung, mt Bemerkungen zum LCG Rupert Hartung, 24.6.2005 Wr betrachten den Lnear Congruental Generator (LCG) X 0, X 1,..., X,... X +1 = ax + c mod N (1) zur Erzeugung von Pseudozufallszahlen mäÿger Qualtät. De

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

1 Differentialrechnung in mehreren Variablen

1 Differentialrechnung in mehreren Variablen 1 Dfferentalrechnung n mehreren Varablen 1.1 De Geometre eukldscher Räume Zur Ernnerung De Elemente des R n schreben wr normalerwese als Zelenvektoren: x = (x 1,..., x n ). Kommen Matrzen ns Spel, so st

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr

B) Grammatik/Rechtschreibung (Richtzeit: ca. 35min)

B) Grammatik/Rechtschreibung (Richtzeit: ca. 35min) B) Grmmk/Rechschrebung (Rchze: c. 35mn) 1. Besmme de Worr der unersrchenen Wörer! Besmme be den Pronomen und den Prkeln nur de Unergruppen! Des(1) wusse() ch(3) schon or() mener(5) Leserese(), denn(7)

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr