Kreis Kreisabschnitt Kreissegment Kreisbogen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kreis Kreisabschnitt Kreissegment Kreisbogen"

Transkript

1 Kreis Kreisabschnitt Kreissegment Kreisbogen Bezeichnung in einem Kreis: M = Mittelpunkt d = Durchmesser r = Radius k = Kreislinie Die Menge aller Punkte, die von einem bestimmten Punkt M (= Mittelpunkt) denselben Abstand r = (Radius) haben, ergeben einen Kreis. Der Durchmesser des Kreises hat die doppelte Länge des Radius: d = 2 r 1

2 Umfang eines Kreises Herleitung der Formel: Wir untersuchen, ob es einen Zusammenhang zwischen dem Kreisumfang und dem Durchmesser eines Kreises gibt. Von einem Zylinder messen wir uns zuerst mit einem Maßband den Umfang ab. Dieser ist zugleich auch der Umfang unseres Kreises. (= gelbe Kreislinie in unserer Skizze). Die Querschnittsfläche eines Zylinders ist ein Nehmen wir einen Durchmesser von d = 1m, dann ist der Umfang 3,14159 m. Ist d = 10m, so haben wir einen Umfang von 31,4159 m. Ist d = 100m, so haben wir einen Umfang von 314,159 m. Das Bedeutet: das Verhältnis ist immer 1 : 3,

3 Übungsaufgaben a) Messe den Durchmesser und berechne den Umfang b) Um eine kreisförmige Rasenfläche einzufassen braucht man 376 Pflastersteine (10x10 cm) U = d π U = 25,75 mm π U = 80,895 mm d = 25,75 mm 376 á 10 cm = 3760 cm = Umfang Rasenfläche U = d π : π U : π = d 3760 cm : π = 1196,8461 cm ist der Durchmesser c) Ein Rad legt bei 60 Umdrehungen eine Strecke von 75,4 m zurück. Eine Umdrehung = Umfang des Rades Eine Umdrehung = 75,4 m : 60 = 1,2566 m U = d π : π U : π = d 1,2566 m : π = 0,40 m Durchmesser (= 40 cm) 3

4 4

5 Die Zahl Pi π Die Zahl Pi Wir wissen bereits, dass man immer denselben Wert erhält, wenn man den Umfang durch den Durchmesser eines Kreises dividiert. Dieser Wert liegt in etwa bei 3,14 und wird als Kreiszahl bezeichnet. Die Zahl [sprich: pi] ist eine irrationale Zahl (eine nicht periodische Dezimalzahl mit unendlich vielen Dezimalstellen). = 3, Geschichtliches über die Zahl Pi Es gibt wohl kaum eine Zahl, die die Menschheit mehr beschäftigt hat, als die Kreiszahl Pi. Archimedes gelang es bereits um 250 v. Chr. mit Hilfe des ein und umgeschriebenen 96 Ecks die Zahl Pi abzuschätzen. Erst 1766 konnte Johann Heinrich Lambert beweisen, dass Pi eine irrationale Zahl ist. Heute ist die Zahl Pi von Supercomputern auf mehrere Billionen Dezimalstellen genau definiert. Näherungsweise Herleitung der Zahl Pi Wir konstruieren einen Kreis mit dem Radius r = 5 cm. Diesem wird z.b. ein regelmäßiges 6 Eck umgeschrieben und engeschrieben. Verbindet man alle Eckpunkte mit dem Mittelpunkt M, so entstehen in jedem 6 Eck jeweils 6 gleichseitige Dreiecke. 5

6 Kreisfläche Stellt Euch vor: Wir zerschneiden die Kreisfläche in Sektoren. Hier im Beispiel sind es 16 Sektoren. Dann nehmen wir die Sektoren und legen sie nebeneinander. Einen Sektor halbieren wir und legen diese beiden Teile an den Anfang und Ende der Aufreihung. Jetzt haben wir fast ein Rechteck! Und das können wir mit A = a b einfach berechnen. 6

7 Die Breite des Rechtecks entspricht ungefähr dem Radius des Kreises: Die Länge des Rechtecks entspricht ungefähr dem halben Umfang des Kreises: Die Umfangsformel kennen wir bereits: Wir setzen diese statt dem u in die Formel ein: Da die Zahl 2 sowohl im Zähler als auch im Nenner vorkommt, kann man diese wegkürzen: 7

8 Kreissektor In unserer Skizze wurden in einem Kreis zwei Radien an beliebigen Stellen eingezeichnet. Diese beiden Radien und der Kreisbogen zwischen den Radien schließen einen Ausschnitt des Kreises ein, deshalb wird dieser Teil auch als Kreisausschnitt oder Kreissektor bezeichnet. Genau genommen schließen die beiden Radien nicht nur den dunkelblau markierten Kreissektor, Herleitung der Formel Kreissektor Aus dem vorherigen Kapitel kennen wir bereits die Formel zur Berechnung des Kreisumfangs (Zentriwinkel = 360 ): b = Kreisbogen Der Kreisumfang entspricht der Bogenlänge eines Kreissektors mit dem Zentriwinkel 360. Möchte man sich nun die Bogenlänge bei einem Zentriwinkel von 1 ausrechnen, so muss man die Formel durch 360 dividieren: Man kann wieder kürzen. Möchte man die Bogenlänge bei einem Zentriwinkel von z.b. 75 ausrechnen, so muss man die Formel noch mit 75 multiplizieren. Wir nehmen allerdings statt 75 einen allgemeinen Wert, nämlich α also mal Alpha: 8

9 Herleitung der Formel: Aus dem vorherigen Kapitel kennen wir bereits die Formel zur Berechnung des Flächeninhaltes des gesamten Kreises (Kreisfläche): Ein ganzer Kreis entsteht dann, wenn der Zentriwinkel eine Größe von 360 hat. Beim Berechnen der Kreisfläche berechnet man also den Flächeninhalt eines Kreissektors mit dem Zentriwinkel 360. Möchte man sich nun den Flächeninhalt eines Kreisausschnitts mit einem Zentriwinkel von 1 ausrechnen, so muss man die Formel durch 360 dividieren: Möchte man die Fläche eines Kreisausschnitts mit einem Zentriwinkel von z.b. 62 ausrechnen, so muss man die Formel noch mit 62 multiplizieren. Wir nehmen allerdings statt 62 einen allgemeinen Wert, nämlich a also mal Alpha: 9

10 Kreisring Fläche eines Kreisringes Daraus ergibt sich die Formel: In jeder der beiden Flächenformeln kommt π vor, deshalb bietet es sich an, π herauszuheben, um die Formel eleganter und kürzer zu gestalten. M r1 r2 b = Mittelpunkt beider Kreise = Radius des größeren Kreises = Radius des kleineren Kreises = Breite des Kreisringes 10

11 Kreissegment Ein Kreisabschnitt entsteht durch eine Kreissehne. Sie verbindet 2 beliebige Punkte auf der Kreislinie miteinander. Umgangssprachlich gesagt wird dem Kreis quasi ein Teil abgeschnitten. Dieser Teil besteht aus dem Kreisbogen und der Kreissehne und ist in unserer Skizze färbig gekennzeichnet. 11

12 Jetzt wird s richtig kompliziert!!! "α" der Winkel am Mittelpunkt ( Siehe Grafik ) "b" ist die Länge des Kreisbogens von A nach B "h" ist die Höhe des Segments "r" ist der Radius des Kreises "s" ist die Länge der Kreissehne Darüber hinaus gibt noch einige weitere Bezeichnungen. Dabei ist "A" die Fläche des grün eingezeichneten Bereichs. Das "M" steht für den Mittelpunkt des Kreises. Zur besseren Übersicht wurden zu dem noch die Punkte "A" und "B" eingeführt, welche die Enden des Kreisbogens bezeichnen. Kreissegment Formeln und Beispiel Als nächstes sehen wir uns die Formeln zum Kreissegment bzw. Kreisabschnitt an. Mit den folgenden Formeln kann man Berechnungen hierfür anstellen. 12

13 Beispiel: Die Fläche eines Kreisabschnitts soll berechnet werden. Dabei gelten folgende Angaben: h = 2cm, s = 6cm und b = 9cm. Wie groß ist die Fläche des Kreisabschnitts? Die Lösung lautet: erst noch mal zur Anschauung: Welche Formel müssen wir nehmen? Was haben wir?... mit grün kennzeichnen!! als erstes stellen wir fest: r fehlt! Also zuerst den Radius ausrechnen. 13

Der Kreis. Theorie. M Mittelpunkt, r Radius oder Halbmesser, d Durchmesser s Sehne

Der Kreis. Theorie. M Mittelpunkt, r Radius oder Halbmesser, d Durchmesser s Sehne Der Kreis Theorie Was ist ein Kreis? Die Menge aller Punkte P, die von einem festen Punkt M die gleiche Entfernung r haben, bilden einen Kreis oder genauer eine Kreislinie mit dem Mittelpunkt M und dem

Mehr

Kreissektoren - Bogenlänge und Sektorfläche

Kreissektoren - Bogenlänge und Sektorfläche Kreissektoren - Bogenlänge und Sektorfläche 1 In folgender Tabelle ist r Radius, b Bogenlänge und φ Mittelpunktswinkel eines Kreissektors A s ist dessen Flächeninhalt Berechne die fehlenden Größen: r φ

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm

Kreise und Kreisteile. 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) 2,45 m 8,6 cm 26,3 cm² 149 cm Kreise und Kreisteile 1. Aufgabe: Berechne bei den folgenden Kreisen die fehlenden Werte: a) b) c) d) r 2,45 m d 8,6 cm A 26,3 cm² U 149 cm 2. Aufgabe: Berechne bei den folgenden Kreisbögen die fehlenden

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel:

Download. Basics Mathe Flächenberechnung. Kreisfläche. Michael Franck. Downloadauszug aus dem Originaltitel: Download Michael Franck Basics Mathe Flächenberechnung Kreisfläche Downloadauszug aus dem Originaltitel: Basics Mathe Flächenberechnung Kreisfläche Dieser Download ist ein Auszug aus dem Originaltitel

Mehr

Unkorrigiertes Vorabmaterial

Unkorrigiertes Vorabmaterial -B-17-01 1 1 Kreis: und Flächeninhalt 1 Bestimme den und den Flächeninhalt des Quadrates. u = A = 2 Schätze die Länge des Kreisumfangs (rote Linie) und des Kreisflächeninhalts (gelbe Fläche). Erkläre,

Mehr

Kreis- und Kreisteileberechnungen

Kreis- und Kreisteileberechnungen Kreis- und Kreisteileberechnungen Aufgabe 1: Berechne den Inhalt der getönten Fläche aus dem Radius r des größten Kreises und dem Radius a der beiden kleinen Halbkreise. Aufgabe 2: Wie groß ist der äußere

Mehr

Kreis und Kreisteile. - Aufgaben Teil 1 -

Kreis und Kreisteile. - Aufgaben Teil 1 - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das

Mehr

Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden

Ein Rechteck hat zwei Symmetrieachsen: je eine durch die Hlften der gegenber liegenden 1 Vierecke Vierecke haben - wie der Name schon sagt - vier Ecken und vier Seiten. Die vier Ecken des Vierecks werden in der Regel mit A, B, C und D bezeichnet. Die Seite zwischen den Punkten A und B ist

Mehr

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt Elemente der SchulgeometrieGrundschule Aufgabenblatt 4 Flächeninhalt Achtung Fehler!! Alle Punkte auf der Kreislinie sind gleichweit von Mittelpunkt des Kreises entfernt. Die Distanz entspricht dem Radius

Mehr

Sicheres Wissen und Können zum Kreis 1

Sicheres Wissen und Können zum Kreis 1 Sicheres Wissen und Können zum Kreis 1 Die Schüler können Figuren als Kreise erkennen und Kreise nach gegebenen Maßen mit dem Zirkel zeichnen. Die Schüler beherrschen folgende Bezeichnungen: Mittelpunkt

Mehr

Textaufgaben zu Kreisteilen

Textaufgaben zu Kreisteilen 1. Miss den Durchmesser eines Eurostücks. Textaufgaben zu Kreisteilen a) Berechne den Flächeninhalt einer Seite und den Umfang. b) Das Eurostück fällt herunter und rollt 6,5 m weit. Gib an, wie oft es

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2)

6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2) Name: Geometrie-Dossier 6 Rund um den Kreis (angepasst an das Lehrmittel Mathematik 2) Inhalt: Berechnungen in Kreis und Kreissektoren (Bogenlängen, Umfang, Durchmesser, Fläche) In- und Umkreis eines Vielecks

Mehr

Aufgabe 1: Das Stanzblech: Gewicht

Aufgabe 1: Das Stanzblech: Gewicht Aufgabe 1: Das Stanzblech: Gewicht Aus einem Blech werden kreisförmige Löcher im abgebildeten hexagonalen Muster ausgestanzt (d.h. die Mittelpunkte benachbarter Kreise bilden gleichseitige Dreiecke). Der

Mehr

Station Gleichdicks. Hilfestellungen

Station Gleichdicks. Hilfestellungen Station Gleichdicks Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Gleichdicks. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 16. November 12 Inhaltsverzeichnis 1 Kreisberechnungen 1 1.1

Mehr

Daten des aktuellen regelmäßigen 6-Ecks

Daten des aktuellen regelmäßigen 6-Ecks Wie groß ist der Umfang eines regelmäßigen 6-Ecks, das einen Flächeninhalt von 200 cm² hat? Geben Sie die Eckenzahl 6 ein und klicken Sie "Bestätige Eckenzahl". Wählen Sie als bekannte Größe die Fläche.

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet.

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.2 Erkläre wie man ein Parallelogramm in ein Rechteck verwandeln kann und somit auch dessen Fläche berechnen kann. 90X.3 Erkläre wie man

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema "Kreis" Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsreihe zum Thema Kreis Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Unterrichtsreihe zum Thema "Kreis" Das komplette Material finden Sie hier: School-Scout.de Thema: Unterrichtsreihe zum Thema Kreis

Mehr

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π =

= = cm. = = 4.66 cm. = cm. Anschliessend: A = r 2 π = π = π = Seiten 5 / 6 ufgaben Kreis 1 1 a) u Kreis r 15 30 cm ( 94.5 cm) Kreis r 15 5 cm ( 706.86 cm ) b) u Kreis r d 5.6 cm ( 17.59 cm) Kreis r.8 7.84 cm ( 4.63 cm ) c) u Kreis r 99 198 cm ( 6.04 cm) Kreis r 99

Mehr

2. Berechnungen mit Pythagoras

2. Berechnungen mit Pythagoras 2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)

Mehr

Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt)

Fit in Mathe. Januar Klassenstufe 10 Körper und Figuren mit π (hier wegen π = 3, Taschenrechner erlaubt) Thema Musterlösung 1 Körper und Figuren mit (hier wegen 3,14159654... Taschenrechner erlaubt) Ein 15 cm hohes, kegelförmiges Sektglas soll einen Rauminhalt von 150 cm 3 haben. Bestimme den Durchmesser

Mehr

LU 17: Kreisumfang Lösungen

LU 17: Kreisumfang Lösungen athematik LU 7: Kreisumfang Lösungen 59 LU 7: Kreisumfang Lösungen Aufgabe Berechne im Kopf die fehlenden Angaben, nimm für die Zahl π den Wert 3. Gegenstand Radius r Durchmesser d Umfang u Abfalleimer

Mehr

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot athplan 8.4 Geometrie Kreis Kreisteile Flächenberechnung Name: Hilfsmittel : Geometrie 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.4 Wichtige Punkte: Ich mache eine saubere, klare

Mehr

Vierte Schularbeit Mathematik Klasse 1E am

Vierte Schularbeit Mathematik Klasse 1E am Vierte Schularbeit Mathematik Klasse 1E am 08.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

K l a s s e n a r b e i t N r. 2

K l a s s e n a r b e i t N r. 2 K l a s s e n a r b e i t N r. Aufgabe 1 Der Stamm einer Buche hat den Umfang U = 370 cm. a) Berechne den Durchmesser. b) Man kann das Alter eines Baumes an der Anzahl der Jahresringe erkennen. Die durchschnittliche

Mehr

4.7 Der goldene Schnitt

4.7 Der goldene Schnitt 4.7 Der goldene Schnitt Aus Faust I: MEPHISTO: Gesteh' ich's nur! Dass ich hinausspaziere,verbietet mir ein kleines Hindernis: Der Drudenfuß auf Eurer Schwelle --- FAUST: Das Pentagramma macht dir Pein?

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 10 (von 03.11 bis 07.11) Hausaufgaben 1 Bis Dienstag 11.11: (i) Schreibe die Berechnungen zum Bastelauftrag gut übersichtlich auf (Kontrolle Anfang der Stunde),

Mehr

Die Welt mit mathematischen Augen sehen. Europaschule, Neue Mittelschule. Integrationsklasse, 3a

Die Welt mit mathematischen Augen sehen. Europaschule, Neue Mittelschule. Integrationsklasse, 3a Die Welt mit mathematischen Augen sehen Europaschule, Neue Mittelschule Integrationsklasse, 3a 3b Simon, Rafaela, Linus, Nina, Elias Lara, Selina, Florian, Alina, Hossam, Jennifer, Elmin, Jana, Alexandra,

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 8 LU Nr nhaltliche * * V* Titel MB 8 LU 5 * nhaltliche mein Raumvorstellungsvermögen weiter entwickeln und ebene wie räumliche V Figuren erkennen die Eigenschaften eines regelmässigen Tetraeders

Mehr

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man

Mehr

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6 Thema Musterlösung 1 n-ecke Wie groß ist der Flächeninhalt des nebenstehenden n-ecks? Die Figur lässt sich z.b. aus den folgenden Teilfiguren zusammensetzen: 1. Dreieck (ECD): F 1 = 3 =3. Dreieck (AEF):

Mehr

Kreise abrollen. Aufgabenstellung

Kreise abrollen. Aufgabenstellung Kreise abrollen 1. Wie sieht der Weg aus, den der Mittelpunkt M 1 des Kreises beschreibt? 2. Die Räder hier rollen nicht ganz fliessend über die «Talknicke» oder über die «Bergknicke» im Streckenzug. Was

Mehr

Geometrie. Kreise. Umfang Durchmesser. π = Umfang = Durchmesser x π

Geometrie. Kreise. Umfang Durchmesser. π = Umfang = Durchmesser x π Seite 1 1. Die Zahl π Zunächst solltest du wissen, was, Durchmesser und Radius bedeuten. mn : cb Wenn Du eine Schnur um den Kreis legst, entspricht die Länge der Schnur dem Kreisumfang. Durchmesser: Der

Mehr

Pi über den Kreisumfang berechnen

Pi über den Kreisumfang berechnen Pi über den Kreisumfang berechnen Die Babylonier wussten schon vor über 4000 Jahren, dass das Verhältnis von Kreisumfang zum Durchmesser konstant sein muss. Tatsächlich beschreibt die Zahl das Verhältnis

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

und å = 150ò. c) Kreissegment: Berechne r aus F Segment und å = 60ò. d) Kreisring: Berechne rë und r aus F Ring

und å = 150ò. c) Kreissegment: Berechne r aus F Segment und å = 60ò. d) Kreisring: Berechne rë und r aus F Ring Kreisberechnung Kreise 1. Ein Kreis mit Radius r hat die Fläche F. Ein zweiter Kreis mit Radius R hat die Fläche 3F. Welche Beziehung gilt zwischen R und r? (exakt) 2. Gegeben sind zwei Kreise mit den

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 2 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 2 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 2 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 21. Februar 16 Überblick über die bisherigen Geometrie - Themen: 1

Mehr

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Planimetrie Lernziele befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Selbständiges Erarbeiten der Kurztheorie Kenntnis

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Mathetraining. in 3 Kompetenzstufen. 7./8. Klasse. 7./8. Klasse. Bergedorfer Unterrichtsideen. Band 2: Geometrie, Ganze Zahlen, Terme und Gleichungen

Mathetraining. in 3 Kompetenzstufen. 7./8. Klasse. 7./8. Klasse. Bergedorfer Unterrichtsideen. Band 2: Geometrie, Ganze Zahlen, Terme und Gleichungen Brigitte Penzenstadler Brigitte Penzenstadler Die Lösungsblätter unterstützen Sie bei Ihrer Unterrichtsvorbereitung. Aus dem Inhalt Geometrie (Dreiecke konstruieren, Kreis, Umfang und Flächeninhalt von

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Die Fläche eines Kreissegmentes (Version I) Eine Lernaufgabe zur Geometrie

Die Fläche eines Kreissegmentes (Version I) Eine Lernaufgabe zur Geometrie Beschreibung Die SchülerInnen leiten, geführt durch drei Aufgaben, selber die allgemeine Formel zur Berechnung der Kreissegmentfläche aus Radius r und Zentriwinkel her. Anschliessend wird die Umkehrfrage

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Test yourself. 2E, Akademisches Gymnasium Mag. Petra Wagenknecht

Test yourself. 2E, Akademisches Gymnasium Mag. Petra Wagenknecht Mathematik-Übungen Seite 1 Test yourself Mathematik-Übungen Seite 2 ÜBUNGEN FÜR DIE 1. SCHULARBEIT: I. TEILBARKEIT, TEILER, VIELFACHE 1. Gib die Teilermenge im aufzählenden Verfahren an: a) T 50 b) T 45

Mehr

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid.

Bundesgymnasium für Berufstätige Salzburg. Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen. LehrerInnenteam m/ Mag. Wolfgang Schmid. Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik 4 Arbeitsblatt A 4-4 Winkelfunktionen LehrerInnenteam m/ Mag. Wolfgang Schmid Unterlagen Um die Größe eines Winkels anzugeben gibt es verschiedenee

Mehr

Staatsexamensaufgabe 2004/I,3 - Teilaufgabe 3

Staatsexamensaufgabe 2004/I,3 - Teilaufgabe 3 Staatsexamensaufgabe 2004/I,3 - Teilaufgabe 3 Entwickeln Sie eine Unterrichtseinheit zur Einführung des Flächeninhalts des Kreises. Sachanalyse Die Sachanalyse wurde bereits in Aufgabenteil 1 behandelt.

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist.

2 Ein Sitzelement hat die Form eines Viertelkreises. Berechne die Sitzfläche, wenn das Element eine Seitenkante von 65 cm aufweist. I Körper II 33. Umfang und Flächeninhalt eines Kreises Lösungen Ein Blumenbeet hat die Form eines Viertelkreises mit gegebenem Radius. Fertige eine Skizze an. Berechne den Umfang des Beetes. a) r = 3,9

Mehr

Schularbeitsstoff zur 2. Schularbeit am

Schularbeitsstoff zur 2. Schularbeit am Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz

Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz Näherungsverfahren zur Berechnung von Pi Umfangberechnung von regelmässigen n-ecken KP-E2 Burhan Yildiz, Carim Dreyfuss, Cedric Kroos, Philipp Lenz 2009 Zusammenfassung Wenn es dich schon immer interessiert

Mehr

Quadratische Gleichungen. Kreise und Berührkreise. Binomische Formeln. Satz des Pythagoras. Goldener Schnitt

Quadratische Gleichungen. Kreise und Berührkreise. Binomische Formeln. Satz des Pythagoras. Goldener Schnitt Quadratische Gleichungen Kreise und Berührkreise Binomische Formeln Satz des Pythagoras Goldener Schnitt 9. Klasse Jens Möller Tel. 07551-6889 jmoellerowingen@aol.com Quadratische Gleichungen 1. Beispiel:

Mehr

Kapitel D : Flächen- und Volumenberechnungen

Kapitel D : Flächen- und Volumenberechnungen Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Aufgabe 3 An welcher Stelle bricht die Argumentation zusammen, wenn man einen analogen Beweis für die Irrationalität von 4 führen wollte?

Aufgabe 3 An welcher Stelle bricht die Argumentation zusammen, wenn man einen analogen Beweis für die Irrationalität von 4 führen wollte? Station Der Beweis, dass 2 irrational ist ufgabe 1 Hört euch auf youtube von DorFuchs den Song Die Wurzel aus 2 ist irrational an. Der Link dazu ist http://www.youtube.com/watch?v=tpfnebyx9r. Notiert euch

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -

Mehr

Einstiege: Volumen eines Zylinders

Einstiege: Volumen eines Zylinders An Abbildungen Höhe und Radius bestimmen und Volumen berechnen (1/3) 1 Schneide die Netze der beiden Zylinder aus und stelle zwei Modelle her. a) Schätze, welcher Zylinder das größere Volumen und die größere

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:

Mehr

Kreisfiguren ================================================================== a) Der Umfang setzt sich zusammen aus

Kreisfiguren ================================================================== a) Der Umfang setzt sich zusammen aus Kreisfiguren ================================================================== a) Der Umfang setzt sich zusammen aus a) zwei Halbkreisbögen mit r = a b) einem Halbkreisbogen mit r = 2a.. U = 2 1 2 2π

Mehr

Pyramide und Kegel 14

Pyramide und Kegel 14 1 6 1 Falls genau gearbeitet wurde, sollte der Steigungswinkel der Pyramidenseiten 5 betragen. Falls dem so ist, ist das Modell ähnlich zum Original und der Verkleinerungsmassstab kann eindeutig bestimmt

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Daten des aktuellen Halbkreises

Daten des aktuellen Halbkreises Wie groß ist die Bogenlänge eines Halbkreises mit dem Radius r=8 cm? Schreiben Sie die 8 in das Radiusfeld. Klicken Sie "Berechne Halbkreis". Radius 8,000000 cm Radius 8,000000 cm Bogenlänge 25,132741

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Klasse 9. Zylinder und Kegel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges Mathe an Stationen Klasse 9 Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse 9 Dieser Download ist ein Auszug aus dem Originaltitel Mathe an Stationen

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Zahl pi - Wege zur Ermittlung von Näherungswerten

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Zahl pi - Wege zur Ermittlung von Näherungswerten Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Zahl pi - Wege zur Ermittlung von Näherungswerten Das komplette Material finden Sie hier: Download bei School-Scout.de S 1 Die

Mehr

2 Geometrische Grundbegriffe

2 Geometrische Grundbegriffe 16 Betrachte dieses Bild genau und beschreibe, was du erkennen kannst, wie es auf dich wirkt und wofür es verwendet werden könnte! Vielleicht kannst du auch in Erfahrung bringen, von wem es stammt. 17

Mehr

Flächenberechnungen. A) Das Quadrat A = a a = a 2. B) Das Rechteck A = a b. A = Fläche u = Umfang

Flächenberechnungen. A) Das Quadrat A = a a = a 2. B) Das Rechteck A = a b. A = Fläche u = Umfang = Fläche u = Umfang lle Resultate sind auf 2 Stellen nach dem Komma zu runden! ) as Quadrat = a a = a 2 u = a + a + a + a = 4a ) as Rechteck = a b u = 2a + 2b = 2(a + b) 1 1.) erechne die Fläche der Figuren:

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 = Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung Flächenberechnung Flächenberechnung Einleitung Mögliche Schritte zur Einführung Wie groß ist diese Form? Mit diesem Material kannst du erfahren, wie man bei geometrischen Formen die Fläche berechnen kann.

Mehr

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).

π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen

Mehr

Mathe Star Lösungen Runde /07

Mathe Star Lösungen Runde /07 Dr. Michael J. Winckler Mathe Star Initiative IWR, Raum 502, INF 368, 69120 Heidelberg Michael.Winckler@iwr.uni-heidelberg.de http://www.iwr.uni-heidelberg.de/teaching/mathe-star/ Mathe Star Lösungen Runde

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr