Kreditrisiko bei Swiss Life. Carl-Heinz Meyer,

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008"

Transkript

1 Kreditrisiko bei Swiss Life Carl-Heinz Meyer,

2 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung in der Praxis! 6. The road ahead Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

3 Was versteht man unter Kreditrisiko? Man unterscheidet im wesentlichen 2 Arten von Kreditrisiken: 1. Credit Default Risk: Das Risiko, Geld zu verlieren, weil ein Kreditnehmer einen Zahlungsausfall verursacht. 2. Credit Sread Risk (bzw. Migration risk): Der Credit Sread ist die Renditedifferenz zwischen einer ausfallrisikofreien Staatsanleihe und einer ausfallrisikobehafteten Unternehmensanleihe gleicher Laufzeit - also eine Versicherungsrämie gegen Ausfall des Emittenten. Veränderungen des Ratings eines Emittenten führen zu einer Änderung des Credit Sreads, was wiederum zu einer Änderung des Marktwertes einer Anleihe führt. Dieses Risiko wird dann auch Migrationsrisiko genannt. Dieser Vortrag behandelt das Credit Default Risk! Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

4 Wie berechnet man das Kreditrisiko? Üblicherweise mit stochastischen Modellen: Modell Sonsor Berechnung Creditrisk+ CSFB Analytisch CreditMetrics JP Morgan Simulation KMV Moodys Analytisch CreditPortfolioView McKinsey Simulation Creditrisk+ wurde 1997 von Tom Wilde (Mitarbeiter bei CSFB) entwickelt. Es ist ein einfaches versicherungsmathematisches Modell, das relativ wenige Daten benötigt. Dieses Modell wird bei Swiss Life verwendet. Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

5 Ein Beisiel zur Einführung 3 Kreditnehmer, Betrachtungseriode: 1 Jahr Kreditnehmer Kreditsumme Verlustquote Verlust bei Ausfall Ausfallwahrscheinlichkeit (1y) Erwarteter Verlust Debtor (Obligor) Exosure x LGD = ENOR x PD = EL A-AG 125 CHF 80% 100 CHF 0,10 10 CHF B-GmbH 400 CHF 50% 200 CHF 0,20 40 CHF C-GmbH 400 CHF 75% 300 CHF 0,15 45 CHF Keine Besitzverhältnisse: Verschiedene Besitzverhältnisse Mutter-2 Töchter: A-AG A-AG B-GmbH C-GmbH B-GmbH C-GmbH Mutter-Tochter: A-AG C-GmbH Mutter-Tochter- Enkel : A-AG B-GmbH B-GmbH C-GmbH Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

6 Kleine Modelle (1/4): Keine Besitzverhältnisse (Alle unabhängig) 1. Einführung von Zufallsvariablen: A { 0, 100}, B { 0, 200}, C { 0, 300}, möglicher Verlust verursacht durch A - AG möglicher Verlust verursacht durch B - GmbH möglicher Verlust verursacht durch C - GmbH 2. Beschreibung der Abhängigkeiten: (a) a (b) b (c) c P( A, B, C) : = P( A) B) C) Gesamtverl ust : L := A + B + C Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

7 Berechnung der Verlustverteilung (a) (b) (c) a b c a b c (a) x (b) x (c) = (a,b,c) a+b+c l:=a+b+c (l) P(L l) E(L)= σ(l)= VaR 0.99 ( L) = 500 CVaR( L) : = VaR( L) E( L) = Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

8 Kleine Modelle (2/4): Mutter-Tochter: (a) a (b a) a b (c) c P( A, B, C) : = P( A) B A) C) Gesamtverl ust : L := A + B + C Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

9 Berechnung der Verlustverteilung (a) (b a) a (c) a b c a b c (a) x (b a) x (c) = (a,b,c) a+b+c l:=a+b+c (l) P(L l) E(L)= σ(l)= VaR 0.99 CVaR ( L) = 0.99 ( L) 600 CHF = 505 CHF Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

10 Kleine Modelle (3+4/4): Mutter-2 Töchter: Mutter-Tochter- Enkel : (b a) a b (a) a (c a) a c (a) a (b a) a b (c b) b c P( A, B, C) : = P( A) B A) C A) P( A, B, C) : = P( A) B A) C B) E( L) = 95, σ ( L) = 190 VaR0.99 = 600, CVaR0.99 = 505 Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

11 Ein weiteres Risikomaß: Der Exected Shortfall Problem des VaR: VaR ist nicht subadditiv! VaR 0.75( A) + VaR0.75( B) < VaR0.75( A + B) Besseres Risikomaß: Exected Shortfall 1 ESα (L) : = 1 α 1 α VaR (L)du α VaR(A+B) in Abhängigkeit vom Konfidenznivau ES 0.75 ( A) + ES0.75 ( B) > ES0.75 ( A + B) α Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

12 Die Modelle im Vergleich: P( A, B, C) : = P( A) B) C) P( A, B, C) : = P( A) B A) C) P( A, B, C) : = P( A) B A) C A) E( L) = 95 σ ( L) = 137 VaR CVaR ES CES = 500 = 405 = 515 = 420 E( L) = 95 σ ( L) = 148 VaR CVaR ES CES = 600 = 505 = 575 = 480 E( L) = 95 σ ( L) = 190 VaR CVaR ES CES = 600 = 505 = 600 = 505 Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

13 Vom kleinen zum kollektiven Modell Problem der kleinen Modelle: Kombinatorische Exlosion! Lösung aus der Lebensversicherungsmathematik: Dort wird anstelle des kleinen individuellen Modells ein grosses kollektives Modell betrachtet. Das kollektive Modell soll die Verlustverteilung des kleinen Modells möglichst gut aroximieren! Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

14 Grundidee des kollektiven Modells L = A + B + C S = X + X + K+ 1 2 X N Anzahl N {0,1,2...} Ausfallhöhe X i {100,200,300} Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

15 Kollektives Modell: Annahmen Modellierung der Ausfälle N: => Sezifikation einer Verteilung von N Modellierung der Ausfallhöhe X i : => Sezifikation einer Verteilung der X i Allgemeines kollektives Modell : N und alle X X i i sind unabhängig. sind identisch verteilt. N S : = X i= 1 i Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

16 Modellierung der Ausfälle N Idee: Für kleine Ausfallwahrscheinlichkeiten und viele Debitoren kann die Anzahl der Ausfälle gut durch eine Poisson-Verteilung aroximiert werden. Kleiner Nachteil: Die Poisson-Verteilung hat als Träger alle natürlichen Zahlen, d.h. die Wahrscheinlichkeit, mehr Ausfälle zu beobachten, als Debitoren vorhanden sind, ist echt ositiv! Grosser Vorteil: Poisson-Verteilung erlaubt eine effiziente Berechnung der Verlustverteilung, da die Verteilung von S über die sog. Panjer-Rekursion berechnet werden kann. Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

17 Einführungsbeisiel modelliert als kollektives Modell. Parameter λ einer Poisson-Verteilung ist gleichzeitig Erwartungswert, also die erwartete Anzahl Ausfälle ro Jahr. Zur Aroximation wählt man: λ : = i Für das Einführungsbeisiel ergibt sich: λ : = = Vergleich zwischen "tatsächlichen" Ausfallwahrsch. und Poissonaroximation "tatsächliche" Ausfallw s Poissonarox. mit λ= n Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

18 Modellierung der Ausfallhöhe X 1 Der Wertebereich von X 1 ist die Vereinigung aller individuellen Exosures, also insbesondere endlich. Gegeben, ein Ausfall ist eingetreten, so ist die Wahrscheinlichkeit für dessen Höhe roortional zur Ausfallwahrscheinlichkeit des Debitors, der diesen Ausfall erzeugt. Da sich die Wahrscheinlichkeiten auf 1 (Eins) addieren müssen, ergibt sich: P({ X 1 = x }) i = i i Für das Einführungsbeisiel ergibt sich: Zähldichte von X i (x) Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

19 Berechnung der Verlustverteilung Wenn die Trägerunkte von X 1 auf den Vielfachen einer Grundeinheit h (sog. loss unit ) liegen, dann liegen auch alle Trägerunkte von S auf Vielfachen dieser Einheit. In diesem Fall lässt sich die Verlustverteilung sehr effizient mit Hilfe der Panjer-Rekursion berechnen, denn bei nach Poisson verteilten Ausfällen im kollektiven Modell (Harry Panjer, 1980) gilt: q j P({ X = jh}), j = 1,..., n : = P({ S = kh}), k = 1,2,... k : = 1 0 k : = π (0) = λ k k j= 1 = jq e j λ k j, k = 1,2,... Für das Einführungsbeisiel gilt: λ = 0.45 h = 100 q1 = 0.2 q2 = 0.4 q3 = 0.3 k = 0 : k = 1: k = 2 : k 3 : k = e 0.45 = 0.1 = 0.1 = k k k 3 Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

20 Vergleich individuelles vs. kollektives Modell Individuelles Modell Kollektives M odell Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

21 Eigenschaften des kollektiven Modells Wählt man die Verteilungsarameter von N und X i wie eingangs beschrieben, so lässt sich zeigen: 1. E( S) = E( L) Var( S) P ( E) P S Var( L) L ( E) n i= 1 2 i Für das Einführungsbeisiel gilt also theotisch: P ( S > 600) (tatsächlich: ) Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

22 Erweiterungen des grossen Modells Beobachtung: Ausfallraten ändern sich zufällig im Zeitablauf! Neue Annahmen: 1. Jede Ausfallrate ist ein stetiger zufälliger Prozeß. 2. Die durch das Rating unterstellten Ausfallwahrscheinlichkeiten werden als Erwartungswerte der Ausfallraten interretiert. Folgerungen: 1. Man benötigt zusätzlich noch die Volatilität der Ausfallraten. 2. Auch die erwarte Ausfallanzahl Λ des gesamten Portfolios ist jetzt ein Zufallsrozeß. Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

23 Modellierung der Ausfallhöhe, wenn die Ausfallrate zufällig schwankt Daten: j σ j Erwartete Ausfallrate von Debitor j Volatilität der Ausfallrate von Debitor j Modellannahmen: μ = σ = j σ j Erwartete Ausfälle des Kreditortfolios Volatilität der Ausfallrate des Kreditortfolios 2 2 μ σ Λ ~ Gamma ( α, β ) mit : α : =, β : = 2 σ μ N λ ~ Poisson( λ) Modellfolgerungen: Randverteilung von N der gemeinsamen Verteilung von (N,Λ)ist nun eine Negativ-Binomial verteilung. N ~ NegBin( r, ) mit r = α, = β 1+ β Auch die Negativ-Binomialverteilung erlaubt eine effiziente Berechnung der Verlustverteilung über die Panjer-Rekursion! Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

24 Praktische Probleme 1. Die Bestimmung der Exosure - Beträge ist nicht immer klar. (Insbesondere bei Derivaten). 2. Man hat nur für einige Debitoren die Ratings. 3. Wertaiere von verbundenen Unternehmen dürfen nicht berücksichtigt werden. 4. Die Zuordnung der Aussenstände zu den richtigen Debitoren ist auch nicht einfach. 5. Es sind Mutter-Tochter Beziehungen zwischen den Debitoren zu berücksichtigen. (Eine zahlungsunfähige Mutter reisst ihre Töchter mit ins Verderben) 6. Zusätzliche Nebenbedingungen durch Kollateralverträge (ISDA-Verträge), mit denen Aussenstände begrenzt werden. 7. Rechtliche Insolvenzrobleme: Wann werden Schulden und Guthaben gegeneinander aufgerechnet (sog. netting) und wann nicht. 8. Und viele weitere Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

25 The road ahead 1. Backtesting. 2. Bluerint. 3. Anbindung der Aussenstellen. 4. Migrationsrisiko -> Stochastische Simulation. 5. Einbeziehung von Sektoren. Kreditrisiko bei Swiss Life, Carl-Heinz Meyer,

26 Vielen Dank

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Vorlesung 7: Value-at-Risk für Kreditrisiken

Vorlesung 7: Value-at-Risk für Kreditrisiken Vorlesung 7: Value-at-Risk für Kreditrisiken 17. April 2015 Dr. Patrick Wegmann Universität Basel WWZ, Department of Finance patrick.wegmann@unibas.ch www.wwz.unibas.ch/finance Die Verlustverteilung im

Mehr

Credit Risk+: Eine Einführung

Credit Risk+: Eine Einführung Credit Risk+: Eine Einführung Volkert Paulsen December 9, 2004 Abstract Credit Risk+ ist neben Credit Metrics ein verbreitetes Kreditrisikomodell, dessen Ursprung in der klassischen Risikotheorie liegt.

Mehr

MaRisk-relevante Anpassungen im Kreditportfoliomodell. GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH

MaRisk-relevante Anpassungen im Kreditportfoliomodell. GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH im Kreditportfoliomodell GenoPOINT, 28. November 2013 Dr. Martin Bialek parcit GmbH Agenda Überblick KPM-KG Bedeutung des Portfoliomodells für den MaRisk-Report MaRisk-relevante Anpassungen MaRisk-relevante

Mehr

Nichtlebenversicherungsmathematik Aus welchen Teilen besteht eine Prämie Zufallsrisiko, Parameterrisiko, Risikokapital Risikomasse (VaR, ES) Definition von Kohärenz Zusammengesetze Poisson: S(i) CP, was

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit

Commercial Banking. Kreditgeschäft 2. Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Commercial Banking Kreditgeschäft Bedingte marginale und kumulative Ausfallwahrscheinlichkeit Bedingte Marginale Ausfallwahrscheinlichkeit (BMAW t ) (Saunders: MMR ) prob (Ausfall in Periode t kein Ausfall

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Zwei einfache Kennzahlen für große Engagements

Zwei einfache Kennzahlen für große Engagements Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt

Mehr

von Thorsten Wingenroth 358 Seiten, Uhlenbruch Verlag, 2004 EUR 98,- inkl. MwSt. und Versand ISBN 3-933207-42-8

von Thorsten Wingenroth 358 Seiten, Uhlenbruch Verlag, 2004 EUR 98,- inkl. MwSt. und Versand ISBN 3-933207-42-8 Reihe Portfoliomanagement, Band 17: RISIKOMANAGEMENT FÜR CORPORATE BONDS Modellierung von Spreadrisiken im Investment-Grade- Bereich von Thorsten Wingenroth 358 Seiten, Uhlenbruch Verlag, 2004 EUR 98,-

Mehr

Generalthema: Kreditrisikomanagement. Thema 4: CreditRisk+ Gliederung

Generalthema: Kreditrisikomanagement. Thema 4: CreditRisk+ Gliederung Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Zuständiger Mitarbeiter: Dipl.-Kfm. Stefan Krohnsnest

Mehr

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl. 02. Juli 2010

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl. 02. Juli 2010 Credit Risk I Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl 02. Juli 2010 Georg Pfundstein Credit Risk I 02. Juli 2010 1 / 40 Inhaltsverzeichnis 1 Grundlagen

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Risiko- und Kapitalsteuerung in Banken. MN-Seminar 12.05.2009 Martina Böhmer

Risiko- und Kapitalsteuerung in Banken. MN-Seminar 12.05.2009 Martina Böhmer Risiko- und Kapitalsteuerung in Banken MN-Seminar 12.05.2009 Martina Böhmer Risiko- und Kapitalsteuerung in Banken Basel II Risiko- und Kapitalsteuerung in Banken 25 a Absatz 1 KWG Kreditinstitute sind

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Zielsetzung. Problematik

Zielsetzung. Problematik Kreditrisiko-Modellierung für Versicherungsunternehmen Tamer Yilmaz 21. November 2007 Zielsetzung Die Ermittlung der Eigenkapitalhinterlegung für das Kreditrisiko, die auf das Versicherungsunternehmen

Mehr

Risikoaggregation und allokation

Risikoaggregation und allokation 2. Weiterbildungstag der DGVFM Risikoaggregation und allokation Einführung in das Thema Prof. Dr. Claudia Cottin, FH Bielefeld Dr. Stefan Nörtemann, msg life Hannover, 21. Mai 2015 2. Weiterbildungstag

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Risikomanagement und Statistik. Raimund Kovacevic

Risikomanagement und Statistik. Raimund Kovacevic Risikomanagement und Statistik Raimund Kovacevic Dieses Werk ist Urheberrechtlich geschützt. Jede Vervielfältigung ohne Einverständnis des Autors ist verboten. Risiko hazard, a chance of bad consequences,

Mehr

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Dr. Michael Leitschkis Generali Deutschland Holding AG Konzern-Aktuariat Personenversicherung München, den 13.10.2009 Agenda Einführung und Motivation

Mehr

Kreditriskoberechnungbei der Swiss Life

Kreditriskoberechnungbei der Swiss Life Kreditriskoberechnungbei der Swiss Life Theorie und Praxis der Modellierung des Kreditrisikos von Kapitalanlagen. Kreditrisikoberechnung bei der Swiss Life, Carl-Heinz Meyer, Hagen, den 06.10.2009 1 Agenda

Mehr

Ermittlung des Ausfallrisikos

Ermittlung des Ausfallrisikos Ermittlung des Ausfallrisikos Das Ausfallrisiko, dessen Ermittlung maßgeblich von der Datenqualität der Vorsysteme abhängt, nimmt in der Berechnung der Eigenmittelanforderung einen relativ geringen Stellenwert

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Basel II - Die Bedeutung von Sicherheiten

Basel II - Die Bedeutung von Sicherheiten Basel II - Die Bedeutung von Sicherheiten Fast jeder Unternehmer und Kreditkunde verbindet Basel II mit dem Stichwort Rating. Dabei geraten die Sicherheiten und ihre Bedeutung - vor allem für die Kreditkonditionen

Mehr

Portfolioorientierte Quantifizierung des Adressenausfall- und Restwertrisikos im Leasinggeschäft - Modellierung und Anwendung

Portfolioorientierte Quantifizierung des Adressenausfall- und Restwertrisikos im Leasinggeschäft - Modellierung und Anwendung Portfolioorientierte Quantifizierung des Adressenausfall- und Restwertrisikos im Leasinggeschäft - Modellierung und Anwendung von Dr. Christian Helwig Fritz Knapp Verlag Jßg Frankfurt am Main Abbildungsverzeichnis

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz Dimitri Senik Agenda Risikomanagement bei Fonds: neue regulatorische Vorschriften Risikomessung gemäss KKV-EBK Risikomanagement

Mehr

Adressenausfallrisiken. Von Marina Schalles und Julia Bradtke

Adressenausfallrisiken. Von Marina Schalles und Julia Bradtke Adressenausfallrisiken Von Marina Schalles und Julia Bradtke Adressenausfallrisiko Gliederung Adressenausfallrisiko Basel II EU 10 KWG/ Solvabilitätsverordnung Adressenausfallrisiko Gliederung Rating Kreditrisikomodelle

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Ganzheitliche Risikomessung im Sinne des Anlegers

Ganzheitliche Risikomessung im Sinne des Anlegers Ganzheitliche Risikomessung im Sinne des Anlegers Für alle Anlageprodukte / Wertpapiere gilt Risikofreier Zins 1% + Risikoprämien? + Management? - Kosten abhängig von der Anlage - Steuer abhängig von der

Mehr

Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage

Arnd Wiedemann. Risikotriade Zins-, Kredit- und operationelle Risiken. 2., überarbeitete Auflage Arnd Wiedemann Risikotriade Zins-, Kredit- und operationelle Risiken 2., überarbeitete Auflage . XI 1 Einleitung: Risikomessung als Fundament der Rendite-/Risikosteuerung 1 2 Zinsrisiko 3 2.1 Barwertrisiko

Mehr

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage

Inhaltsverzeichnis. Vorwort zur zweiten Auflage. Vorwort zur ersten Auflage Inhaltsverzeichnis Vorwort zur zweiten Auflage Vorwort zur ersten Auflage v viii 1 Märkte und Produkte 1 1.1 Motivation: Das Gesicht der Finanzkrise............. 1 1.2 Grundlegende Begriffe.......................

Mehr

Übergreifende Sichtweise auf Immobilienrisiken der Bank anhand einer Integration in die Risikosteuerung. GenoPOINT, 28.

Übergreifende Sichtweise auf Immobilienrisiken der Bank anhand einer Integration in die Risikosteuerung. GenoPOINT, 28. Übergreifende Sichtweise auf Immobilienrisiken der Bank anhand einer Integration in die Risikosteuerung GenoPOINT, 28. November 2013 Agenda 1. Ausgangslage 2. Übergreifende Sichtweise auf Immobilienrisiken

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Information zum Thema CVA Credit Valuation Adjustment

Information zum Thema CVA Credit Valuation Adjustment Die neuen Anforderungen bezüglich des Kontrahentenrisikos führten und führen zu Anpassungen im Umgang mit dem Credit Valuation Adjustment Nicht zuletzt die Finanzkrise hat gezeigt, dass das aus nicht börsengehandelten

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Statistischer Mittelwert und Portfoliorendite

Statistischer Mittelwert und Portfoliorendite 8 Wahrscheinlichkeitsrechnung und Statistik Statistischer Mittelwert und Portfoliorendite Durch die immer komplexer werdenden Bündel von Investitionen stellen Investorinnen und Investoren eine Vielzahl

Mehr

Kreditrisikomodelle. Mit Kalibrierung der Input-Parameter. Working Paper Series by the University of Applied Sciences of bfi Vienna.

Kreditrisikomodelle. Mit Kalibrierung der Input-Parameter. Working Paper Series by the University of Applied Sciences of bfi Vienna. Number 3 / 2004 Working Paper Series by the University of Applied Sciences of bfi Vienna Kreditrisikomodelle Mit Kalibrierung der Input-Parameter Version 1.01, July 2004 Robert Schwarz University of Applied

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Marcus R.W. Martin Stefan Reitz. Carsten S. Wehn. Kreditderivate und. Kreditrisikomodelle. Eine mathematische Einführung

Marcus R.W. Martin Stefan Reitz. Carsten S. Wehn. Kreditderivate und. Kreditrisikomodelle. Eine mathematische Einführung Marcus R.W. Martin Stefan Reitz Carsten S. Wehn Kreditderivate und Kreditrisikomodelle Eine mathematische Einführung 2., überarbeitete und erweiterte Auflage ö Springer Spektrum Inhaltsverzeichnis Vorwort

Mehr

ifa Institut für Finanz- und Aktuarwissenschaften

ifa Institut für Finanz- und Aktuarwissenschaften Wechselwirkungen von Asset Allocation, Überschussbeteiligung und Garantien in der Lebensversicherung WIMA 2004 Ulm, 13.11.2004 Alexander Kling, IFA Ulm Helmholtzstraße 22 D-89081 Ulm phone +49 (0) 731/50-31230

Mehr

Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer

Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer Die Auswirkung von Rückversicherung auf die Eigenmittelanforderungen unter Solvency II Prof. Dr. Dietmar Pfeifer xxx 0 Agenda Der Aufbau der Solvenz-Bilanz Zur Begriffsbestimmung des SCR Die Auswirkung

Mehr

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6)

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) Geldtheorie und -politik Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) 2. Mai 2011 Überblick Bestimmung des Zinssatzes im Markt für Anleihen Erklärung der Dynamik von Zinssätzen Überblick

Mehr

Kreditrisikomodelle und Kreditderivate

Kreditrisikomodelle und Kreditderivate Annemarie Gaal, Manfred Plank 1 Einleitung In den letzten Jahren zeigte sich immer deutlicher, daß die Basler Eigenkapitalvereinbarung von 1988 1 ) in vielen Fällen keine adäquate Eigenkapitalallokation

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

Anforderungen an Krankenversicherer unter SST und Solvency II. Prüfungskolloquium zum Aktuar SAV Michele Casartelli, 16.

Anforderungen an Krankenversicherer unter SST und Solvency II. Prüfungskolloquium zum Aktuar SAV Michele Casartelli, 16. Anforderungen an Krankenversicherer unter SST und Solvency II Prüfungskolloquium zum Aktuar SAV Michele Casartelli, 16. November 2012 Grundlagen Hauptziele von Solvenzvorschriften: Schutz von Versicherungsnehmern

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981)

Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Aufgabenblatt 3: Rechenbeispiel zu Stiglitz/Weiss (AER 1981) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe 100 identische Unternehmer

Mehr

4592 Kapitalmarkt und Risikomanagement, WS 2001/02. Übung 2

4592 Kapitalmarkt und Risikomanagement, WS 2001/02. Übung 2 4592 Kapitalmarkt und Risikomanagement, WS 2001/02 Übung 2 Abgabe bis spätestens 29.1.2002 Assistenz: christian.buhl@unibas.ch Die Übung gilt bei Erreichen von mindestens 60 Punkten als bestanden (maximal

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Mindestkonditionen im Kreditgeschäft! Rating und risikoadjustiertes Pricing! Individueller Ansatz! Effiziente Kreditprozesse

Mindestkonditionen im Kreditgeschäft! Rating und risikoadjustiertes Pricing! Individueller Ansatz! Effiziente Kreditprozesse Kreditgeschäft Mindestkonditionen im Kreditgeschäft Rating und risikoadjustiertes Pricing Individueller Ansatz Effiziente Kreditprozesse Orientierung an der Erfüllung der Kriterien im Rahmen von Basel

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 6. Februar

Mehr

Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken

Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken Arnd Wiedemann Risikotriade - Teil Messung von Zins-, Kreditund operationellen Risiken 3., überarbeitete Auflage Inhaltsübersicht Band I X[ Inhaltsübersicht Band I Zins-, Kredit- und operationeile Risiken

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29.

Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29. Prüfung KMU-Finanzexperte Modul 6 Risk Management Teil 2: Financial RM Prüfungsexperten: Markus Ackermann Sandro Schmid 29. Januar 2008 Prüfungsmodus Prüfungsdauer schriftliche Klausur 60 Minuten Punktemaximum:

Mehr

Commercial Banking. Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate

Commercial Banking. Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate Commercial Banking Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate Kreditzusage / Kreditlinie (Loan commitment) = Zusage der Bank,

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Übungsblatt 13 - Probeklausur

Übungsblatt 13 - Probeklausur Aufgaben 1. Der Kapitalnehmer im Kapitalmarktmodell a. erhält in der Zukunft einen Zahlungsstrom. b. erhält heute eine Einzahlung. c. zahlt heute den Preis für einen zukünftigen Zahlungsstrom. d. bekommt

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K.

Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Beispiel 5 Europäische Call Option (ECO) in einer Aktie S mit Laufzeit T und Ausübungspreis (Strikepreis) K. Wert der Call Option zum Zeitpunkt T: max{s T K,0} Preis der ECO zum Zeitpunkt t < T: C = C(t,

Mehr

Als Mathematiker im Kreditrisikocontrolling

Als Mathematiker im Kreditrisikocontrolling Kevin Jakob / Credit Portfolio Risk Measurement & Methodology, BayernLB Als Mathematiker im Kreditrisikocontrolling 4. Mai 2015, Augsburg Gliederung 1. Persönlicher Werdegang / BayernLB 2. Themengebiete

Mehr

Reihe Risikomanagement und Finanzcontrolling, Band 6: BEWERTUNG VON KREDITRISIKEN UND KREDITDERIVATEN

Reihe Risikomanagement und Finanzcontrolling, Band 6: BEWERTUNG VON KREDITRISIKEN UND KREDITDERIVATEN Reihe Risikomanagement und Finanzcontrolling, Band 6: BEWERTUNG VON KREDITRISIKEN UND KREDITDERIVATEN von Volker Läger 468 Seiten, Uhlenbruch Verlag, 2002 EUR 98,- inkl MwSt und Versand ISBN 3-933207-31-2

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH)

Value-at-Risk. Kann man das Risiko steuern? Finanzwirtschaft VI Matthias Paesel Hochschule Magdeburg-Stendal (FH) Value-at-Risk Kann man das Risiko steuern? Gliederung I. Was versteht man unter Value-at-Risk? II. Anwendung des Value-at-Risk III. Grenzen des Value-at-Risk IV. Fazit V. Literatur Was versteht man unter

Mehr

Kreditrisikomanagement in Deutschland. Expertenbefragung 2010 von palaimon consulting

Kreditrisikomanagement in Deutschland. Expertenbefragung 2010 von palaimon consulting Kreditrisikomanagement in Deutschland Expertenbefragung 2010 von palaimon consulting Über palaimon consulting Folie Experten 1 für Investment / Daten / Risiken palaimon consulting ist seit 2007 Rechtsnachfolger

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein. Ludwig-Maximilians-Universität München. 31. August 2010.

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein. Ludwig-Maximilians-Universität München. 31. August 2010. Credit Risk I Einführung in die Kreditrisikomodellierung. Georg Pfundstein Ludwig-Maximilians-Universität München 31. August 2010 Abstract Portfoliomanagement und die damit einhergehende Risikomessung

Mehr

Oracle 9i Real Application Clusters

Oracle 9i Real Application Clusters Oracle 9i Real Application Clusters Seite 2-1 Agenda Einführung Verfügbarkeit / Skalierbarkeit Clusterarchitekturen Oracle Real Application Clusters Architektur Requirements Installation und Konfiguration

Mehr

Zur Diskontierung der Versicherungsverpflichtungen im SST

Zur Diskontierung der Versicherungsverpflichtungen im SST Association Suisse de s Actuaire s Schweizerische Aktuarvereinigung Swiss Association of Actuaries Zürich, den 21. April 2011 Autoren: Philipp Keller, Alois Gisler, Mario V. Wüthrich Zur Diskontierung

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

G 59071. TM bewertet. Im Kundengeschäft hingegen

G 59071. TM bewertet. Im Kundengeschäft hingegen G 59071 n vielen Fällen wird die Kreditrisikomessung mit unterschiedlichen Portfoliomodellen für das Eigen- und das Kundengeschäft durchgeführt. Das durch geringe Stückzahlen und hohe Volumina charakterisierte

Mehr

Materialien zur Vorlesung. Rendite und Risiko

Materialien zur Vorlesung. Rendite und Risiko Materialien zur Vorlesung Rendite und Risiko Burkhard Erke Quellen: Brealey/Myers, Kap. 7 Mai 2006 Lernziele Langfristige Rendite von Finanzanlagen: Empirie Aktienindizes Messung von Durchschnittsrenditen

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Commercial Banking. Kreditgeschäft. Gestaltung der Vertragsbeziehung: Sicherheiten, Kündigungsrechte, Relationship Banking,...

Commercial Banking. Kreditgeschäft. Gestaltung der Vertragsbeziehung: Sicherheiten, Kündigungsrechte, Relationship Banking,... Commercial Banking Kreditgeschäft Themen Rating, Ausfallrisiko erwarteter Verlust, unerwarteter Verlust, Pricing, Risikoabgeltung versus Kreditrationierung Gestaltung der Vertragsbeziehung: Sicherheiten,

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim CreditMetrics Portfoliokreditrisiko Seminar 10. Oktober 2007 Sebastian Sandner Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim Gliederung Page 1. Einführung in Credit Metrics 4 2. Durchführung

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Credit Metrics: Eine Einführung

Credit Metrics: Eine Einführung Credit Metrics: Eine Einführung Volkert Paulsen July 23, 2009 Abstract Credit Metrics ist ein Kredit Risko Modell, daß den Verlust quantifiziert, der durch eine Bonitätsveränderung von Schuldnern verursacht

Mehr

= A0 P0. Damit können wir eine äquivalente

= A0 P0. Damit können wir eine äquivalente Risikobewertung langfristiger Garantien Stand: 28. November 25 Simulationsergebnisse für klassische Bestände Anhang 1 Der Bestand eines Musterunternehmens wird durch ca. 1. model points simuliert. Der

Mehr

6522: Capital Markets and Risk Management

6522: Capital Markets and Risk Management (Bitte in Blockschrift) Name... Vorname... Matrikelnummer... Punkte Aufgabe 1:... Aufgabe 2:... Aufgabe 3:... Aufgabe 4:... Aufgabe 5:... Aufgabe 6:... Total :... UNIVERSITÄT BASEL Dr. Patrick Wegmann

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr