Was kann PL? Klassische Analyse Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht.

Größe: px
Ab Seite anzeigen:

Download "Was kann PL? Klassische Analyse Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht."

Transkript

1 1 Philosophisches Problem: Gibt es den Weihnachtsmann? 2 Was kann PL? 1. Die Formulierung von Thesen präzisieren, z.b. (Ü 11): Zwischen zwei Zeitpunkten liegt immer noch ein dritter wird zu x [ y [F x F y x y z [ F z R zxy ]]] mit F x : x ist ein Zeitpunkt R x y z : x liegt zwischen y und z wobei χ 1 χ 2 =def. ~ χ 1 = χ manchmal sogar die Formulierung von Lösungsvorschlägen für philosophische Probleme ermöglichen Klassische Analyse Subjekt Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht. Parmenides (* ca. 510 v. Chr.) ou gar mêpote touto damêi einai mê eonta alla sy têsde aph hodou dizêsios eirge noêma (Fragment Diels Kranz 28 B 7, zitiert u.a. in: Platon, Sophistes 237a, 258d) Niemals zähmt man, was nicht ist, zu etwas, das ist Halte du bloß dein Denken fern von diesem Weg der Untersuchung! Bertrand Russell ( ): Die Russell-Antinomie Die Menge aller Mengen, die sich nicht selbst enthält, enthält sich selbst und enthält sich nicht selbst. Freges Problem Die sehr komplexe Logik von Freges Werk um 1900 setzt voraus, dass es zu jeder Beschreibung der Art der / die / das so-und-so (zumindest im Bereich dessen, worüber er schrieb), etwas geben muss, worauf diese Beschreibung passt (5. Grundgesetz). Russells Lösungsansatz Die Menge aller Mengen, die sich nicht selbst enthält, gibt es gar nicht. Ähnliche Aussage: Den Weihnachtsmann gibt es gar nicht.

2 Russells Lösung (On Denoting, in: Mind, 1905, S ) 1. Die Zutaten a) Verwendung leerer Prädikatsymbole. Bsp.: x [ Fx Gx ] x [ Fx Gx ] ist nicht allgemeingültig. Gegenbsp.: Fx : x ist ein Einhorn Gx : x hat nur ein Horn 3 2. Russells Analyse von... The present king of France is bald Der gegenwärtige König von Frankreich ist kahl : It is not always false of x that x [is presently the king of France] and that x [is bald] and that if y [is presently the king of France] then y is identical with x is always true (vgl. 482) This may seem a somewhat incredible interpretation (ebd.) 4 x [ Fx Gx ] Für alle x: Wenn es sich bei x um ein Einhorn handelt, dann hat x nur ein Horn. x [ Fx Gx ] Es gibt ein x, so dass gilt: x ist ein Einhorn, und hat nur ein Horn. b) Verwendung des Existenzquantors Die berühmteste PL-Formel aller Zeiten: ~ x ~ [ F x G x y [ F y y = x ] ] mit F x : x ist gegenwärtig König von Frankreich G x : x hat eine Glatze Für die klassische Analyse ist Existenz ein Prädikat: Subjekt Prädikat Qualitätsanzeiger (am Prädikat) Der Weihnachtsmann existiert nicht. In PL wird Existenz nicht als Prädikat aufgefasst, sondern durch den Existenzquantor ausgedrückt.

3 5...mit Existenzquantor: 6 ~ x ~ [... It is not always false of x... F x... that x [is presently the king of France]... G x... and that x [is bald] and that... y [ F y y = x ] ] x [ F x G x y [ F y y = x ] ]. Es gibt ein x, so dass x gegenwärtig König von Frankreich ist und x eine Glatze hat, und für alle y gilt: wenn y gegenwärtig König von Frankreich ist, so sind y und x identisch. 1. Bedingung: x ist gegenwärtig König von Frankreich 2. Bedingung: x hat eine Glatze 3. Bedingung: es gibt wirklich nur einen König von Frankreich (der gegenwärtige König...). I M ( F ) = { }, deshalb x [ F x ] falsch ~ x [ F x ] wahr if y [is presently the king of France] then y is identical with x......is always true Es gibt niemanden, der die Eigenschaft hat, König von Frankreich zu sein.

4 Deshalb: x [ F x G x y [ F y y = x ] ] falsch ~ x [ F x G x y [ F y y = x ] ] wahr 7 Russells Analyse von der x [ F x G x y [ F y y = x ] ] 8 x [ F x ~ G x y [ F y y = x ] ] Es gibt genau einen König von Frankreich, aber er hat keine Glatze x [ F x G x ~ y [ F y y = x ] ] Es gibt nicht nur einen, sondern mehrere Könige von Frankreich, von denen zumindest einer eine Glatze hat. x [ F x ~ G x ~ y [ F y y = x ] ] Es gibt mehrere Könige von Frankreich, von denen zumindest einer keine Glatze hat. Definition! χ 1 [ Φ [χ 1 ]... χ 2 [ Φ [χ 2 ] χ 2 = χ 1 ]]!χ 1 [ Φ [χ 1 ]...] Endgültige Form der Russell-Analyse:! x [ F x G x ],! = Es gibt genau ein... Wichtig: kann jederzeit durch abgekürzt werden. x [ F x ]! x [ F x ] ist nicht PL-allgemeingültig. Denn:! x [ F x ] x [ F x y [ F y y = x ] ] Doch x [ F x ] x [ F x y [ F y y = x ] ] wird immer falsch, wenn mehr als ein Ding F ist.

5 9 10 W. V. O Quine ( ) Verallgemeinerung der Russell-Analyse ( On What There Is, 1948, reprint in: W.V.O. Quine, From a Logical Point of View, Cambridge / Mass. 1980, 1-19) Pegasus existiert x [ F x ] mit F x : x ist-pegasus ( pegasizes vgl. z.b. a.a.o. S.11) Es gibt etwas, das pegasiert Gegenmeinung (Strawson: On Referring, Free Logic u.a.) Bei einer Meinungsumfrage würden die meisten Menschen auf die Frage, welchen Wahrheitswert der Satz Der gegenwärtige König von Frankreich ist kahl hat, antworten: weiß nicht oder gar keinen; denn damit er einen Wahrheitswert haben kann, muss das, worum es darin geht, der gegenwärtige König von Frankreich, erstmal existieren. Das Ergebnis von Russells Analyse, dieser Satz sei falsch, ist also unplausibel. Es ist daher besser, eine Logik zu konzipieren, in der dieser und ähnliche Sätze gar keinen oder aber den dritten Wahrheitswert unbestimmt erhalten. Pegasus existiert nicht ~ x [ F x ] mit F x : x ist-pegasus Es gibt nichts, das pegasiert

6 11 Eine abenteuerliche Story (in der Lit. oft vertreten) Frege hat mit der ersten Quantorenlogik in der Begriffsschrift eine Logik konzipiert, die Existenz nicht mehr als Prädikat auffasst. Damit hat Frege eine Intuition logisch ausgearbeitet, mit der schon Kant den sogenannten ontologischen Gottesbeweis (z.b. bei Anselm von Canterbury im 11.Jhdt und bei Descartes) kritisiert hat. Denn dieser Beweis beruht darauf, dass Existenz ein Prädikat ist, und bereits Kant stellt in seiner Kritik der reinen Vernunft fest: Existienz ist kein Prädikat. Gegendarstellung Frege hat zwar mit der ersten Quantorenlogik in der Begriffsschrift eine Logik konzipiert, die Existenz nicht mehr als Prädikat auffasst. Er hat zwar gemeint, dass daran der ontologische Gottesbeweis scheitert (Grundlagen der Arithmetik, Breslau 1884, 53). Aber es ist nicht gesagt, dass das wirklich so ist. Und es ist davon bei Kant noch nichts zu finden. Kant, der m.e. den ontologischen Gottesbeweis im Kern inhaltlich recht überzeugend kritisiert, geht noch davon aus, dass Existenz ein Prädikat ist (KrV B das Prädikat der Existenz... ). Nur ist Existenz für ihn kein reales, d.h. begriffserweiterndes Prädikat (ebd.). Der ontologische Gottesbeweis (in der feinen Fassung bei Anselm, nicht in der plumpen bei Descartes, Med.V) scheitert m.e. an einer unplausiblen Prämisse aber nicht daran, dass Existenz kein Prädikat ist. Einzelheiten zum ontologischen Gottesbeweis: im Mittelalter.doc

Was es gibt und wie es ist

Was es gibt und wie es ist Was es gibt und wie es ist Dritte Sitzung Existenzfragen 0. Zur Erinnerung Benjamin Schnieder Philosophisches Seminar der Universität Hamburg 0 1 Was ist die Ontologie? Platons Bart Eine Standard-Antwort

Mehr

Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt.

Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt. 1 Vorlesung: Denken und Sprechen. Einführung in die Sprachphilosophie handout zum Verteilen am 9.12.03 (bei der sechsten Vorlesung) Inhalt: die in der 5. Vorlesung verwendeten Transparente mit Ergänzungen

Mehr

Anselm von Canterbury

Anselm von Canterbury Anselm von Canterbury *1034 in Aosta/Piemont Ab 1060 Novize, dann Mönch der Benediktinerabtei Bec ab 1078: Abt des Klosters von Bec 1093: Erzbischof von Canterbury *1109 in Canterbury 1076 Monologion (

Mehr

Metaphysik und die gegenwärtige Metaphysik. Quine über Existenz (Woche 14: )

Metaphysik und die gegenwärtige Metaphysik. Quine über Existenz (Woche 14: ) TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles Metaphysik und die gegenwärtige Metaphysik 1. Einführung Quine über Existenz (Woche 14: 24.-25.1.2011)

Mehr

Anselms Gottesbeweis und die Logik. und überhaupt: Beweise

Anselms Gottesbeweis und die Logik. und überhaupt: Beweise Anselms Gottesbeweis und die Logik und überhaupt: Beweise Inhalt 1) Vorbemerkungen zur Logik (und Wissenschaft) 2) Vorbemerkungen zu Gottesbeweisen und zu Anselm von Canterbury 3) Anselms Ontologisches

Mehr

Präsuppositionen. Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland

Präsuppositionen. Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland Präsuppositionen Vorlesung: Linguistische Pragmatik Prof. Dr. M. Krifka und PD Dr. U. Sauerland U. Sauerland (ZAS Berlin) Presup 1 Ling. Pragmatik 1 / 23 Einführung Ein Beispiel (1) Das Baby hat vor einer

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 2 MINT Mathekurs WS 2016/2017 1 / 20 Studienlexikon: Zeitangabe an der Universität

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Lektion 10: Entscheidbarkeit Kurt-Ulrich Witt Wintersemester 2013/14 Kurt-Ulrich Witt Theoretische Informatik Lektion 10 1/15 Inhaltsverzeichnis Kurt-Ulrich Witt Theoretische Informatik

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate:

Prädikate sind Funktionen. Prädikatenlogik. Quantoren. n stellige Prädikate. n stellige Prädikate: Aussagenlogik: Aussagen Ausssageformen Prädikatenlogik beschäftigt sich mit Aussagen sind Sätze die entweder wahr oder falsch sind sind Sätze mit Variablen, die beim Ersetzen dieser Variablen durch Elemente

Mehr

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig.

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig. 2.2 Logische Gesetze 19 auch, was für Sätze logisch wahr sein sollen. Technisch gesehen besteht zwar zwischen einem Schluss und einem Satz selbst dann ein deutlicher Unterschied, wenn der Satz Wenn...dann

Mehr

4 Semantik von Nominalphrasen

4 Semantik von Nominalphrasen 4 Semantik von Nominalphrasen 4 Semantik von Nominalphrasen 4.1 Nominalphrasen und Determinatoren Eigennamen quantifizierende NPn und definite NPn die neben anderen natürlichsprachlichen Ausdrücken zur

Mehr

Prof. Dr. Tim Henning

Prof. Dr. Tim Henning Prof. Dr. Tim Henning Vorlesung Einführung in die Metaethik 127162001 Mittwoch, 11.30-13.00 Uhr M 18.11 19.10.2016 PO 09 / GymPO PO 14 / BEd 1-Fach-Bachelor: BM4 KM2 Bachelor Nebenfach (neu): KM2 KM2 Lehramt:

Mehr

Einführung in die theoretische Philosophie

Einführung in die theoretische Philosophie Einführung in die theoretische Philosophie Prof. Dr. Martin Kusch 1 Erkenntnistheorie (1) Wissen (2) Skeptizismus Metaphysik (3) Kausalität (4) Gottesbeweise Sprachphilosophie

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

Der Gott der Philosophen

Der Gott der Philosophen Birte Schelling Seite 1 20.09.2010 Der Gott der Philosophen Der Glaube an einen Schöpfer der Welt, eine Macht, die größer ist als die unsere es je sein wird oder ein allgütiges Wesen, das unsere Geschicke

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Kandidaten für logische Gesetze (nicht unbedingt erfolgreich)

Kandidaten für logische Gesetze (nicht unbedingt erfolgreich) Kandidaten für logische Gesetze (nicht unbedingt erfolgreich) 1 2 1 Leibniz Substitutionssatz Der Träger des Namens A und der Träger des Namens B sind identisch, wenn man an beliebiger Stelle einer Aussage

Mehr

3 Mengen, Logik. 1 Naive Mengenlehre

3 Mengen, Logik. 1 Naive Mengenlehre 3 Mengen, Logik Jörn Loviscach Versionsstand: 21. September 2013, 15:53 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is

Mehr

1 Die referenzielle Semantik und Freges Theorie des Sinns. Christian Nimtz // 2 Russells Grundideen

1 Die referenzielle Semantik und Freges Theorie des Sinns. Christian Nimtz  // 2 Russells Grundideen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie Kapitel 5: Russell über Kennzeichnungen 1 Die referenzielle Semantik und Freges Theorie des Sinns 3 Russells

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Vorlesung Teil III. Kants transzendentalphilosophische Philosophie

Vorlesung Teil III. Kants transzendentalphilosophische Philosophie Vorlesung Teil III Kants transzendentalphilosophische Philosophie Aufklärung: Säkularisierung III. Kant l âge de la raison Zeitalter der Vernunft le siécles des lumières Age of Enlightenment Aufklärung:

Mehr

1 Einführung Aussagenlogik

1 Einführung Aussagenlogik 1 Einführung Aussagenlogik Denition 1. Eine Aussage ist ein Aussagesatz, der entweder wahr oder falsch ist. Welche der folgenden Sätze ist eine Aussage? 3+4=7 2*3=9 Angela Merkel ist Kanzlerin Stillgestanden!

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse

Mehr

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Christian Nimtz // 2 Freges theoretischer Begriff der Bedeutung F. Klassische Fragen der Sprachphilosophie

Christian Nimtz  // 2 Freges theoretischer Begriff der Bedeutung F. Klassische Fragen der Sprachphilosophie Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Klassische Fragen der Sprachphilosophie 1 Zur Erinnerung: Wo wir stehen 2 Freges theoretischer Begriff der Bedeutung F Kapitel 3: Freges referezielle

Mehr

Aristoteles: Die Gottesbeweise bei Thomas von Aquin

Aristoteles: Die Gottesbeweise bei Thomas von Aquin Joachim Stiller Aristoteles: Die Gottesbeweise bei Thomas von Aquin Alle Rechte vorbehalten Die Gottesbeweise bei Thomas von Aquin In diesem Aufsatz möchte ich einmal auf die alten mittelalterlichen Gottesbeweise

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Zu Immanuel Kant: Die Metaphysik beruht im Wesentlichen auf Behauptungen a priori

Zu Immanuel Kant: Die Metaphysik beruht im Wesentlichen auf Behauptungen a priori Geisteswissenschaft Pola Sarah Zu Immanuel Kant: Die Metaphysik beruht im Wesentlichen auf Behauptungen a priori Essay Essay zu Immanuel Kant: Die Metaphysik beruht im Wesentlichen auf Behauptungen a

Mehr

Wahrheitswertesemantik Einführung Aussagenlogik

Wahrheitswertesemantik Einführung Aussagenlogik Wahrheitsbedingungen Wahrheitswertesemantik Einführung Aussagenlogik Sie haben sich in der ersten Sitzung mit verschiedenen Aspekten von Bedeutung auseinandergesetzt. Ein Aspekt, der dabei eine Rolle spielte,

Mehr

7 Gültigkeit und logische Form von Argumenten

7 Gültigkeit und logische Form von Argumenten 7 Gültigkeit und logische Form von Argumenten Zwischenresümee 1. Logik ist ein grundlegender Teil der Lehre vom richtigen Argumentieren. 2. Speziell geht es der Logik um einen spezifischen Aspekt der Güte

Mehr

Essaypreis des Zentrums für Wissenschaftstheorie, Münster im Wintersemester 2010/ Platz. Jan Küpper

Essaypreis des Zentrums für Wissenschaftstheorie, Münster im Wintersemester 2010/ Platz. Jan Küpper Essaypreis des Zentrums für Wissenschaftstheorie, Münster im Wintersemester 2010/11 1. Platz Jan Küpper Wieso mathematische Sätze synthetisch a priori sind: Eine Einführung in die Philosophie der Mathematik

Mehr

die Klärung philosophischer Sachfragen und Geschichte der Philosophie

die Klärung philosophischer Sachfragen und Geschichte der Philosophie Programm Christian Nimtz www.nimtz.net // christian.nimtz@phil.uni erlangen.de Theoretische Philosophie der Gegenwart 1 2 3 Unser Programm in diesem Semester Einführung Man unterscheidet in der Philosophie

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Geschichte der Logik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Syllogismen (I) Syllogismen (II)

Geschichte der Logik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Syllogismen (I) Syllogismen (II) Geschichte der Logik Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Beginn in Griechenland: Aristoteles (384 322 v.chr.) untersucht das Wesen

Mehr

Grundlagen der Kognitiven Informatik

Grundlagen der Kognitiven Informatik Grundlagen der Kognitiven Informatik Wissensrepräsentation und Logik Ute Schmid Kognitive Systeme, Angewandte Informatik, Universität Bamberg letzte Änderung: 14. Dezember 2010 U. Schmid (CogSys) KogInf-Logik

Mehr

Essaypreis des Zentrums für Wissenschaftstheorie, Münster im Sommersemester 2011. 3. Platz. Tim Melkert

Essaypreis des Zentrums für Wissenschaftstheorie, Münster im Sommersemester 2011. 3. Platz. Tim Melkert Essaypreis des Zentrums für Wissenschaftstheorie, Münster im Sommersemester 2011 3. Platz Tim Melkert Weder wahr noch falsch? Formalismus und Intuitionismus in Mathematik und Philosophie verfasst im Rahmen

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Ist die Existenz eines theistischen Gottes beweisbar?

Ist die Existenz eines theistischen Gottes beweisbar? Geisteswissenschaft Jan Hoppe Ist die Existenz eines theistischen Gottes beweisbar? Essay Universität Bielefeld Essaytraining, Dr. C. Nimtz, WS 08/09 Jan Hoppe 03.01.2009 Essaythema 2: Gottesbeweise.

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Der ontologische Gottesbeweis

Der ontologische Gottesbeweis Der ontologische Gottesbeweis Angelika Purkathofer VO Prof. Kamitz SS 2008 1 1 Inhaltsverzeichnis 1 Entstehung des ontologischen Gottesbeweises: 2 1.1 Literatur:.........................................

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Prof. Christian Nimtz //

Prof. Christian Nimtz  // Programm Prof. Christian Nimtz www.nimtz.net // lehre@nimtz.net Theoretische Philosophie der Gegenwart Teil V: Religionsphilosophie Gott und seine Natur 1. Der Ausdruck Gott 2. Gott, Gott und Gottes Natur

Mehr

Ein Satz wird auch dunkel werden wo solch ein Begriff einfliest; Klar: Ist Erkenntnis wenn man die dargestellte Sache wieder erkennen kann.

Ein Satz wird auch dunkel werden wo solch ein Begriff einfliest; Klar: Ist Erkenntnis wenn man die dargestellte Sache wieder erkennen kann. Lebenslauf: Gottfried Wilhelm Leibniz: 1.Juli 1646(Leipzig) - 14. November 1716 (Hannover) mit 15 Besuchte er Uni Leipzig; mit 18 Mag; wegen seines geringen Alters (kaum 20) nicht zum Doktorat zugelassen;

Mehr

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie

Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik) in Abgrenzung von der mittelalterlich-scholastischen Naturphilosophie René Descartes (1596-1650) Meditationen über die Grundlagen der Philosophie (1641) Geistes- bzw. wissenschaftsgeschichtlicher Hintergrund Entwicklung der modernen Naturwissenschaft (speziell der Physik/Mechanik)

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums:

1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums: Prof. Dr. Alfred Toth Der semiotische Schöpfungsprozesses 1. Wir gehen aus vom Anfang des Prologes des Johannes-Evangeliums: Darin wird folgendes berichtet: Zeile 1: Das Wort, d.h. das Zeichen, ist primordial

Mehr

Hegel und der Gottesbeweis im Proslogion Anselms von Canterbury

Hegel und der Gottesbeweis im Proslogion Anselms von Canterbury Ill - Guy Choi Hegel und der Gottesbeweis im Proslogion Anselms von Canterbury Eine Untersuchung zum Übergang vom subjektiven Begriff zur Objektivität Berichte aus der Philosophie Ill-Guy Choi Hegel und

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Was ist Logische Programmierung?

Was ist Logische Programmierung? Was ist Logische Programmierung? Die Bedeutung eines Computer-Programms kann durch Logik erklärt werden. Die Idee der logischen Programmierung besteht darin, die Logik eines Programms selber als Programm

Mehr

Die Gedanken sind frei, wer kann sie erraten? Thoughts are free, who can guess them?

Die Gedanken sind frei, wer kann sie erraten? Thoughts are free, who can guess them? Die Gedanken sind frei, wer kann sie erraten? Thoughts are free, who can guess them? Sie fliegen vorbei wie nächtliche Schatten. They fly by like shadows in the night. Kein Mensch kann sie wissen, kein

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

1. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

1. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 1 Musterlösung zu Mathematik für Informatiker I, WS 2003/04 MICHAEL NÜSKEN, KATHRIN TOFALL & SUSANNE URBAN Aufgabe 11 (Aussagenlogik und natürliche Sprache) (9 Punkte) (1) Prüfe, ob folgenden Aussagen

Mehr

ETHISCHES ARGUMENTIEREN IN DER SCHULE: GESELLSCHAFTLICHE, PSYCHOLOGISCHE UND PHILOSOPHISCHE GRUNDLAGEN UND DIDAKTISCHE ANSTZE (GERMAN

ETHISCHES ARGUMENTIEREN IN DER SCHULE: GESELLSCHAFTLICHE, PSYCHOLOGISCHE UND PHILOSOPHISCHE GRUNDLAGEN UND DIDAKTISCHE ANSTZE (GERMAN ETHISCHES ARGUMENTIEREN IN DER SCHULE: GESELLSCHAFTLICHE, PSYCHOLOGISCHE UND PHILOSOPHISCHE GRUNDLAGEN UND DIDAKTISCHE ANSTZE (GERMAN READ ONLINE AND DOWNLOAD EBOOK : ETHISCHES ARGUMENTIEREN IN DER SCHULE:

Mehr

Identität in der Zeit II von der Substanzontologie zur Prozeßontologie

Identität in der Zeit II von der Substanzontologie zur Prozeßontologie Identität in der Zeit II von der Substanzontologie zur Prozeßontologie [Dies ist nicht-zitierfähiges Lehrmaterial!] Uwe Scheffler [Technische Universität Dresden] Juni 2013 Das Ding mit der Zeit Zeit ist

Mehr

Peter Bernhard: ÜBUNGEN zum KOMPAKTKURS FORMALE LOGIK. Erstellt in Zusammenarbeit mit Tabea Rohr

Peter Bernhard: ÜBUNGEN zum KOMPAKTKURS FORMALE LOGIK. Erstellt in Zusammenarbeit mit Tabea Rohr Peter Bernhard: ÜBUNGEN zum KOMPAKTKURS FORMALE LOGIK Erstellt in Zusammenarbeit mit Tabea Rohr Übungsblatt 1 Liegen hier Argumente vor? Wenn ja, was ist jeweils die Begründung, was die Behauptung? Falls

Mehr

Dinge gibt s... Prolog: Ontologie? Was ist Ontologie? Die Erklärung des alten Schulmeisters. Die Erklärung des neuen Schulmeisters

Dinge gibt s... Prolog: Ontologie? Was ist Ontologie? Die Erklärung des alten Schulmeisters. Die Erklärung des neuen Schulmeisters Dinge gibt s... Einführung in die Ontologie Prolog: Ontologie? Prof. Dr. Benjamin Schnieder Universität Hamburg Forschungsgruppe phlox http://phloxgroup.wordpress.com 0 1 Die Erklärung des alten Schulmeisters

Mehr

Sprachspiel - Lebensform - Weltbild

Sprachspiel - Lebensform - Weltbild Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt Christian Kellner 22. Mai 2006 Bei Fragen: Gleich fragen! :) Ludwig Wittgenstein Leben Werk Sprache Einführung Realistische Semantik Sprachspiele

Mehr

Wissenschaftliches Arbeiten

Wissenschaftliches Arbeiten Teil 7: Argumentieren und Begründen 1 Grundregel: Spezifisch argumentieren Wissenschaftliches Arbeiten Nie mehr zeigen, als nötig oder gefragt ist. Sonst wird das Argument angreifbar und umständlich. Schwammige

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Herzlich Willkommen zur Vorlesung Einführung in die Logik I (*)

Herzlich Willkommen zur Vorlesung Einführung in die Logik I (*) Herzlich Willkommen zur Vorlesung Einführung in die Logik I (*) Vorlesung: Professor Marcus Spies (Department Psychologie) www.psy.lmu.de/ffp/persons/prof--marcus-spies.html Tutorium : Philipp Etti (Institut

Mehr

Orientierungsfragen und -aufgaben für die Klausur zur Vorlesung über Gott das unaustrinkbare Licht. Zweite Lieferung

Orientierungsfragen und -aufgaben für die Klausur zur Vorlesung über Gott das unaustrinkbare Licht. Zweite Lieferung Orientierungsfragen und -aufgaben für die Klausur zur Vorlesung über Gott das unaustrinkbare Licht Zweite Lieferung Zum Thema: Anselm von Canterbury: Der ontologische Gottesbeweis [1] Nimmt Anselm selbst

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Flirt English Dialogue Transcript Episode Eight : On The Team

Flirt English Dialogue Transcript Episode Eight : On The Team Autoren: Colette Thomson, Len Brown Redaktion: Christiane Lelgemann, Stefanie Fischer AT AUNTY SUZIE S HOUSE Dear Diary. Everything is brilliant. Absolutely brilliant. Can and I are having the best time.

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Master-Arbeit. Christina Kosbü. von

Master-Arbeit. Christina Kosbü. von Gott denken Religionsphilosophischer Ansatz und sozialethische Konkretion bei Robert Spaemann und Volker Gerhardt vor dem Hintergrund der Geschichte der Gottesbeweise Master-Arbeit von Christina Kosbü

Mehr

[Erste Intention: eine Intention, die nicht für eine Intention steht]

[Erste Intention: eine Intention, die nicht für eine Intention steht] Aus der summa logicae des William von Ockham (ca. 1286 - ca. 1350) Übersetzung: Ruedi Imbach, nach Wilhelm von Ockham, Texte zur Theorie der Erkenntnis und der Wissenschaft, lat./dt., hg., übersetzt und

Mehr

13 Übersetzung umgangssprachlicher Sätze in die Sprache AL

13 Übersetzung umgangssprachlicher Sätze in die Sprache AL 13 Übersetzung umgangssprachlicher Sätze in die Sprache AL Lässt sich die Kenntnis der logischen Eigenschaften der Sätze von AL auch zur Beurteilung umgangssprachlicher Sätze und Argumente nutzen? Grundsätzliches

Mehr

Informatik II - Tutorium

Informatik II - Tutorium Sommersemester 2008 http://info2tut.blogspot.com 29. April 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Quellennachweis & Dank an: Joachim Wilke, Susanne Dinkler, Bernhard Müller,

Mehr

Die Frage nach der Existenz Gottes

Die Frage nach der Existenz Gottes Lieferung 12 Hilfsgerüst zum Thema: Die Frage nach der Existenz Gottes Die letzte Vorlesung des Semesters findet am 19. Juli 2013 statt. 1. Vorbemerkungen An sich ist die Existenz Gottes selbstevident

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Unterspezifikation in der Semantik Hole Semantics

Unterspezifikation in der Semantik Hole Semantics in der Semantik Hole Semantics Laura Heinrich-Heine-Universität Düsseldorf Wintersemester 2011/2012 Idee (1) Reyle s approach was developed for DRT. Hole Semantics extends this to any logic. Distinction

Mehr

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick

Philosophische Semantik. SS 2009 Manuel Bremer. Vorlesung 1. Einleitung und Überblick Philosophische Semantik SS 2009 Manuel Bremer Vorlesung 1 Einleitung und Überblick Was alles ist philosophische Semantik? 1. Verständnismöglichkeiten von philosophische Semantik 2. Die Frage nach der Bedeutung

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Praktische Anleitung im Umgang mit Demenz

Praktische Anleitung im Umgang mit Demenz Praktische Anleitung im Umgang mit Demenz Die geistigen Bilder, die helfen, ein Konzept im Kopf zu erstellen, fügen sich bei Menschen mit Demenz nicht mehr recht zusammen. Der Demenzkranke hat Schwierigkeiten

Mehr

1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit

1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit 1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit 1.1 Korrektheit Mit dem Kalkül der Prädikatenlogik, z.b. dem Resolutionskalkül, können wir allgemeingültige Sätze beweisen. Diese Sätze

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Christian Nimtz // 1 Das Skeptische Argument und Reaktionen 3 Moores Beweis der Außenwelt, Schritt 2

Christian Nimtz  // 1 Das Skeptische Argument und Reaktionen 3 Moores Beweis der Außenwelt, Schritt 2 Program Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 9: Antworten auf den Skeptiker II Moores Beweis der Außenwelt 1 Das Skeptische Argument und Reaktionen

Mehr

Einführung Grundbegriffe

Einführung Grundbegriffe Einführung Grundbegriffe 1.1 Der Modellbegriff Broy: Informatik 1, Springer 1998 (2) Die Modellbildung der Informatik zielt auf die Darstellung der unter dem Gesichtspunkt einer gegebenen Aufgabenstellung

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

PD Dr. Christoph Jäger. Institut für Christliche Philosophie

PD Dr. Christoph Jäger. Institut für Christliche Philosophie Vorlesung Erkenntnistheorie PD Dr. Christoph Jäger Universität i Innsbruck Institut für Christliche Philosophie 1 IV. Skeptische Argumente 2 Formen des Skeptizismus Wissensskeptizismus: Wir können nicht

Mehr

Das Problem des Übels (besser: Das Problem des Leides)

Das Problem des Übels (besser: Das Problem des Leides) Manche Gottesbeweise gehen von der These aus: In der Welt gibt es unbestreitbare Tatsachen, die für die Existenz Gottes sprechen. Das Problem des Übels (besser: Das Problem des Leides) Umgekehrt kann man

Mehr

3.1 Die Grenzen von AL

3.1 Die Grenzen von AL 3 Prädikatenlogik der. Stufe (PL) Teil I 3 Prädikatenlogik der. Stufe (PL) Teil I 3. Die Grenzen von AL [ Partee 95-97 ] Schluss AL- Schema Prädikatenlogische Struktur Alle Logiker sind Pedanten. φ x [

Mehr

Paradoxien der falschen Meinung in Platons "Theätet"

Paradoxien der falschen Meinung in Platons Theätet Geisteswissenschaft Anonym Paradoxien der falschen Meinung in Platons "Theätet" Essay Paradoxien der falschen Meinung in Platons Theätet Einleitung (S.1) (I) Wissen und Nichtwissen (S.1) (II) Sein und

Mehr