Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:"

Transkript

1 Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel:

2 Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik Klsse 10 Üer diesen Link gelngen Sie zur entsprehenden Produktseite im We.

3 Si n u s 1. Gi sin und sin durh den Quotienten der Seiten n. ) ) ) γ g e. estimme jeweils den Sinuswert. Runde uf 4 Stellen nh dem Komm. ) = 0o ) = 35o ) = 70o d) = 85o e) = 6,4o f) = 6,8o g) = 51,3o h) = 75,o 3. estimme jeweils den Winkel. Runde uf eine Stelle nh dem Komm. ) sin = 0,5 ) sin = 0,788 ) sin = 0,866 d) sin = 0,891 e) sin = 0,3173 f) sin = 0,7443 g) sin = 0,9367 h) sin = 0, Konstruiere ein Dreiek mit = 8 m, = 90o und = 4 m. ) erehne zunähst die Länge der fehlenden Seite. Runde uf eine Dezimlstelle. ) erehne nshließend die Größe der fehlenden Winkel. Muster zur nsiht f

4 Ko s i n u s 1. Gi os und os durh den Quotienten der Seiten n. ) ) ) Myr: Husufgen Mthemtik Klsse 10 uer Verlg P Lehrerfhverlge GmH, Donuwörth γ g e. estimme jeweils den Kosinuswert. Runde uf 4 Stellen nh dem Komm. ) = 0o ) = 35o ) = 70o d) = 85o e) = 6,4o f) = 6,8o g) = 51,3o h) = 75,o 3. estimme jeweils den Winkel. Runde uf eine Stelle nh dem Komm. ) os = 0,5 ) os = 0,788 ) os = 0,866 d) os = 0,891 e) os = 0,3173 f) os = 0,7443 g) os = 0,9367 h) os = 0, Konstruiere ein Dreiek mit = 8 m, = 0o und = 70o. ) erehne die Länge der eiden fehlenden Seiten mit dem Kosinus. Runde uf eine Dezimlstelle. ) Üerprüfe dein Ergenis mit dem Stz des Pythgors. Muster zur nsiht f

5 T n g e n s 1. Gi tn und tn durh den Quotienten der Seiten n. ) ) ) γ g e. estimme jeweils den Tngenswert. Runde uf 4 Stellen nh dem Komm. ) = 0o ) = 35o ) = 70o d) = 85o e) = 6,4o f) = 6,8o g) = 51,3o h) = 75,o 3. estimme jeweils den Winkel. Runde uf eine Stelle nh dem Komm. ) tn = 0,5 ) tn = 0,788 ) tn = 0,866 d) tn = 0,891 e) tn = 0,3173 f) tn = 0,7443 g) tn = 0,9367 h) tn = 0, Konstruiere ein Dreiek mit = 7,5 m, g = 90o, = 6 m und = 4,5 m. ) erehne die Größe der eiden fehlenden Winkel mit dem Tngens. Runde uf gnze Grd. ) Üerprüfe dein Ergenis durh erehnung mit dem Kosinus. Muster zur nsiht f

6 Si n u s, Ko s i n u s, T n g e n s 1. Wie heißt in diesem rehtwinkeligen Dreiek C ) die Hypotenuse? ) die Gegenkthete von? ) die nkthete von? Myr: Husufgen Mthemtik Klsse 10 uer Verlg P Lehrerfhverlge GmH, Donuwörth. Kreuze die rihtigen ussgen n. Der rehte Winkel liegt den Hypotenuse gegenüer. Die eiden nderen Winkel ergeen zusmmen 90o. d) die Gegenkthete von? e) die nkthete von? Der Tngens ist der Quotient us nkthete und Gegenkthete Der Kosinus ist der Quotient us nkthete und Hypotenuse. Der Sinus ist der Quotient us Gegenkthete und Hypotenuse. Die Sinuswerte liegen immer zwishen 0 und 1. Die Kosinuswerte liegen immer zwishen 0 und 1. Die Tngenswerte liegen immer zwishen 0 und 1. nkthete und Gegenkthete sind immer kürzer ls die Hypotenuse. 3. erehne die Länge der Seite uf vier vershiedene Weise ohne den Stz des Pythgors. C 60 m m Muster zur nsiht

7 Sinus, Kosinus, Tngens Shufgen Fertige für lle ufgen eine Skizze. Runde jeweils uf eine Dezimlstelle. 1. n einer Huswnd lehnt in einem Winkel von 65o eine 7 m lnge Leiter. ) Wie hoh reiht die Leiter? ) Wie weit ist ds Fußende der Leiter von der Wnd entfernt?. Pul will senkreht uf ds gegenüerliegende Ufer eines 30 m reiten Flusses shwimmen. Die Strömung treit ihn llerdings in einem Winkel von o. ) Wie viele Meter muss er shwimmen? ) Wie viele Meter vom ursprünglih gedhten Ziel entfernt erreiht er ds Flussufer? 3. erehne den Fläheninhlt des gleihshenkligen Trpezes m 44 m 4. Eine Pyrmide mit qudrtisher Grundflähe ht eine Körperhöhe von 1 m und einen Neigungswinkel (h ; ) von 58o. erehne ) die Oerflähe. ) ds Volumen der Pyrmide. 5. Ein Shiff wird von zwei Leuhttürmen ngepeilt. Die Entfernung zwishen den eiden Leuhttürmen eträgt 3 km. Der Winkel, unter dem ds Shiff von Leuhtturm zu sehen ist, eträgt 78o, der Winkel, unter dem ds Shiff von Leuhtturm zu sehen ist, eträgt 5o. ) Ergänze die Skizze und trge ein, welhe geometrishe Größe du zur erehnung noh enötigst. ) Wie weit ist ds Shiff von Leuhtturm entfernt? ) Wie weit ist ds Shiff von Leuhtturm entfernt? d) Welhe Frge könnte mn ei dieser ufge noh stellen? Gi die Lösung n. Muster zur nsiht h K 3 km Lösungen zu 1 4, 5, 5 3, ,3 3,4 1,1 900 h 40,86,9 651 Myr: Husufgen Mthemtik Klsse 10 uer Verlg P Lehrerfhverlge GmH, Donuwörth

8 Si n u s 1. ) sin = _ ) sin = _ ; sin = _ ; sin g = _ ) sin = e f_ ; sin = _ g e 1. ) os = _ ) os = _ ) os = g _ e ; os = _ ; os g = _ ; os = f_ e. ) 0,340 ) 0,5736 ) 0,9397 d) 0,996 e) 0,1115 f) 0,4509 g) 0,7804 h) 0, ) 30o ) 5o ) 60o d) 63o 4. e) 18,5o f) 48,1o g) 69,5o h) 87,4o C γ ) = + = (8 m) + (4 m) = 64 m + 16 m = 80 m ; = 8,9 m ) sin = _ = 4_ 0,4494; 6,7 8,9 sin g = _ 8_ = 8,9 0,8989; g 64. ) 0,9397 ) 0,819 ) 0,34 d) 0,087 e) 0,9938 f) 0,896 g) 0,65 h) 0, ) 60o ) 38o ) 30o e) 7o 4. e) 71,5o f) 41,9o g) 0,5o h),6o ) os 0 = _ 0,9397 _ 8 8 7,5 C Ko s i n u s Muster zur nsiht os 70 = _ 0,34 = _,7 ) = (8 m) = (,7 m) + (7,5 m) 64 m 7,9 m + 56,5 m Lösungen

9 Myr: Husufgen Mthemtik Klsse 9 uer Verlg P Lehrerfhverlge GmH, Donuwörth T n g e n s Si n u s, Ko s i n u s, T n g e n s 1. ) tn = _ ) tn = _ ; tn = _ ; tn g = _ ) tn = g f_ ; tn = _ g f. ) 0,364 ) 0,700 ),7475 d) 11,4301 e) 0,11 f) 0,5051 g) 1,48 h) 3, ) 6,6o ) 38,o ) 40,9o d) 41,7o 4. e) 17,6o f) 36,7o g) 43,1o h) 45o ) tn = _ tn = _ ) os = _ os = _ 6_ = 4,5 = _ 4,5 6 = _ 4,5 7,5 6_ = 7,5 C 1,33; 53 = 0,75; 37 = 0,6; 53 = 0,8; ) ) ) d) e). Der rehte Winkel liegt den Hypotenuse gegenüer. Die eiden nderen Winkel ergeen zusmmen 90o. Der Kosinus ist der Quotient us nkthete und Hypotenuse. Der Sinus ist der Quotient us Gegenkthete und Hypotenuse. Die Sinuswerte liegen immer zwishen 0 und 1. Die Kosinuswerte liegen immer zwishen 0 und 1. nkthete und Gegenkthete sind immer kürzer ls die Hypotenuse. 3. ) sin 53 = _ sin = 80 ) os 37 = _ os = 80 ) tn 53 = _ tn = 80 = d) tn 37 = _ 60 tn 37 = 60 : tn 37 = _ 60 tn Muster zur nsiht Lösungen

10 Sinus, Kosinus, Tngens Shufgen 1. ) sin 65 = x_ 7 7 sin 65 7 = x 6,3 x 7 m ) tn 65 = _ 6,3 x x tn 65 x = 6,3 : tn 65 x,9. ) os = _ 30 x x os x = 30 : os x 3,4 ) sin = x_ 3,4 3,4 sin 3,4 = x 1,1 x 3. tn 5 = h_ 7 9 h 4. ) sin 58 = _ h k h 5. ) 7 (44 30) : = 7 = 44 m + 30 m 9 m = 333 m sin 58 = _ 1 h h sin 58 h = 1 : sin 58 = + _ g h h 14, tn 58 = _ h k tn 58 _ _ = 1 : tn 58 7, = 15 m 15 m + m 14, m 15 = 5 m + 46 m = 651 m ) V = h k h 3 = 15 m 15 m 1 m 3 = 900 m m h 1 m 58 ) I: tn 78 = h_ x x tn 78 x = h II: tn 5 = 3 x tn 5 (3 x) = h tn 78 x = tn 5 (3 x) h (3 x) tn 78 x = tn 5 3 tn 5 x tn 78 x + tn 5 x = tn 5 3 4,7x + 1,8x = 40,96 5,98 x = 40,96 : 5,98 x 6,85 in I: h = tn 78 x = 4,7 6,85 3,0 Entfernung Leuhtturm Shiff: = + = (6,85 km) + (3, km) = 46,9 km ,84 km = 1 083,76 km ; = 3,9 km Ds Shiff ist 3,9 km von Leuhtturm entfernt. ) sin 5 = _ 3,0 sin 5 = 3,0 : sin 5 = 40,86 Ds Shiff ist 40,86 km von Leuhtturm entfernt. d) Wie weit ist ds Shiff vom Ufer entfernt? Ds Shiff ist 3,0 km vom Ufer entfernt km x 3 x Muster zur nsiht Lösungen

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Geometrie 1. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: ownlod Otto Myr Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ownloduszug us dem Originltitel: Husufgen Geometrie 1 Üen in drei ifferenzierungsstufen ieser ownlod ist ein uszug us dem Originltitel

Mehr

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Trigonometrie an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mro Bettner, Erik Dinges Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Downloduszug us dem Originltitel: Trigonometrie n Sttionen Üungsmteril zu den Bildungsstndrds Dieser Downlod

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Geometrische Figuren und Körper

Geometrische Figuren und Körper STNRUFGEN Geometrishe Figuren und Körper Geometrishe Figuren und Körper Welhe Shreiweisen geen den Winkel β des neenstehenden reieks PQR rihtig wieder? β = Qrp β = rp β = PQR R β = QRP β = pq q p P r Q

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Die Satzgruppe des Pythagoras

Die Satzgruppe des Pythagoras 7 Die Stzgruppe des Pythgors In Klssenstufe 7 hen wir uns ei den Inhlten zur Geometrie insesondere mit Dreieken und ihren Eigenshften eshäftigt. In diesem Kpitel wirst du erkennen, dss es ei rehtwinkligen

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 (Un-)regelmäßige Vierecke. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert ownlo Jens onr, Hry Seifert Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte Mterilien für s gnze Schuljhr ownlouszug us em Originltitel: Mthemtik üen Klsse 8 (Un-)regelmäßige Vierecke ifferenzierte

Mehr

1. Berechnen Sie in den folgenden Strahlensatzfiguren die unbekannten Stücke! z y 23

1. Berechnen Sie in den folgenden Strahlensatzfiguren die unbekannten Stücke! z y 23 Trigonometrie 1: Strhlensätze 1. Berehnen Sie in den folgenden Strhlenstzfiguren die uneknnten Stüke! ) 2.5 4 5 9 ) 4 3 5 10 z w 7 9 7 z 23 11 w 13 15 d) 18 3 e) 8 6 8 4 3 z 2. Welhe der folgenden Verhältnisse

Mehr

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck

10 1 Grundlagen der Schulgeometrie. 1.3 Das Dreieck 10 1 Grundlgen der Shulgeometrie 13 Ds Dreiek In diesem shnitt findet lles in der ffinen Stndrdeene 2 = R 2 sttt Drei Punkte, und, die niht uf einer Gerden liegen, ilden ein Dreiek Die Punkte,, nennt mn

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

DOWNLOAD Freiarbeit: Geometrische Flächen

DOWNLOAD Freiarbeit: Geometrische Flächen DOWNLOAD Günther Koh Freireit: Geometrishe Flähen Mterilien für die 9. Klsse in zwei Differenzierungsstufen Downloduszug us dem Originltitel: Ds Werk ls Gnzes sowie in seinen Teilen unterliegt dem deutshen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeihne ds Dreiek ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erehne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und C(8

Mehr

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten:

Dreiecke können einerseits nach den Eigenschaften ihrer Seiten und andererseits nach ihren Winkeln benannt werden. Einteilung nach den Seiten: gnz klr: Mthemtik 2 - s Ferienheft mit Erfolgsnzeiger 3 Rettungsring Eigenshften von reieken & Viereken Eigenshften von reieken Ein reiek ht immer 3 Ekpunkte, 3 Seiten un 3 Innenwinkel. ie eshriftung eines

Mehr

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie?

2 Trigonometrie. 2.1 Ziele. 2.2 Warum braucht man Trigonometrie? Mthemtik I / Trionometrie 2 Trionometrie 2. Ziele m Ende dieses Kpitels kennen Sie die wihtien eriffe der Trionometrie und können diese siher in Prolemen nwenden. Im rehtwinklien Dreiek knn us vershiedenen

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. 9 Rettungsring Umfng und Fläheninhlt von Figuren Begriffe: Umfng und Fläheninhlt 1 Muss der Umfng (u) oder der Fläheninhlt () erehnet werden? Kreuze n! u B C D E F G H Zun eines Grundstüks Rsenflähe eines

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Seiten und Winkel im rehtwinkligen reiek edienen des Tshenrehners erehnungen in rehtwinkligen reieken 4 erehnungen in llgemeinen reieken 5 erehnungen in Vieleken 6 erehnungen mit Prmetern Exkurs:

Mehr

Besondere Linien und Punkte im Dreieck

Besondere Linien und Punkte im Dreieck Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, III

KOMPETENZHEFT ZUR TRIGONOMETRIE, III Mthemtik mht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, III 1. Aufgenstellungen Aufge 1.1. Zur Shneelsterehnung wird der Neigungswinkel α des in der nhstehenden Aildung drgestellten Dhes enötigt. Dei gilt:

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe

Grundwissenkatalog / g8 Geometrie / 7. Jahrgangsstufe Grundwissenktlog / g8 Geometrie /. Jhrgngsstufe Die folgende ufstellung enthält mthemtishe Grundfertigkeiten, die ein Shüler nh der. Jhrgngsstufe eherrshen sollte. Dieses Wissen wird in den folgenden Jhren

Mehr

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper 1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen?

c) Wie viele einzelne Quadratflächen besitzen alle Seiten des entstandenen Würfels zusammen? Würfelufgen Für lle Aufgen gilt: Kntenlänge der Holzwürfel = m 1. Bue einen Würfel us 8 Holzwürfeln. ) Zeihne den entstndenen Würfel: ) Wie gross ist eine Kntenlänge des entstndenen Würfels? ) Wie viele

Mehr

DOWNLOAD. Lernzirkel Dreieck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Lernzirkel Dreieck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel: DOWNLOD lreht Shiekofer Lernzirkel Dreiek Downloduszug us dem Originltitel: 1 4 5 6 7 8 9 10 Lernzirkel Grundlgen der Geometrie Koordintensystem (Fhegriffe) Koordinten estimmen Koordinten eintrgen Spiegelpunkte

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 Der Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 Der Ktetenstz 6 Der Höenstz 7 Exkurs: Konstruktion retwinkliger Dreieke 8 ekliste 9 Hinweise

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e.

Unterteile den Streckenzug zunächst in die Einzelstrecken a, b, c, d, e. K. D Alcmo / J. Dy: Lerninhlte selbstständig errbeiten Mthemtik 0 Auer Verlg AAP Lehrerfchverlge GmbH, Donuwörth Alle Knten des Prisms sind lng. Unterteile den Streckenzug zunächst in die Einzelstrecken,

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Flächensätze am rechtwinkligen Dreieck

Flächensätze am rechtwinkligen Dreieck Flähensätze m rehtwinkligen Dreiek ufge: Zeihne ein rehtwinkliges Dreiek us = 7 m, = 5 m γ = 90 o und zeihne die Höhe h ein. γ Kthete h Kthete q Hypotenusenshnitte Hypotenuse p MERKE: Ktheten: Hypotenuse:

Mehr

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Größen Umfang und Flächeninhalt. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunde Mathematik Klasse: Größen Umfang und Flächeninhalt. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel: DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunde Mthemtik 4 5. Klsse: Größen Umfng und Flächeninhlt Downloduszug us dem Originltitel: Umfng Rechteck 1 Größen Umfng und Flächeninhlt 1. Ds drgestellte

Mehr

12. Erweitern von Brüchen der kleinste gemeinsame Nenner

12. Erweitern von Brüchen der kleinste gemeinsame Nenner D Alger II. Erweitern von Brühen der kleinste gemeinsme Nenner Erweitere den Bruh mit. Hinweis: Beim Erweitern multiplizierst du Zähler und Nenner mit derselen Zhl zw. Vrilen. Der Wert des Bruhs leit eim

Mehr

M 2 - Übungen zur 2. Schularbeit

M 2 - Übungen zur 2. Schularbeit M - Üungen zur. hulreit ) erehne ds Ergenis! ) ( ) + ) ( ) ) ( ) ( ) + 0 ) erehne! )( ) + ( ) ) ( + ) )( ) ( ) + ) hreie ds Ergenis ls gemishte Zhl! (Kürze ereits vor dem Multiplizieren!) ) ) ) Löse die

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Konstruktion mit Zirkel und Lineal

Konstruktion mit Zirkel und Lineal Alert Ludigs Universität Freiurg Institut für Mthemtik Ateilung für Reine Mthemtik Prof Dr D Wolke Dipl Mth S Feiler Üungen ur Vorlesung Ergänungen ur Elementren Zhlentheorie Wintersemester 9/ 9 Üungsltt

Mehr

Trigonometrie 1/11. Trigonometrie. Teil 1 Grundlagen

Trigonometrie 1/11. Trigonometrie. Teil 1 Grundlagen Trigonometrie 1/11 Trigonometrie Teil 1 Grundlgen Lehrstoff Trigonometrie o Definieren von sin, os, tn für 0 360 o Durhführen von erehnungen n rehtwinkligen und llgemeinen Dreieken, n Figuren und Körpern

Mehr

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner

Änderungen in Zweitauflagen von Buch, Arbeits- und Theorieheft und Begleitordner Änderungen in Zweituflgen von uh, reits- und Theorieheft und egleitordner lle uflgen des Shüleruhes, des reits- und Theorieheftes und des egleitordners lssen sih prolemlos neeneinnder verwenden. Shüleruh

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

DOWNLOAD. Flächeninhalt und Umfang: Rechteck und Quadrat. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen.

DOWNLOAD. Flächeninhalt und Umfang: Rechteck und Quadrat. Flächeninhalt und Umfang. Arbeitsblätter und Test zur sonderpädagogischen. DOWNLOD ndres Mrschll Lur Petry Flächeninhlt und Umfng: und Qudrt reitslätter und Test zur sonderpädgogischen Förderung ndres Mrschll, Lur Petry Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel:

Mehr

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel.

Seite 50. Einstieg. 1 a) α und γ sind Scheitelwinkel. b) α und α sind Stufenwinkel. c) β und δ sind Scheitelwinkel. d) β und δ sind Wechselwinkel. Dreieke Shüleruhseite 8 5 Dreieke uftkt Seiten 8, 9 Seite 8 Ds Rehtek knn niht mehr verformt werden, wenn mn zwei gegenüerliegende Eken mit einem 5er-Streifen verindet. Dmit ds Sehsek seine Form ehält,

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, I

KOMPETENZHEFT ZUR TRIGONOMETRIE, I Mthemtik mcht Freu(n)de KOMPETENZHEFT ZUR TRIGONOMETRIE, I 1. Aufgenstellungen Aufge 1.1. Erkläre, wrum die eiden drgestellten Dreiecke ähnlich zueinnder sind und erechne die fehlenden Seitenlängen x und

Mehr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr

DEMO. Dreiecke: Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Konstruktionen. Kongruente Dreiecke. Datei Nr Geometrie Dreieke: Konstruktionen Kongruente Dreieke Dtei Nr. 11111 DEM Friedrih ukel Stnd: 19. Juni 2017 INTERNETILITHEK FÜR SHULMTHEMTIK www.mthe-d.shule 11111 Dreieke 1 Kongruenz 2 Inhlt 1. Konstruktion

Mehr

Repetitionsaufgaben: Trigonometrische Funktionen

Repetitionsaufgaben: Trigonometrische Funktionen Repetitionsufgen: Trigonometrishe Funktionen Inhltsverzeihnis Zusmmengestellt von Luks Fisher, KSA Voremerkungen und Lernziele....... 2 I. Trigonometrie im Dreiek...... 3 1. Trigonometrie im rehtwinkligen

Mehr

Kapitel 3 Mathematik. Kapitel 3.8 Geometrie Trigonometrie

Kapitel 3 Mathematik. Kapitel 3.8 Geometrie Trigonometrie TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.8 Geometrie Trigonometrie Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut, 877 Nidfurn Telefon 055 654 87 Telefx 055 654 88 E-Mil

Mehr

Marco Bettner/Erick Dinges. Grundwissen Pythagoras und Trigonometrie. 9./10. Klasse VORSCHAU. Bergedorfer Kopiervorlagen.

Marco Bettner/Erick Dinges. Grundwissen Pythagoras und Trigonometrie. 9./10. Klasse VORSCHAU. Bergedorfer Kopiervorlagen. Mro ettner/erik Dinges Grundwissen Pythgors und Trigonometrie 9./10. Klsse ergedorfer Kopiervorlgen VORSHU Inhltsverzeihnis Grundwissen Pythgors und Trigonometrie Stzgruppe des Pythgors Stz des Pythgors

Mehr

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen DOWNLOD rigitte Penzenstler 5./6. Klsse: Multipliktion Mthetrining in 3 Kompetenzstufen rigitte Penzenstler ergeorfer Unterrihtsieen Downlouszug us em Originltitel: Mthetrining in 3 Kompetenzstufen n 1:

Mehr

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1

Die Winkelsumme im Dreieck beträgt 180. Herleitung bzw. experimentelle Begründung in der Schule: Durch Punktspiegelung. Bedeutung+Winkelsumme 1 edeutung+winkelsumme 1 Winkelsumme Kpitel 5: Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels Sätzen üer Dreieke

Mehr

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen.

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen. . Zhlen. Die Qudrtwurzel Die Qudrtwurzel ist die positive Lösung der Gleihung Ein Teil der Qudrtwurzeln sind rtionle Zhlen. 0! z.b. 9, 0,0 0, oder, 0 0! 9 heißt Rdiknd ndere dgegen irrtionle Zhlen z. B.,

Mehr

a b = a b a b = 0 a b

a b = a b a b = 0 a b Vektorlger Zusmmenfssung () Sklrprodukt weier Vektoren im Rum Unter dem Sklrprodukt os os weier Vektoren und versteht mn den Sklr woei der von den eiden Vektoren eingeshlossene Winkel ist ( 8) * os Rehenregeln

Mehr

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc

EINFÜHRUNG IN DIE GEOMETRIE SS DEISSLER skript05-temp.doc EINFÜHRUNG IN DIE GEOMETRIE SS 05 50 DEISSLER skript05-temp.do 5 Dreiekslehre 5.1 edeutung der Dreieke Durh Tringultion lssen sih Vieleke in Dreieke zerlegen ( n Ek in n- Dreieke) eweis von Sätzen mittels

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Dieser Downlod

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Formelsammlung Mathematik 4. Klasse

Formelsammlung Mathematik 4. Klasse Formelsmmlung Mthemtik 4. Klsse Inhlt Rehtek... Qurt... llgemeines Dreiek... Rehtwinkeliges Dreiek... Gleihshenkliges Dreiek... 4 Gleihseitiges Dreiek... 4 Trpez... 5 Prllelogrmm... 5 Rute Rhomus... 6

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Seitenmittenvierecke. von Sven Klein

Seitenmittenvierecke. von Sven Klein von Sven Klein von Sven Klein liederung: 0. Worum geht es? 1. die qudrtishe etrhtung 2. ezug uf ds Rehtek 3. ds unvollständige us der Viereke 4. der Spezilfll: ds llgemeine Vierek 5. esetzmäßigkeiten 6.

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

DOWNLOAD. Lernzirkel Viereck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Lernzirkel Viereck. Albrecht Schiekofer. Downloadauszug aus dem Originaltitel: OWNLO lreht Shiekofer Lernzirkel Vierek ownlouszug us em Originltitel: 5 6 7 8 9 0 Lernzirkel Grunlgen er Geometrie Koorintensystem (Fhegriffe) Koorinten estimmen Koorinten eintrgen Spiegelpunkte estimmen

Mehr

Rund um den Satz des Pythagoras

Rund um den Satz des Pythagoras Wolfgng Shlottke Rund um den Stz des Pythgors Lernen n Sttionen und weiterführende ufgben für den Mthemtikunterriht uerverlg GmbH 3 Sroghty Pythgors rükwärts Die Umkehrung des Stzes des Pythgors (1) Du

Mehr

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum.

Muss der Umfang (u) oder der Flächeninhalt (A) berechnet werden? Kreuze an! Der Umfang (u) ist die Länge des Weges um eine Fläche herum. gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger 8 Rettungsring Berechnungen m Dreieck & Viereck Begriffe: Umfng und Flächeninhlt 1 Muss der Umfng (u) oder der Flächeninhlt (A) erechnet werden? Kreuze

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunden Mthemtik 32 10. Klsse: Mrco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel: Vertretungsstunden Mthemtik 9./10. Klsse

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x!

M3 Übung: Strahlensatz, Teilungsrechnung, Strecken teilen Name: 1)Stelle eine Verhältnisgleichung auf und berechne x! M Üung: Strhlenstz, Teilungsrehnung, Streken teilen Nme: 1)Stelle eine Verhältnisgleihung uf und erehne! 1,5 4,0,0 2)Berehne mit einer Proportion! (Mße in m!) 6,0 6,5 1, )Stelle eine Verhältnisgleihung

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Grundlagen der Trigonometrie

Grundlagen der Trigonometrie Grundlgen der Trigonometrie W. Kippels 24. Novemer 2013 Inhltsverzeichnis 1 Einleitung 2 2 Die Definitionen 2 2.1 Definitionen im Rechtwinkligen Dreieck................... 2 2.2 Definitionen m Einheitskreis........................

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Mit Würfeln Quader bauen 14

Mit Würfeln Quader bauen 14 3 1 Quder uen Ein Spiel zu zweit Würfelt wehslungsweise mit einem Spielwürfel und fügt die gewürfelte Anzhl Holzwürfel den vorhndenen Würfeln hinzu. In jeder Spielrunde versuht ihr, us llen vorhndenen

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke reieke un Viereke Viereke Welhe esoneren Viereke sin eknnt, ws zeihnet esonere Viereke us? Impuls uf Seiten, Winkel, Symmetrie!.) s Qurt: Ein Qurt esitzt folgene Eigenshften: lle Seiten sin gleihlng. (

Mehr

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):

MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK. 24. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse): MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2015 MATHEMATIK 24. Juni 2015 8:30 Uhr 11:00 Uhr Pltzziffer (ggf. Nme/Klsse): Die Benutzung von für den Gebruh n der Mittelshule zugelssenen Formelsmmlungen

Mehr

Abwicklung L-Stück und T-Stück

Abwicklung L-Stück und T-Stück wiklung L-Stük und T-Stük Vielleiht können Sie in der Werksttt einen Klssenstz der Modelle us Holz, Kunststoff oder Metll fertigen... reitsuftrg: Shneiden Sie die Ppierflähen us und fertigen Sie drus die

Mehr

5 Vierecke. 1 Quadrat

5 Vierecke. 1 Quadrat Viereke Shüleruhseite ((nm: Seitenereihe folgen in. Korr)) Viereke uftkt Seiten 8, 9 Seite 8 Qurt Viereksformen Seiten 0, Seite 0 Einstieg rotes Vierek: Rehtek lues Vierek: Rute grünes Vierek: Prllelogrmm

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Klausur Grundlagen der Elektrotechnik

Klausur Grundlagen der Elektrotechnik Prüfung Grundlgen der Elektrotehnik Seite 1 von 20 Klusur Grundlgen der Elektrotehnik 1) Die Klusur esteht us 8 Aufgen, dvon 7 Textufgen und ein Single- Choie-Teil. 2) Zulässige Hilfsmittel: Linel, Winkelmesser,

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

In diesem Sinne kann man auch a = BE schreiben, nämlich der. BE repräsentiert wird.

In diesem Sinne kann man auch a = BE schreiben, nämlich der. BE repräsentiert wird. Vekttorrrrehnung effi initti ion des Vekttorrs Will eine meise im Hus us eispiel vom Punkt zum Punkt E dnn muss sie 6 Einheiten gegen die Rihtung Einheiten in Rihtung und Einheiten in Rihtung Kurz: ( 6;

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr