Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg"

Transkript

1 Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1

2 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine Psychologie als Wissenschaft Hypothesen und Variablen Operationalisieren und Messen Objektivität, Reliabilität, Validität Das Experiment I Das Experiment II Störvariablen und ihre Kontrolle Forschungsethik Durchführung und Berichten eines Experiments Stichprobe und Population Statistische Bedeutsamkeit (Signifikanz) Inhaltliche Bedeutsamkeit Teststärke und Stichprobenumfangsplanung Wiederholung und Fragen 2

3 Beispielfrage 3

4 Experiment Einfluss von 15 min Pause vs. keiner Pause auf Problemlösefähigkeit Faktor Pause mit zwei Stufen (15 min Pause vs. Keine Pause) Erfordert das Ziehen einer Stichprobe z.b. N = 40 N = 20 Personen pro Gruppe Deskriptive Statistik Berechnen der Mittelwerte und Standardabweichung für die beiden Gruppen Inferenzstatistik Schliessende Statistik Wir möchte von den Ergebnissen der Stichprobe auf die Population schliessen Aussagen auf der Ebene der Population 4

5 Literaturempfehlung 5

6 Beispiel: Hochrechnungen bei Wahlen Warum sind Hochrechnungen so genau? 6

7 Beispiel: Population: alle Studenten im Hörsaal Stichprobe N = 5 Schätzung des Populationsmittelwerts aufgrund des Mittelwerts der Stichprobe 7

8 Erhebung der gesamten Population oft nicht möglich Beispiele Gesamte Population aller männlichen Psychologiestudenten auf der Welt Stichprobe: 20 männliche Psychologiestudenten aus Fribourg Alle ängstlichen Menschen auf der Welt Stichprobe: 80 Angstpatienten aus Zürich Die Aussagen sollen aber für alle gelten Was kann ich mit den Daten einer Stichprobe über die Population aussagen? Wie gut kann ich die Gegebenheiten auf der Ebene der Population durch meine Stichprobe abschätzen? Entscheidende Bedingungen Repräsentativität der Stichprobe Grösse der Stichprobe Verteilung des Merkmals in der Population 8

9 Population Verteilung eines Merkmals (z.b. IQ, Problemlösefähigkeit, Schlafdauer) Stichprobe ziehen Auf die Population schliessen Stichprobe (z.b. IQ-Test bei N = 20) 9

10 Population Populationsmittelwert µ (mü) Auf die Population schliessen Stichprobe ziehen Schätzer des Populationsmittelwerts (mü Dach) Stichprobe Stichprobenmittelwert (x quer) 10

11 Annahme der Normalverteilung Menschliche Merkmale des Menschen sind in der Population normalverteilt Abhängig von einer Kombination mehrerer unabhängiger Zufallsfaktoren Bsp.: Eine Normalverteilung ist eine symmetrische, glockenförmige und eingipflige Häufigkeitsverteilung Gauss-Verteilung (Carl Friedrich Gauss) 11

12 Normalverteilung sind definiert durch Ihren Mittelwert Beschreibt den Ort der Verteilung Ihre Streuung Wurzel der Varianz Beschreibt die Breite der Verteilung 12

13 Häufigkeitsverteilung (Histogramm) Variable: Schlafdauer Variable: Lernleistung Variable: Schlafdauer in Minuten 13 Variable: Anzahl erinnerte Bilder

14 Stichprobenkennwerte Lateinische Buchstaben Populationskennwerte Griechische Buchstaben Schätzer der Populationskennwerte Griechische Buchstaben mit Dach 14

15 Mittelwert und Streuung Mittelwert und Streuung einer Normalverteilung Population Stichprobe 15

16 Mittelwert und Streuung Normalverteilung Innerhalb ± 1 Streuung um den Mittelwert befinden sich ca. 68% alle Werte der Verteilung Innerhalb ± 2 Streuung um den Mittelwert befinden sich ca. 95% aller Werte der Verteilung 16

17 Population Populationsmittelwert µ (mü) Auf die Population schliessen Stichprobe ziehen Schätzer des Populationsmittelwerts (mü Dach) Stichprobe Stichprobenmittelwert (x quer) 17

18 Stichprobenkennwerteverteilung Verteilung eines Kennwerts von Stichproben einer bestimmten Grösse Z.B. Verteilung der Mittelwerte von Stichproben der Grösse N = 10 Stichprobe wird unendlich oft aus Population gezogen mit Zurücklegen Form der Stichprobenkennwerteverteilung Abhängig von Grösse der Stichprobe N und Je grösser die Stichprobe, desto schmaler die Stichprobenkennwerteverteilung Je kleiner die Stichprobe, desto breiter die Stichprobenkennwerteverteilung Abhängig von Grösse der Populationsstreuung σ Je breiter die Verteilung in der Population, desto breiter die Stichprobenkennwerteverteilung Je schmaler die Verteilung in der Population, desto schmaler die Stichprobenkennwerteverteilung 18

19 Population Verteilung des Merkmals Stichprobe Häuigkeitsverteilung der Stichprobenmittelwerte N = 1 N = 5 N = 10 Simulation: rvls_sim/stat_sim/sampling_dist/ index.html 19

20 Berechnung des Standardfehlers des Mittelwerts Breite der Stichprobenkennwerteverteilung von Mittelwerten Standard error of the mean (SEM oder s.e.m) Streuung geteilt durch Wurzel der Stichprobengrösse Sehr wichtiges Mass!!!!!! Erlaubt die Bestimmung des Vertrauensintervalls eines Stichprobenmittelwerts Je kleiner der SEM, desto mehr kann ich meinem Mittelwert vertrauen Desto besser schätzt mein Stichprobenmittelwert den Populationsmittelwert Je grösser der SEM, desto weniger gut kann ich meinem Mittelwert vertrauen 20

21 Bestimmung des Vertrauensintervals Für einen Stichprobenmittelwert Daumenregel: Innerhalb ± 2 SEM um den Stichprobenmittelwert liegen mehr als 95% aller möglichen Populationsmittelwerte Intervall abhängig von Stichprobengrösse und Populationsstreuung 21

22 Angabe des SEM in Balkengraphiken Fehlerbalken Immer in Graphen angeben!!!! Daumenregel: Überlappen sich die SEMs zweier Mittelwerte, so unterscheiden sie sich wahrscheinlich nicht signifikant voneinander Überlappen sich die SEMs zweier Mittelwerte nicht, können sich die Mittelwerte signifikant unterscheiden Aber nicht zwingend Statistischer Test zur Signifikanzprüfung notwendig Daumenregel trifft vor allem zu n = 16 n = 16 n = 14 n = 14 Diekelmann et al., 2012 Ohne Messwiederholung Bei ungefähr gleich grossen Gruppen 22

23 Take Home Messages Population Annahme: Merkmale sind in der Population normalverteilt Kombination mehrerer Zufallsfaktoren Populationsmittelwert μund Populationsstreuung σ Stichprobe Problem: Erhebung der gesamten Population meist nicht möglich Ziehen einer Stichproben mit einer bestimmten Grösse N aus der Population Schätzung des Populationsmittelwerts durch den Stichprobenmittelwert: Genauigkeit der Schätzung abhängig von Stichprobengrösse N und Populationsstreuuung σ Standardfehlers des Mittelwerts Standard error of the mean (SEM oder s.e.m) Je kleiner der SEM, des genauer schätzt der Stichprobenmittelwert den Populationsmittelwert Daumenregel: Innerhalb von ± 2 SEM um einen Stichprobenmittelwert liegen mehr als 95% aller möglichen (wahren) Populationsmittelwerte Daumenregel: Überschneiden sich die SEMs zweier Mittelwerte zweier Gruppen, dann ist der Gruppenunterschied wahrscheinlich nicht statistisch bedeutsam (nicht signifikant) 23

24 Vielen Dank für Ihre Aufmerksamkeit 24

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Methodenlehre. Vorlesung 5. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 5. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 5 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ 20.2.13 Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Noémie Becker & Dirk Metzler 15. April 2016 Inhaltsverzeichnis 1 Der Standardfehler 1 1.1 Ein Versuch............................................

Mehr

2 Inferenzstatistik. Björn Rasch, Malte Friese, Wilhelm Hofmann, Ewald Naumann

2 Inferenzstatistik. Björn Rasch, Malte Friese, Wilhelm Hofmann, Ewald Naumann 1 Inferenzstatistik Björn Rasch, Malte Friese, Wilhelm Hofmann, Ewald Naumann.1 Die Normalverteilung. Die Standardnormalverteilung 4.3 Die Stichprobenkennwerteverteilung 5.4 Aufgaben zu Kapitel 30 B. Rasch

Mehr

Konfidenzintervalle. SeKo. Heute. Konjunktion, Disjunktion, bedingte Wahrscheinlichkeit

Konfidenzintervalle. SeKo. Heute. Konjunktion, Disjunktion, bedingte Wahrscheinlichkeit Übung Methodenlehre I, SeKo Vivien Röder Professur für Forschungsmethodik & Evaluation Wiederholung Wahrscheinlichkeitstheorie Konjunktion, Disjunktion, bedingte Wahrscheinlichkeit P(Methodenverständnis

Mehr

Methodenlehre. Vorlesung 4. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 4. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 4 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ 20.2.13 Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler

Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Wahrscheinlichkeitsrechnung und Statistik für Biologen 2. Der Standardfehler Martin Hutzenthaler & Dirk Metzler http://www.zi.biologie.uni-muenchen.de/evol/statgen.html 27. April 2010 1 Eine kurze Wiederholung

Mehr

Bereiche der Statistik

Bereiche der Statistik Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden

Mehr

3 Evaluation als Beschreibung von Zuständen

3 Evaluation als Beschreibung von Zuständen Evaluation als Beschreibung von Zuständen 1 Sind die folgenden Aussagen richtig oder falsch? 1.1 In einer Klumpenstichprobe werden systematisch anfallende Cluster von Personen vollständig untersucht. Die

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Methodenlehre II. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre II. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre II Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I } Andreas Sonderegger & Allain Chavez 2 Methodenlehre I 3 Methodenlehre II Woche Datum Thema 1 FQ

Mehr

Methodenlehre. Vorlesung 4. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 4. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 4 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 017 4 Spezielle Zufallsgrößen Einführung 1 Wahrscheinlichkeit: Definition

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 13.12.2006 1 Schätzung von Populationskennwerten Stichprobenkennwerte als Schätzmaße für den Populationsmittelwert Punktschätzung: nur ein Stichprobenkennwert wird angegeben

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Methodenlehre. Vorlesung 6. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 6. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 6 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ 20.2.13 Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen

Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen. Anteile Häufigkeiten Verteilungen DAS THEMA: VERTEILUNGEN LAGEMAßE - STREUUUNGSMAßE Anteile Häufigkeiten Verteilungen Lagemaße Streuungsmaße Merkmale von Verteilungen Anteile Häufigkeiten Verteilungen Anteile und Häufigkeiten Darstellung

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Rückblick: Besonders wichtige Themen Wissenschaftstheoretischer

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Jürgen Bortz Statistik Für Sozialwissenschaftler Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Springer-Verlag Berlin Heidelberg Newlfork London Paris Tokyo Inhaltsverzeichnis Einleitung

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Konfidenzintervalle Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Münzspiel Experiment 100 Münzwürfe: Stefan gewinnt bei "Kopf" Hypothesen H 0 : Stefan wird so oft gewinnen

Mehr

Lehrbuch der Statistik

Lehrbuch der Statistik Jürgen Bortz Lehrbuch der Statistik Für Sozialwissenschaftler Zweite, vollständig neu bearbeitete und erweiterte Auflage Mit 71 Abbildungen und 223 Tabellen Springer-Verlag Berlin Heidelberg New York Tokyo

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Pflichtlektüre: Kapitel 12 - Signifikanztest Wie funktioniert ein Signifikanztest? Vorgehensweise nach R. A. Fisher.

Pflichtlektüre: Kapitel 12 - Signifikanztest Wie funktioniert ein Signifikanztest? Vorgehensweise nach R. A. Fisher. Pflichtlektüre: Kapitel 12 - Signifikanztest Überblick Signifikanztest Populationsparameter Ein Verfahren zur Überprüfung von Hypothesen, Grundlage bilden auch hier Stichprobenverteilungen, das Ergebnis

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Häufigkeitsverteilungen

Häufigkeitsverteilungen Häufigkeitsverteilungen Eine Häufigkeitsverteilung gibt die Verteilung eines erhobenen Merkmals an und ordnet jeder Ausprägung die jeweilige Häufigkeit zu. Bsp.: 100 Studenten werden gefragt, was sie studieren.

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Psychologische Methodenlehre Statistik

Psychologische Methodenlehre Statistik RAINER LEONHART Psychologische Methodenlehre Statistik Mit 21 Abbildungen und 40 Tabellen Mit 64 Ubungsfragen Ernst Reinhardt Verlag Miinchen Basel Inhalt Vorwort 9 1 Einfuhrung in die Forschungsmethoden

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

8 Stichprobenkennwerteverteilung

8 Stichprobenkennwerteverteilung 8 Stichprobenkennwerteverteilung 8.1 Vorbemerkungen 8.2 Die Normalverteilung: Teil 2 8.3 Die t Verteilung 8.4 Normalverteilungs Approximation: Der zentrale Grenzwertsatz 8.1 Vorbemerkungen Daten x 1,...,

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 3 - NORMALVERTEILUNG 05.12.2014 1 05.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 DIE NORMALVERTEILUNG 02 ZENTRALES GRENZTHEOREM 03 Z-WERTE 04 KONFIDENZINTERVALLE

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Methodenlehre I Organisatorisches Wiederholung. Überblick Methodenlehre II. Thomas Schäfer. methodenlehre ll Einführung und Überblick

Methodenlehre I Organisatorisches Wiederholung. Überblick Methodenlehre II. Thomas Schäfer. methodenlehre ll Einführung und Überblick Methodenlehre II Thomas Schäfer Thomas Schäfer SS 2009 1 Organisatorisches Wiederholung Methodenlehre I Überblick Methodenlehre II Thomas Schäfer SS 2009 2 1 Organisatorisches Übung zur Vorlesung Friederike

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Teil II. Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten. StatSoz 127

Teil II. Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten. StatSoz 127 Teil II Der Weg zur schließenden Statistik: Von den Daten zu Wahrscheinlichkeiten StatSoz 127 6 Zufallsstichprobe und Parameter 6.1 Parameter einer Grundgesamtheit 6.2 Zufallsstichprobe und Bias 6.3 Stichprobenfehler

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Bevölkerungs-Mittelwert 99 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen

Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen Statistische Überprüfung von Hypothesen Hypothesen sind allgemeine Aussagen über Zusammenhänge zwischen empirischen und logischen Sachverhalten.Allgemein bezeichnet man diejenigen Aussagen als Hypothesen,

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15

Hypothesentests für Erwartungswert und Median. für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Hypothesentests für Erwartungswert und Median für D-UWIS, D-ERDW, D-USYS und D-HEST SS15 Normalverteilung X N(μ, σ 2 ) : «X ist normalverteilt mit Erwartungswert μ und Varianz σ 2» pdf: f x = 1 2 x μ exp

Mehr

Population und Stichprobe

Population und Stichprobe Inhaltsverzeichnis Population und Stichprobe... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-13)... 3 1. Fragestellung... 4 2. Definitionen und Notation... 4 3. "Dilemma" der Stichprobenziehung... 6

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Populations-Mittelwert 100 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, FB 1, Fach Soziologie Das Problem SozialwissenschaftlerInnen erheben sehr oft Daten aus Stichproben. Es

Mehr

Univ.-Prof. Dr. Georg Wydra

Univ.-Prof. Dr. Georg Wydra Univ.-Prof. Dr. Georg Wydra Methoden zur Auswertung von Untersuchungen 1 SKALENTYPEN UND VARIABLEN 2 ZUR BEDEUTUNG DER STATISTIK IN DER FORSCHUNG 3 STATISTIK ALS VERFAHREN ZUR PRÜFUNG VON HYPOTHESEN 4

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Wiederholung. Statistik I. Sommersemester 2009

Wiederholung. Statistik I. Sommersemester 2009 Statistik I Sommersemester 2009 Statistik I (1/21) Daten/graphische Darstellungen Lage- und Streuungsmaße Zusammenhangsmaße Lineare Regression Wahrscheinlichkeitsrechnung Zentraler Grenzwertsatz Konfidenzintervalle

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Quantitative Methoden (Vertretung für Prof. Th. Pechmann)

Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Quantitative Methoden (Vertretung für Prof. Th. Pechmann) Inferenzstatistik I: Zusammenhänge (Korrelationen) Logik inferenzstatistischer Verfahren Andreas Opitz Universität Leipzig Institut für Linguistik

Mehr

Zentraler Grenzwertsatz/Konfidenzintervalle

Zentraler Grenzwertsatz/Konfidenzintervalle / Statistik I Sommersemester 2009 Statistik I ZGWS/ (1/37) Kann Ahmadinejad die Wahl gewonnen haben? Im wesentlichen Dreiteilung der polit. Elite 2005: 17.3 Millionen Stimmen (Stichwahl), Wahlbeteiligung

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr