Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK"

Transkript

1 Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

2 Einführung Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 2/22

3 Unendliche Wörter Definition Sei V ein (weiterhin endliches) Alphabet. V ω ist die Menge der unendlichen Wörter mit Buchstaben aus V. w(n) bezeichnet den n-ten Buchstaben in w und w (n) das endliche Anfangstück w(0)... w(n) von w. Wir nennen ein Wort w V ω manchmal auch ein ω-wort über V. Man kann ein unendliches Wort w V ω auch als eine Funktion w : IN V, von den natürlichen Zahlen in das Alphabet auffassen. Das leere Wort ε kommt nicht in V ω vor. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 3/22

4 Operationen Sei K V und J V ω : 1 K ω bezeichnet die Menge der unendlichen Wörter der Form w 1... w i... mit w i K für alle i 2 3 KJ = {w 1 w 2 w 1 K, w 2 J} K = {w V ω w (n) K für unendlich viele n} Manche Autoren benutzen lim(k ) anstelle von K. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 4/22

5 Definition Sei A = (S, V, s 0, δ, F) ein nicht deterministischer endlicher Automat. Für ein ω-wort w V ω nennen wir eine Folge s 0,..., s n,... eine Berechnungsfolge (Englisch run) für w, wenn für alle 0 n gilt s n+1 δ(s n, w(n)) Die von A akzeptierte ω-sprache wird definiert durch L ω (A) = {w V ω es gibt eine Berechnungsfolge für w mit unendlich vielen Finalzuständen } Der einzige Unterschied zwischen und (normalen) endlichen Automaten liegt in der Akzeptanzdefinition. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 5/22

6 Beispiel 1 a, b a a Die akzeptierte Sprache ist {a, b} a ω Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 6/22

7 Beispiel 2 a b a b Die akzeptierte Sprache ist (a b + a) ω + (a b + a) a b ω = a b (b + a + b) ω Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 7/22

8 Entscheidbarkeit Die Frage, ob für einen B die Menge der akzeptierten Wörter nicht leer ist, d.h. ist entscheidbar. Beweis: L ω (B), Um L ω (B) zu zeigen muß man nur einen erreichbaren Endzustand q f F finden, der auf einer Schleife liegt. Wir nennen eine Menge L von ω-wörtern ω-regulär, wenn es einen A gibt mit L ω (A) = L. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 8/22

9 Endliche und unendliche Akzeptanz Lemma Sei A ein endlicher Automat und K = L(A). Dann gilt 1 L ω (A) K 2 Falls A deterministisch ist gilt sogar L ω (A) = K Beweis zu 1: Für w L ω (A) gibt es eine Berechnungsfolge ρ w = s 0, s 1... s n..., so daß F w = {n IN s n F } unendlich ist. Für alle n F w gilt s n F w (n) K. Also w K. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/2010 9/22

10 Endliche und unendliche Akzeptanz Lemma Sei A ein endlicher Automat und K = L(A). Dann gilt 1 L ω (A) K 2 Falls A deterministisch ist gilt sogar L ω (A) = K Beweis zu 2: Für w K ist R w = {n IN w (n) K } unendlich. Für jedes n R w gibt es eine Berechungsfolge s n = s n,1, s n,2,..., s n,ln für w (n). Da A deterministisch ist, ist für jedes Paar n, m R w mit n < m s n Anfangsstück von s m. Zusammengesetzt erhalten wir eine unendliche Berechnungsfolge s für w, die unendlich oft einen Endzustand durchläuft. Also w L ω (A). Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

11 Deterministische Korollar Für eine ω-sprache L V ω sind äquivalent: L = L ω (A) für einen deterministischen es eine reguläre Sprache K V gibt mit L = K. Beweis: Folgt direkt aus der Tatsache, daß für deterministische Automaten A L ω (A) = L(A) gilt (vorangeganges Lemma). Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

12 Der Beispielautomat N bfin a s 0 s 1 {a, b} a L ω (N bfin ) = {w {a, b} ω in w kommt b nur endlich oft vor} L(N bfin ) = {w {a, b} w endet auf a}. Lim(L(N bfin )) = {w {a, b} ω in w kommt a unendlich of vor}. Man sieht leicht, daß L ω (N bfin ) Lim(L(N bfin )) Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

13 Deterministische Korollar Es gibt Sprachen L V ω, die von einem nicht-deterministischen akzeptiert werden, aber von keinem deterministischen. Beweis: Wir wählen V = {a, b} und L = L ω (N bfin ) = {w V ω w(n) = b nur für endlich viele n} Angenommen L = K für eine reguläre Menge K V. Es gibt ein k 1 > 0 mit a k 1 K, da a ω L. Dann gibt es auch ein k 2 > 0 mit a k 1ba k 2 K, weil a k 1ba ω L. So fortfahrend gibt es k i > 0 für alle i mit a k 1ba k 2b... ba k i K. Wegen L = K folgt daraus auch a k 1ba k 2b... ba k i b... L im Widerspruch zur Definition von L. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

14 Abschlußeigenschaften Sind L 1, L 2 ω-reguläre Sprachen und ist K eine reguläre Sprache, dann ist auch 1 L 1 L 2 ω-regulär, 2 K ω ω-regulär, falls ε K, 3 KL 1 ω-regulär, 4 V ω \ L 1 ω-regulär, 5 L 1 L 2 ω-regulär. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

15 Beweis Seien A i = (Q i, V, s i 0, δ i, F i ) für i = 1, 2 und L i = L ω i (A i ). Wir können ohne Beschränkung der Allgemeinheit annehmen, daß Q 1 Q 2 = Wir konstruieren einen A = (Q, V, s 0, δ, F ), wobei s 0 ein neuer Zustand ist, der weder in Q 1 noch in Q 2 vorkommt. Q = Q 1 Q 2 {s 0 } δ(q, a) = δ i (q, a) falls q Q i δ(s 0, a) = δ 1 (s0 1, a) δ 2(s0 2, a) F = F 1 F 2 Man zeigt leicht, daß L ω (A) = L 1 L 2. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

16 Abgeschlossenheit unter Iteration Der Automaten B = (Q B, V, s B 0, δ B, F B ) sei definiert durch: Q B = Q A s B 0 = s A 0 δ B (q, a) = δ A (q, a) falls q Q B δ B (q, ɛ) = {s B 0 } falls q F A F B = {s B 0 } Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

17 Beispiel zur Komplementbildung N ba a s 0 s 1 b {b, c} {a, c} L ω (N ba ) = {w {a, b, c} ω nach jedem a kommt ein b} con ba a s 0 s 1 {a, b, c} {a, c} Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

18 Die Abgeschlossenheit ω-regulärer Mengen unter Komplementbildung muß noch bewiesen werden. (Siehe Skriptum) Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

19 Zerlegungssatz Satz L V ω ist ω-regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form JK ω für reguläre Mengen J, K V ist, wobei ε K. Beweis: Sei A = (Q, V, s 0, δ, F ) ein Büchi-Automat mit L ω (A) = L. Für p, q Q sei L p,q = {w V q δ(p, w)} Jedes L p,q V ist eine reguläre Menge. Außerdem gilt L = p F L s0,pl ω p,p. Die umgekehrte Implikation folgt aus den Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

20 Varianten von Lemma Zu jedem C = (S, V, S 0, δ, F ) mit einer Menge von Anfangszuständen gibt es einen A mit einem einzigen Anfangszustand und L ω (C) = L ω (A) Beweis: Sei S i = {s 1,..., s k }. Wir setzen C i = (S, V, s i, δ, F ). Offensichtlich gilt L ω (C) = k i=1 Lω (C i ). Die Existenz von A folgt jetzt aus dem Beweis der Abgeschlossenheit ω-regulärer Mengen unter Vereinigung. Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

21 Erweiterte Ein ω-wort w wird von dem erweiterten Büchi-Automat A = (S, V, s 0, δ, F 1,..., F n ) akzeptiert, wenn es eine Berechungsfolge s für w gibt, die für jedes j, 1 j n unendlich viele Zustände aus F j enthält. Also L ω (A) = {w V ω es gibt eine Berechnungsfolge s für w, so daß für jedes j, 1 j n, die Menge {i s i F j } unendlich ist.} Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

22 Erweiterte Lemma Zu jedem erweiterten A e gibt es einen einfachen A mit L ω (A e ) = L ω (A) Prof. Dr. Bernhard Beckert Formale Systeme WS 2009/ /22

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017

Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Endliche Automaten KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Endliche

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken 1 / 15 Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken Prof. Dr. Hans Kleine Büning FG Wissensbasierte Systeme WS 08/09 2 / 15 Deterministischer endlicher Automat (DEA) Definition 1:

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 10.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik Vorlesung am 2. November 27 2..27 Dorothea Wagner - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Vorlesung am 2. November 27 Helmholtz-Gemeinschaft

Mehr

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl OLC mputational gic Diskrete Mathematik Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011 GM (MIP) Diskrete Mathematik

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 3..2 INSTITUT FÜR THEORETISCHE KIT 7..2 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik INSTITUT FÜR

Mehr

Software Engineering Ergänzung zur Vorlesung

Software Engineering Ergänzung zur Vorlesung Ergänzung zur Vorlesung Prof. Dr. Markus Müller-Olm WS 2008 2009 2.6.1 Endliche und reguläre Sprachen Endliche und reguläre Sprache: fundamental in vielen Bereichen der Informatik: theorie Formale Sprachen

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Die Nerode-Relation und der Index einer Sprache L

Die Nerode-Relation und der Index einer Sprache L Die Nerode-Relation und der Index einer Sprache L Eine zweite zentrale Idee: Sei A ein vollständiger DFA für die Sprache L. Repäsentiere einen beliebigen Zustand p von A durch die Worte in Σ, die zu p

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Deterministische Kellerautomaten Von besonderem Interesse sind kontextfreie Sprachen,

Mehr

Induktive Definition

Induktive Definition Rechenregeln A B = B A A (B C) = (A B) C A (B C) = (A B) C A (B C) = A B A C (B C) A = B A C A {ε} A = A A {ε} = A (A {ε}) = A (A ) = A A A = A + A A = A + A + {ε} = A Beispiel. Real-Zahlen = {0,..., 9}

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Rückblick Theoretische Informatik I 1. Mathematische Methoden 2. Reguläre Sprachen 3. Kontextfreie Sprachen Themen der Theoretischen Informatik I & II Mathematische Methodik in

Mehr

2.2 Reguläre Sprachen Endliche Automaten

2.2 Reguläre Sprachen Endliche Automaten 2.2.1 Endliche Automaten E I N G A B E Lesekopf endliche Kontrolle Signal für Endzustand Ein endlicher Automat liest ein Wort zeichenweise und akzeptiert oder verwirft. endlicher Automat Sprache der akzeptierten

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19

Formale Methoden 1. Gerhard Jäger 16. Januar Uni Bielefeld, WS 2007/2008 1/19 1/19 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 16. Januar 2008 2/19 Reguläre Ausdrücke vierte Art (neben Typ-3-Grammatiken, deterministischen und nicht-deterministischen

Mehr

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64

Worterkennung in Texten speziell im Compilerbau 20. April Frank Heitmann 2/64 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Pumping Lemma Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 20.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch, 10.06.2015, D028,

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Avant Propos Formale Sprachen und Automaten Sie [die Theorie der formalen Sprachen] ist ein Musterbeispiel einer informatischen Theorie, weil es ihr gelingt, einen großen Bestand an Einsichten und Zusammenhängen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 23. Januar 2008 2/18 Das Pumping-Lemma Sein L eine unendliche reguläre Sprache über ein endliches Alphabet

Mehr

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie

Theoretische Informatik Kap 1: Formale Sprachen/Automatentheorie Gliederung der Vorlesung. Grundbegriffe. Formale Sprachen/Automatentheorie.. Grammatiken.2..3. Kontext-freie Sprachen 2. Berechnungstheorie 2.. Berechenbarkeitsmodelle 2.2. Die Churchsche These 2.3. Unentscheidbarkeit

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten Reguläre Sprachen und endliche Automaten 1 Motivation: Syntaxüberprüfung Definition: Fließkommazahlen in Java A floating-point literal has the following parts: a whole-number part, a decimal point (represented

Mehr

Kapitel 2: Formale Sprachen Gliederung

Kapitel 2: Formale Sprachen Gliederung Gliederung. Einleitung und Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen Reguläre Grammatiken, ND-Automaten

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen Malte Helmert Gabriele Röger Universität Basel 7. April 2014 Kontextsensitive und allgemeine Grammatiken Wiederholung: (kontextsensitive)

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretiche Grundlagen der Informatik KIT 24.1.211 Univerität de Dorothea Lande Baden-Württemberg Wagner - Theoretiche und Grundlagen der Informatik nationale Forchungzentrum Vorleung in am der 2.Oktober

Mehr

äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind:

äußere Klammern können entfallen, ebenso solche, die wegen Assoziativität von + und Konkatenation nicht notwendig sind: 3. Reguläre Sprachen Bisher wurden Automaten behandelt und Äquivalenzen zwischen den verschiedenen Automaten gezeigt. DEAs erkennen formale Sprachen. Gibt es formale Sprachen, die nicht erkannt werden?

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 2. Mai 2 Einführung in die Theoretische Informatik

Mehr

Endliche Automaten. δ : Z Σ Z die Überführungsfunktion, z 0 Z der Startzustand und F Z die Menge der Endzustände (Finalzustände).

Endliche Automaten. δ : Z Σ Z die Überführungsfunktion, z 0 Z der Startzustand und F Z die Menge der Endzustände (Finalzustände). Endliche Automaten Endliche Automaten Definition Ein deterministischer endlicher Automat (kurz DFA für deterministic finite automaton ) ist ein Quintupel M = (Σ, Z, δ, z 0, F), wobei Σ ein Alphabet ist,

Mehr

Zentralübung zur Vorlesung Theoretische Informatik

Zentralübung zur Vorlesung Theoretische Informatik SS 2015 Zentralübung zur Vorlesung Theoretische Informatik Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2015ss/theo/uebung/ 7. Mai 2015 ZÜ THEO ZÜ IV Übersicht: 1.

Mehr

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 3. April 2 Einführung in die Theoretische Informatik

Mehr

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen

Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW

Mehr

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen endlichen Automaten akzeptiert wird ist regulär und jede reguläre Sprache wird von einem deterministischen endlichen

Mehr

Automaten und Coinduktion

Automaten und Coinduktion Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

4.2.4 Reguläre Grammatiken

4.2.4 Reguläre Grammatiken 4.2.4 Reguläre Grammatiken Eine reguläre Grammatik ist eine kontextfreie Grammatik, deren Produktionsregeln weiter eingeschränkt sind Linksreguläre Grammatik: A w P gilt: w = ε oder w = Ba mit a T und

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche Automaten und

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Einführung in die Computerlinguistik Satz von Kleene

Einführung in die Computerlinguistik Satz von Kleene Einführung in die Computerlinguistik Satz von Kleene Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen Einführung CL 1 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen

Mehr

Theoretische Informatik für Medieninformatiker

Theoretische Informatik für Medieninformatiker Theoretische Informatik für Medieninformatiker Jan Johannsen Lehrveranstaltung im Sommersemester 27 / 6 Organisatorisches: Jede Lehrveranstaltungsstunde gliedert sich in einen Vorlesungsteil, dessen Länge

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Bsp.: Nichtdeterministische Automaten

Bsp.: Nichtdeterministische Automaten Bsp.: Nichtdeterministische Automaten,,, q q 3 Berechnungspfad zur Eingabe w= q q 3 q 3 Bsp.: Nichtdeterministische Automaten ACHTUNG: Eine Eingabe kann jetzt auf verschiedene Arten verarbeitet werden,,,

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Grenzen der Regularität

Grenzen der Regularität Grenzen der Regularität Um die Mächtigkeit von endlichen Automaten zu verstehen, muss man auch ihre Grenzen kennen. Sei z.b. B = {0 n 1 n n 0} Gibt es einen DEA für B? Es sieht so aus, als müsste sich

Mehr

Kurz-Skript zur Theoretischen Informatik I

Kurz-Skript zur Theoretischen Informatik I Kurz-Skript zur Theoretischen Informatik I Inhaltsverzeichnis 1 Grundlagen 2 2 Reguläre Ausdrücke 4 3 Endliche Automaten 5 3.1 Vollständige endliche Automaten................................... 6 3.2 ε

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Die mathematische Seite

Die mathematische Seite Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65

Worterkennung in Texten speziell im Compilerbau 14. April Frank Heitmann 2/65 Grenzen regulärer Sprachen? Formale Grundlagen der Informatik 1 Kapitel 4 Über reguläre Sprachen hinaus und Frank Heitmann heitmann@informatik.uni-hamburg.de Wir haben mittlerweile einiges kennengelernt,

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am

Mehr

Theoretische Informatik für Wirtschaftsinformatik und Lehramt

Theoretische Informatik für Wirtschaftsinformatik und Lehramt Theoretische Informatik für Wirtschaftsinformatik und Lehramt Eigenschaften regulärer Sprachen Priv.-Doz. Dr. Stefan Milius stefan.milius@fau.de Theoretische Informatik Friedrich-Alexander Universität

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Die Chomsky-Hierarchie Definition Sei G = (V, Σ, P, S) eine Grammatik. 1 G heißt vom Typ 3 oder

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Induktionsprinzipien für andere Bereiche. falscher Induktionsbeweis über N Übung Beispiele. Reguläre Σ-Sprachen Abschnitt 2.

Induktionsprinzipien für andere Bereiche. falscher Induktionsbeweis über N Übung Beispiele. Reguläre Σ-Sprachen Abschnitt 2. Kap 1: Grundegriffe Induktion 1.2.3 Induktionsprinzipien für andere Bereiche Beispiele Bereich M M 0 M erzeugende Operationen N 0} S: n n + 1 Σ ε} ( w wa ) für a Σ, c}-terme c} (t 1, t 2 ) (t 1 t 2 ) endl.

Mehr

Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen

Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Automaten und Formale Sprachen Endliche Automaten und Reguläre sprachen Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag

Mehr

Operationen auf endlichen Automaten und Transduktoren

Operationen auf endlichen Automaten und Transduktoren Operationen auf endlichen Automaten und Transduktoren Kursfolien Karin Haenelt 1 Notationskonventionen L reguläre Sprache A endlicher Automat DEA deterministischer endlicher Automat NEA nichtdeterministischer

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung. Grundbegriffe. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.. Chomsky-Grammatiken 2.2. Reguläre Sprachen (noch weiter) 2.3. Kontextfreie Sprachen 2/4,

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 2. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 1 Einelementiges Alphabet (4 Punkte) (a) Geben

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische

Mehr

2.3 Abschlusseigenschaften

2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften 2.3 Abschlusseigenschaften In diesem Abschnitt wollen wir uns mit Abschlusseigenschaften der regulären Sprachen, d.h. mit der Frage, ob, gegeben eine Operation und zwei reguläre

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)

Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964) Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.

Mehr

1. Welche der folgenden Aussagen zur Entscheidbarkeit beziehungsweise Unentscheidbarkeit

1. Welche der folgenden Aussagen zur Entscheidbarkeit beziehungsweise Unentscheidbarkeit 1. Klausur Diskrete Mathematik Seite 1 von 22 1. Welche der folgenden Aussagen zur Entscheidbarkeit beziehungsweise Unentscheidbarkeit ist richtig? A. Keine der Aussagen. B. Eine Menge oder ihr Komplement

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2011 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Wir beschäftigen uns ab

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G

Mehr

Die durch einen regulären Ausdruck beschriebene Sprache ist definiert durch:

Die durch einen regulären Ausdruck beschriebene Sprache ist definiert durch: Kapitel 2 Reguläre Sprachen 2.1 Reguläre Ausdrücke Für die symbolische Verarbeitung von Informationen mit Hilfe von Rechnern ist es zweckmäßig, wenn formale Sprachen selbst durch Zeichenketten repräsentiert

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden:

Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: Sprachen und Automaten 1 Deterministische endliche Automaten (DFA) Ein deterministischer endlicher Automat (DFA) kann als 5-Touple dargestellt werden: M = (Z,3,*,qo,E) Z = Die Menge der Zustände 3 = Eingabealphabet

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Nico Döttling October 25, 22 Automatenminimierung Konstruktion des Äquivalenzklassenautomaten Aus der Vorlesung bekannt Überflüssige Zustände lassen sich effizient erkennen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2 Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Beispiele für Wortverarbeitung durch NEA. Beispiele für NEA (1) Beispiele für NEA (2) Beispiele für NEA (3) 1.) 1 q 2. q 5. q 1 1 0,1,2. 0 q 2.

Beispiele für Wortverarbeitung durch NEA. Beispiele für NEA (1) Beispiele für NEA (2) Beispiele für NEA (3) 1.) 1 q 2. q 5. q 1 1 0,1,2. 0 q 2. Beispiele für Wortverarbeitung durch NA q, q q 3 q q 4 Wort Weg q, q, q q, q, q, q, q, nicht akzeptierend Weg q, q, q nicht fortsetzbar Weg q, q, q, q, q 3, q 5 nicht fortsetzbar Weg q, q, q, q, q, q q

Mehr

Satz (Abschluß unter der Stern-Operation)

Satz (Abschluß unter der Stern-Operation) Satz (Abschluß unter der Stern-Operation) Wenn L eine reguläre Sprache ist, dann ist auch L regulär. Beweis: Es gibt einen NFA M = (Z, Σ, S, δ, S, E) mit L(M) = L. Wir bauen aus diesem NFA nun wie folgt

Mehr