Eine wahre Kindergeschichte

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Eine wahre Kindergeschichte"

Transkript

1 Eine wahre Kindergeschichte

2

3

4 MIA VON NEBENAN EINE WAHRE KINDERGESCHICHTE HANNA SCHOTT mit Bildern von Gerda Raidt

5 EIN ECHTER MIA-MORGEN Wer den ersten Fubdruck in den frischen Schnee setzt, ht gewonnen! Rechts, links, rechts, links Mi springt fst über den Schnee. Schon zehn Fubdrücke ht sie gemcht! Sie schut sich um. Wunderbr sieht er us, der Uferweg. Als htte der Schnee ihn wrm zugedeckt, mit einer glitzernd weien, gltt gestrichenen Decke. Nur ds Muster von Mis Schuhsohlen ist druf zu sehen, sonst nichts. Aber gewonnen ht sie trotzdem nicht. egen wen uch? Mi ist llein. ewinnen knn mn nur, wenn uch einer d ist, gegen den mn ntritt. Jetzt springt Mi nicht mehr. Sie zhlt uch nicht mehr die Fubdrücke. Sie zieht die Kpuze, die ihr vom Kopf gerutscht ist, bis zur Nse herunter und stpft vor sich hin. Erst m Büdchen schut sie wieder uf. N, Schtzelein? Wieder spt drn?

6 die Büdchenfru und nimmt ds eld. Du hst j eisklte Finger! Mi nimmt ds Bounty us der groen, weichen Hnd der Büdchenfru. nz wrm ist die. Und jetzt beeil dich! Es ht schon lngst gelutet. Vom Büdchen zur Schule ist es nur zweiml um die Ecke weg vom Rheinufer, über eine Ampel, dnn sieht mn schon den Schulhof und dhinter die groe Eingngstür. Aber Mi ht keine Lust sich zu beeilen. Sie reit die Bounty-Verpckung uf und beit hinein. mmer sgt sie Schtzelein, die Büdchenfru. Nicht nur zu Mi. Alle nennt sie so, sogr die groen Jungs us der ehn. Hmhm, ntwortet Mi und muss ein bisschen grinsen. Die Büdchenfru ist so breit, dss sie den hlben Kiosk usfüllt. Und ihr Busen ist so schwer, dss er rechts ein bisschen über der Welt hngt und links ein bisschen über dem Kölner Express. Nur über ihr ist noch Pltz. ro ist sie nmlich nicht. Deshlb knn mn die Lottoschilder gut sehen. Ein Bounty, sgt Mi und streckt ihre Hnd mit dem eldstück über die eitungen. Mensch, Schtzelein, zieh dir Hndschuhe n, sgt Lngsm geht sie in Richtung Ampel. hre Füe mchen jetzt keine klren Abdrücke mehr im Schnee, eher Schleifspuren, so ls wre ein groer, schwerer Mnn vom Ufer zur Stre geschlurft. Einfch gerdeus geht sie, whrend sie kleine Stücke bbeit, die sie gnz lngsm uf der unge schmelzen lsst. Ds Frühstück muss mn genieen, sgt Mm immer. Es ist die wichtigste Mhlzeit des Tges! Dbei frühstückt die nie. Whrscheinlich ist ds uch ein Stz von früher. So ein Om-Stz. Die Ampel springt von rün uf Rot, ls Mi die Stre betritt, ber sie sieht es gr nicht, so tief hngt die

7 Kpuze über ihren Augen. Ein Auto bremst und hupt. Ws soll s. Mi lsst sich nicht scheuchen. Auf der nderen Seite der Stre, wo die Schneereste schmutzig sind und die ebude hoch und gru, ist sie immer noch früh genug. Mi muss mit der Schulter gegen die Schultüre drücken, um sie ufzubekommen. n der Eingngshlle ist es so ruhig wie sonst nie. Alle Kinder sind schon in den Klssen. Mi geht die breiten Stufen hinuf. Am Fenster uf hlber Treppe hngt gnz oben noch ein Weihnchtsstern. Vielleicht ht der Husmeister ihn beim Abdekorieren übersehen. Aber wie kmen die Heiligen Drei Könige denn überhupt nch Köln?, frgt Fru Pützchen gerde, ls Mi gnz leise die Tür öffnet, zu ihrem Tisch schleicht und sich möglichst unuffllig neben Mlte uf ihren Pltz setzt. Als Knochen!, ruft Pul. r nicht, sgt Jenny. Meine Mm sgt, diese gnzen eschichten, ds ist lles Kokolores. Mit einer goldenen Kutsche, vermutet Sin. Ds mit den Knochen ist gr nicht so flsch, sgt Fru Pützchen. Sie ht ntürlich gemerkt, dss Mi viel zu spt gekommen ist, ber sie redet einfch weiter und schut nur einml zu ihr hinüber mit einer tief gerunzelten Stirn. Die ebeine der Heiligen wren nmlich bis dhin in Milnd verehrt worden. Auch wenn mn ein Bounty gnz lngsm isst, mcht es nicht richtig stt. Dfür kriegt mn uch noch Durst. Mi guckt zum Wschbecken rüber, ber ws denken die nderen, wenn sie erst zu spt kommt und dnn m Hhn Wsser trinkt? Wisst ihr, wo Milnd ist? n Florid. Qutsch! Ds ist Mimi. Dnn in tlien. enu. Jetzt, wo sie im Wrmen sitzt, merkt Mi, dss sie nicht nur hungrig und durstig ist. Sie ist uch müde. hr Kopf ist so schwer, dss es richtig nstrengend ist, ihn hoch zu hlten und so zu tun, ls würde sie Fru Pützchen zuhören. estern Abend ist sie uf dem Sof eingeschlfen. m Fernsehen lief, d lief Sie wei es nicht mehr. rgendws mit einer Fru und zwei Kindern und drei Mnnern. Oder drei Kindern und zwei Mnnern. Auf jeden Fll wr d immer ein groes Durcheinnder, wer jetzt zu wem gehört und wer wen nicht

8 treffen drf. Erst wr es lustig, ber dnn eigentlich nicht mehr. rgendwnn ist sie eingeschlfen. Und ls sie ufgewcht ist, htte schon der Sptkrimi begonnen. D ht sie den Fernseher usgeschltet und ist rüber ins Bett gegngen. Nur die Schuhe ht sie usgezogen. Und wisst ihr, ws ds Problem wr, wenn mn vor fst Jhren von Milnd nch Köln reisen wollte? wischen tlien und Deutschlnd liegen j dmls wie heute die N, wer wei es? wischen tlien und Deutschlnd liegen Welten, sgt Om immer. Die ht nmlich itlienische Nchbrn. m Sommer grillen die im rten, und die Kinder müssen nie ins Bett. Auch nicht, wenn es schon stockdunkel ist im Sommer! Mis Kopf ist uf ihren rechten Arm gefllen. Sie denkt n tlien, dss es dort gnz wrm ist und dss bestimmt lle morgens ewig usschlfen dürfen. ich lss mich nicht wieder vertrösten wie beim letzten Ml. Knnst du ihnen ds sgen? Ein kurzes Frösteln überzieht Mi von oben nch unten. Sie nimmt ihr Federmppchen. J. ch versuch s. Mi steht uf. Etws schummrig ist ihr, sie wnkt und stöt beinhe gegen Fru Pützchens Buch. Aber dnn nimmt sie ihre Tsche und verlsst schnell den Rum. Mnnomnn, murmelt Fru Pützchen hinter ihr und schliet die Tür b. Mi? Fru Pützchen steht gnz dicht neben Mi und berührt ihre Schulter. Mi schreckt hoch. Alle Stühle sind leer. Mi, ich möchte gern deine Eltern sprechen. Deine Mutter oder deinen Vter. Oder beide. Aber es ist dringend, und

INTEGRATIONSPRÜFUNG. Fragen zu Werte- und Orientierungswissen. Modelltests A2

INTEGRATIONSPRÜFUNG. Fragen zu Werte- und Orientierungswissen. Modelltests A2 INTEGRATIONSPRÜFUNG Frgen zu Werte- und Orientierungswissen Modelltests A2 WERTE- UND ORIENTIERUNGSWISSEN SPRACHNIVEAU A2 MODELLTEST 1 Sie sehen insgesmt 18 Frgen. Die Frgen 1-9 hen 2 Antwortmöglichkeiten

Mehr

Hessisches Kultusministerium Institut für Qualitätsentwicklung (IQ) Lernstandserhebung. Aufgabenheft. Deutsch (Lesen) Klasse:... Name:...

Hessisches Kultusministerium Institut für Qualitätsentwicklung (IQ) Lernstandserhebung. Aufgabenheft. Deutsch (Lesen) Klasse:... Name:... Hessisches Kultusministerium Institut für Qulitätsentwicklung (IQ) Lernstndserhebung Aufgbenheft eutsch (Lesen) Klsse:.... 9/ Nme:........ Liebe Schülerin, lieber Schüler, in diesem Aufgbenheft findest

Mehr

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen Vergleichsrbeiten. Jhrgngsstufe (VERA-) eutsch TESTHEFT I Lesen ANLEITUNG In diesem Test wirst du einige Leseufgben berbeiten. Es gibt verschiedene Arten von Aufgben. Für einige Frgen werden dir mehrere

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

MIA VON. Na, Schätzelein?

MIA VON. Na, Schätzelein? MIA VON NEBENAN: EINE WAHRE KINDERGESCHICHTE EIN ECHTER MIA MORGEN Wer den ersten Fußabdruck in den frischen Schnee setzt, hat gewonnen! Rechts, links, rechts, links Mia springt fast über den Schnee. Schon

Mehr

Fragen zu Werte- und Orientierungswissen. Modelltests B1

Fragen zu Werte- und Orientierungswissen. Modelltests B1 Frgen zu Werte- und Orientierungswissen Modelltests B1 WERTE- UND ORIENTIERUNGSWISSEN SPRACHNIVEAU B1 MODELLTEST 1 Sie sehen insgesmt 18 Frgen. Die Frgen 1-9 hen 2 Antwortmöglichkeiten ( und ). Die Frgen

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

INTEGRATIONSPRÜFUNG. Fragen zu Werte- und Orientierungswissen. Modelltests A1

INTEGRATIONSPRÜFUNG. Fragen zu Werte- und Orientierungswissen. Modelltests A1 INTEGRATIONSPRÜFUNG Frgen zu Werte- und Orientierungswissen Modelltests A1 WERTE- UND ORIENTIERUNGSWISSEN SPRACHNIVEAU A1 MODELLTEST 1 Sie sehen insgesmt 18 Frgen. Die Frgen 1-9 hen 2 Antwortmöglichkeiten

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen

Vergleichsarbeiten Jahrgangsstufe (VERA-8) Mathematik Durchführungserläuterungen Vergleichsrbeiten 2010 8. Jhrgngsstufe (VERA-8) Mthemtik Durchführungserläuterungen Testdurchführung Für den Test werden insgesmt c. 90 Minuten benötigt. Die reine Testzeit beträgt 80 Minuten. Für die

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

UNTERRICHTSPLAN LEKTION 18

UNTERRICHTSPLAN LEKTION 18 Lektion 18 Geen Sie ihm doch diesen Tee! UNTERRICHTSPLAN LEKTION 18 1 Hllo, Schwester Angelik! Prtnerreit, Die TN sehen sich zu zweit ds Foto n und eschreien, ws sie sehen. Uneknnte Wörter schlgen sie

Mehr

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen Vergleichsrbeiten. Jhrgngsstufe (VERA-) eutsch TESTHEFT I Lesen Nme: Klsse: ANLEITUNG In diesem Test wirst du einige Leseufgben berbeiten. Es gibt verschiedene Arten von Aufgben. Für einige Frgen werden

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

UNTERRICHTSPLAN LEKTION 23

UNTERRICHTSPLAN LEKTION 23 Lektion 23 Ins Wsser gefllen? UNTERRICHTSPLAN LEKTION 23 1 Sehen Sie ds Foto n und hören Sie. Ws ist richtig? Prtnerreit, Die TN schlgen die Bücher uf und sehen sich ds Foto n. Sie esprechen ds Foto zu

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ

$Id: kurven.tex,v /12/03 19:13:57 hk Exp hk $ K ds = F (γ(t)) γ Summation des Vektorfeldes F in Bewegungsrichtung der Kurve γ Mthemtik für Ingenieure III, WS 9/1 Mittwoch.1 $Id: kurven.tex,v 1. 9/1/3 19:13:57 hk Exp hk $ 3 Kurven 3.3 Kurvenintegrle zweiter Art Wir htten ds vektorielle Kurvenintegrl ls K ds F ((t Summtion des

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

schreien er schrie halten er hielt steigen er stieg schweigen er schwieg fallen er fiel

schreien er schrie halten er hielt steigen er stieg schweigen er schwieg fallen er fiel Wörter mit ie Amnd und mir ist etws ufgefllen. Ws denn? Bei vielen unwörtern schreibt mn in der Vergngenheit ein ie. 1 ies die Wortpre lut und präge sie dir gut ein. lufen rufen schlfen lssen stoßen ich

Mehr

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia.

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia. 1 Sehen Sie die Fotos n und ergänzen Sie: Welches Wort psst? c pressmster/fotoli.com dp/c Jochen Lüke d e der Betriesusflug die Besprechung die Betriesversmmlung die Aschiedsfeier (von den Auszuildenden)

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Komplexe Integration

Komplexe Integration Komplexe Integrtion Michel Hrtwig 23. April 2004 Der Unterschied zwischen reeller und komplexer Integrtion Vorbemerkung: Aus Gründen der Anschulichkeit, hbe ich weitgehend uf eine exkte mthemtische Drstellung

Mehr

JERT]SALEM KONIG SALOMON BAUT DEI{ IIEILIGE,I{ TEMPEL

JERT]SALEM KONIG SALOMON BAUT DEI{ IIEILIGE,I{ TEMPEL JERT]SALEM KONIG SALOMON BAUT DEI{ IIEILIGE,I{ TEMPEL 2 KÖNIG SALOMO BAUT DEN HEILIGEN TEMPEL Nch dem 1. Buch der Könige, Kpitel 1, 3, 5-8 Vor vielen, vielen Jhren, ls Dvid, der zweite König lsrels, schon

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Strandtasche. Ein Service von.

Strandtasche. Ein Service von. F o t o s: R o s d P r o d u c t i o n s Pltz für lles die Strndtsche mit Wickeluflge Strndtsche ds bruchen sie So geht s Am besten kufen Sie stbile Bumwollstoffe. Wer möchte, knn für die Futtertsche uch

Mehr

Prüfungsteil Mündliche Kommunikation (MK)

Prüfungsteil Mündliche Kommunikation (MK) Prüfungsteil Mündliche Kommuniktion (MK) Die mündliche Prüfung besteht us zwei Teilen. Im ersten Teil sollst du ein Gespräch führen, im zweiten Teil hältst du einen Vortrg und musst dnch Frgen dzu bentworten.

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

In der Stadt unterwegs

In der Stadt unterwegs 11 In der Stdt unterwegs 1 2 6 7 8 FOLGE 11: GUSTAV HEINEMANN CD 2 01 1 Sehen Sie die Fotos n. Ws meinen Sie? b Wen sucht Niko? Wrum ht Niko Blumen dbei? 2 Ws ist richtig? Niko nimmt... Ich glube, Niko

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

16 A. Was für eine Idee! A1 Verrückte Rekorde. a Ordne die Wortgruppen den Fotos zu. Welche Wörter kannst du auf den Fotos zeigen?

16 A. Was für eine Idee! A1 Verrückte Rekorde. a Ordne die Wortgruppen den Fotos zu. Welche Wörter kannst du auf den Fotos zeigen? 16 A Ws für eine Idee! A1 Verrückte Rekorde Ordne die Wortgruppen den Fotos zu. Welche Wörter knnst du uf den Fotos zeigen? 1 prktisch, Hre, Friseur 2 singen, Sänger, Rockkonzert 3 wiegen, Tonne (= 1000

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

empfohlen für Kinder von 5 7 Jahren Überlegen bewegen.

empfohlen für Kinder von 5 7 Jahren Überlegen bewegen. D I K S I B O M itte Einsteigen empfohlen für Kinder von 5 7 Jhren! Mit Vincent die VAG erleen. Üerlegen ewegen. Hllo Kinder, estimmt seid ihr schon ml mit euren Eltern oder Großeltern gemeinsm Bus, Strßenhn

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 56. Mthemtik-Olympide. Stufe (Regionlrunde) Olympideklsse 8 Lösungen c 016 Aufgbenusschuss des Mthemtik-Olympiden e.v. www.mthemtik-olympiden.de. Alle Rechte vorbehlten. 56081 Lösung 10 Punkte Nehmen wir

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

Gib dir fünf Oberkörperübungen

Gib dir fünf Oberkörperübungen Gi dir fünf Oerkörperüungen Strting Five ds einfche Progrmm zur Moilistion und Dehnung der strk enspruchten Muskultur. Zum Ausproieren hier ein Auszug us dem gesmten Moilistionsprogrmm, ds du (unter Sportlern

Mehr

9 Satzgruppe des Pythagoras und Kongruenzabbildungen

9 Satzgruppe des Pythagoras und Kongruenzabbildungen Stzgruppe des Pythgors Mthemtik. Klsse 9 Stzgruppe des Pythgors und Kongruenzbbildungen Stz 4 Stz von Pythgors In einem rechtwinkligen Dreieck mit Ktheten und b und Hypotenuse c gilt: + b c Aufgbe 59 Beweisen

Mehr

Abschlussprüfung Mathematik

Abschlussprüfung Mathematik Abschlussprüfung 0 Mthemtik 5. Mi 0, Klssen F08 und F08b Nme: Klsse: Hinweise: Zur Lösung der Aufgben stehen drei volle Stunden zur Verfügung. Als Hilfsmittel sind ein nicht lgebrfähiger und nicht grphikfähiger

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Glück im Alltag. 1 Sehen Sie die Fotos an. 2 Sehen Sie die Fotos an und hören Sie. acht 8 LEKTION 1 FOLGE 1: SCHUTZENGEL

Glück im Alltag. 1 Sehen Sie die Fotos an. 2 Sehen Sie die Fotos an und hören Sie. acht 8 LEKTION 1 FOLGE 1: SCHUTZENGEL 1 Glück im Alltg 1 2 5 6 FOLGE 1: SCHUTZENGEL CD 1 2-9 1 Sehen Sie die Fotos n. Foto 1: Ws ist ein Homeservice? Dort knn mn estellen. Die kommen und Foto 2: Wrum ht Nsseer wohl einen Schutzengel im Auto?

Mehr

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www:

Fragebogen E. Lothar Natter. Effizienzcoaching. Unternehmer und Führungskräfte. Firma: Straße: PLZ: Ort: Telefax: Telefon: www: Frgeogen E Lothr Ntter Effizienznlyse für Selstständige, Unternehmer und Führungskräfte Effizienzohing Firm: Strße: PLZ: Ort: Telefon: Telefx: E-Mil: www: Dtum: Shereiter: Untershrift: Pseudonym für die

Mehr

Inhalt. Das Buch / Das Material Hinweise zur Unterrichtsgestaltung und zu den Kopiervorlagen Kopiervorlagen:

Inhalt. Das Buch / Das Material Hinweise zur Unterrichtsgestaltung und zu den Kopiervorlagen Kopiervorlagen: Inhlt Ds Buch / Ds Mterl....................................................................... 3 Hnwese zur Unterrchtsgestltung und zu den Kopervorlgen..................................... 4 Kopervorlgen:

Mehr

Elektromyostimulation kurz EMS. Was sich zunächst

Elektromyostimulation kurz EMS. Was sich zunächst so. er d n zi ets g e M r Tbl l t fü igi d k c s D ds g M nt ruppe n o s ng e i d Me TREND Schneller Muskelufbu ohne stundenlnges Schwitzen im Fitnessstudio? Gibt es nicht? Gibt es doch. EMS-Trining soll

Mehr

UNTERRICHTSPLAN LEKTION 22

UNTERRICHTSPLAN LEKTION 22 Lektion 22 Am esten sind seine Schuhe! UNTERRICHTSPLAN LEKTION 22 1 Wohin geht er wohl? Gruppenreit, Die Bücher sind geschlossen. In Kleingruppen smmeln die TN Feste und Prtys, zu denen mn esondere Kleidung

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben Gleichungen und Formeln. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgben Gleichungen und Formeln Üben in drei Differenzierungsstufen Dieser Downlod

Mehr

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin Hessisches Kultusministerium. Name der Schule

Mathematik. Abschlussarbeit. Bildungsgang Hauptschule. Haupttermin Hessisches Kultusministerium. Name der Schule bschlussrbeit Mthemtik ildungsgng Huptschule Hupttermin 15.05.006 Nme der Schule _, Nme der Schülerin / des Schülers Klsse GESMT NOTE 59 Punkte Ort, Dtum Korrigierende Lehrkrft erbeitungshinweise bschlussrbeit

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Flächenberechnung - Umfng und Fläche von Rechteck und Qudrt Ds komplette Mteril finden Sie hier: Downlod bei School-Scout.de Inhltsverzeichnis

Mehr

Schülerfragebogen. Standardüberprüfung 8. Schulstufe Geburtsdatum: Geschlecht: weiblich männlich. Schule Klasse Schüler/in

Schülerfragebogen. Standardüberprüfung 8. Schulstufe Geburtsdatum: Geschlecht: weiblich männlich. Schule Klasse Schüler/in j k Schülerfrgebogen Stndrdüberprüfung 8. Schulstufe 2012 Schule Klsse Schüler/in Geburtsdtum: Mont Jhr Geschlecht: weiblich männlich n i o m Liebe Schülerin, lieber Schüler, bitte bentworte in diesem

Mehr

Hallo. Hallo. Guten Tag. Hallo. Was siehst du? Sprich. Wer spricht? Höre und zeige. 1. Höre und sprich nach. 2

Hallo. Hallo. Guten Tag. Hallo. Was siehst du? Sprich. Wer spricht? Höre und zeige. 1. Höre und sprich nach. 2 Hllo Guten Tg. Hllo. 1 1b 2 Ws siehst du? Sprich. Wer spricht? Höre und zeige. 1 Höre und sprich nch. 2 Hllo Deutsch ls Zweitsprche, DOI 10.1007/ 978-3-662-56270-3_1 1 Hllo 3 Höre und sprich nch. 3 Woher

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

lch plane mein Leben selbstl

lch plane mein Leben selbstl lch plne mein Leben selbstl 2004 Ein Hndbuch der Lebenshilfe Wien zur lndividuellen Entwicklungsplnung (l EP) d lnhltsverze ichnls Ws finde ich w? 1. lndividuelle Entwicklungsplnung im Uberblick 3 2. Einleitung

Mehr

Leseprobe aus: Sophie Parker. Keiner küsst besser. Mehr Informationen zum Buch finden Sie hier.

Leseprobe aus: Sophie Parker. Keiner küsst besser. Mehr Informationen zum Buch finden Sie hier. Leseprobe us: Sophie Prker Keiner küsst besser Mehr Informtionen zum Buch finden Sie hier. Co py right 2008 by Rowohlt Ver lg GmbH, Reinbek bei Hm burg Inhlt 1 Zurück uf Los 7 2 Ereignisfeld 14 3 Glück

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Lieder der Achtsamkeit und Lebensfreude. Susanne Mössinger & Klaus Nagel

Lieder der Achtsamkeit und Lebensfreude. Susanne Mössinger & Klaus Nagel Mit offenem Herzen Lieer er Achtsmkeit un Lebensfreue Susnne Mössinger & Klus Ngel www.sovielhimmel.e 01 Auch eine Reise von 1000 Meilen Meloie: Klus Ngel, Susnne Mössinger Text: Lotse, Susnne Mössinger

Mehr

Es schneit sehr stark. Deshalb haben alle Züge Verspätung.

Es schneit sehr stark. Deshalb haben alle Züge Verspätung. 11 Grmmtik 1 Sehen Sie ds Bild n und ergänzen Sie. Der Briefträger geht... den Gehweg... entlng. Wolfi fährt mit seinem Fhrrd... Briefträger... c Die Ktze läuft...... Strße. d Fru Löl geht...... E Reinigung.

Mehr

Gedanken stoppen und entschleunigen

Gedanken stoppen und entschleunigen 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert

Mehr

1. Ausgabe Juni 06 Gratismagazin für Kinder und Erwachsene mit extra vielen Buchstaben!

1. Ausgabe Juni 06 Gratismagazin für Kinder und Erwachsene mit extra vielen Buchstaben! 021 541110 1. Ausgbe Juni 06 Grtismgzin für Kinder und Erwchsene mit extr vielen Buchstben! Liebe Eltern, liebe Grosseltern, können Sie sich noch n die Geschichten erinnern, die Sie ls Kind gelesen hben?

Mehr

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym)

Ein Kluger denkt so viel, dass er keine Zeit zum Reden hat. Ein Dummer redet so viel, dass er keine Zeit zum Denken hat. (Anonym) Ein Kluger dent so viel, dss er eine Zeit zum Reden ht. Ein Dummer redet so viel, dss er eine Zeit zum Denen ht. (Anonym) 6 Gnzrtionle Funtionen 6 Gnzrtionle Funtionen Wir wollen nun uch Funtionen betrchten,

Mehr

Eine interessante Eigenschaft unseres Schreibpapiers

Eine interessante Eigenschaft unseres Schreibpapiers www.mthegmi.de September 2011 Eine interessnte Eigenschft unseres Schreibppiers ichel Schmitz Zusmmenfssung ällt mn von einer Ecke eines I 4 lttes ds Lot uf die igonle durch die benchbrten Eckpunkte, so

Mehr

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005

Übungssatz 01 FIT IN DEUTSCH 1. Kandidatenblätter/Prüferblätter ISBN: FIT1_ÜS01_Kandidaten-/Prueferblaetter_Oktober_2005 FIT IN DEUTSCH 1 Üungsstz 01 Kndidtenlätter/Prüferlätter KASTNER AG ds medienhus FIT1_ÜS01_Kndidten-/Prueferletter_Oktoer_2005 ISBN: 3-938744-76-6 Fit in Deutsh.1 Üungsstz 01 Teil 1 Du hörst drei Nhrihten

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Effiziente Algorithmen und Komplexitätstheorie Vorlesung Ingo Wegener Vertretung Thoms Jnsen 10042006 1 Ws letzten Donnerstg geschh Linere Optimierung Wiederholung der Grundbegriffe und Aussgen M konvex

Mehr