Bestimmung der Naturkonstante g mittels einer horizontalen Kreisbewegung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bestimmung der Naturkonstante g mittels einer horizontalen Kreisbewegung"

Transkript

1 Bestimmung de Natukonstante g mittels eine hoizontalen Keisbewegung Tosten Reuschel (Duchfühung und Potokoll) Hadi Lotfi (techn. Assistenz und Skizzen) Leistungskus Physik S4-08. Mai He Tichy

2 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Inhaltsvezeichnis 1. Voübelegungen und Beechnungen... Seite. Aufbau... Seite 4.1. Benötigte Mateialien... Seite 5.. Hinweise und Tipps zum Aufbau... Seite 5.3. Konfiguation von CassyLab... Seite 6 3. Duchfühung und Messegebnisse... Seite Messung de Umlaufzeit de Masse... Seite Pojektion des gesuchten Radius... Seite 6 4. Beechnung von g aus den Messweten... Seite 7 5. Fehlebetachtung, Auswetung und Ausblick... Seite 8 1. Voübelegungen und Beechnungen Duch Heanziehen eine Klausuaufgabe aus einem de vegangenen Semeste entstand die Idee die Natukonstante g duch Messungen an eine hozontalen Keisbewegung zu bestimmen. Damals wa de Tabellenwet von g gegeben woden. Es ging lediglich um die Beechnung des Winkels, den ein Faden zu Hoizontalen einnahm. Einen wähend de besagten Klausu entstandenen Ansatz setzen wi nun um und messen den entspechenden Winkel, um umgekeht nun g beechnen zu können. Folgende Skizze ist eine Seitenansicht eine als punktfömig angenommenen Masse am Ende des Fadens mit de Länge lf bzw. ly + h.

3 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Bei eine bestimmten Geschwindigkeit bzw. Umlaufzeit (t 1U ) de Masse, teten Käfte auf, die die Masse mit de Hoizontalen einen Winkel α einschließen lassen. Die in den nachfolgenden Beechnungen vewendeten Bezeichnungen fü gemessene ode theoetische Gößen beziehen sich gößtenteils auf die voangegangene Skizze. Sei de Radius de Keisbahn de Masse (vgl. Skizze oben) und d. Sei t 1U die Zeit fü das Zuücklegen eine vollständigen Keisbahn (Umlaufzeit) de Masse. Sei α de Winkel, den de Faden, an dem die Masse hängt, mit de Hoizontalen einschließt. Sei m die als punktfömig angenommene Masse, die am Ende des Fadens befestigt ist. Sei l F die Länge des Fadens, an dem die Masse hängt. Es ist bekannt, dass fü die Zentipetalkaft m v F gilt und fü die Beechnung de Gewichtskaft eines Köpes auf de Ede F g m g vewendet weden daf. Aus de Skizze geht hevo, dass gelten muss: tan α Also folgt nun: Mit Fg F m g tanα v m 1U g v s π v fü die Geschwindigkeit de Masse auf ihe Keisbahn lässt sich nun auf t t tanα g t1 u 4π schließen. Duch Auflösen nach g folgt nun die Gleichung I: 4π tanα g t 1U Folgendes ist ebenfalls de Skizze zu entnehmen: cos α l F Dies kann nach α aufgelöst und in Gleichung I eingesetzt weden. Es folgt die Gleichung II: 4π g t tan accos l 1U F

4 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Zu messen wäen also die Wete fü den Radius, die Fadenlänge l F, den Winkel α und die Umlaufzeit t 1U. De Radius ist nu messba ist wähend sich die Masse mit de Geschwindigkeit v auf eine möglich idealen Keisbahn bewegt. Da dies nu schwe diekt messba wäe, ohne dabei die Masse auf ihe Bahn zu beeinflussen, wid die Bewegung de Masse mit eine nahezu punkfömigen Lichtquelle auf einen Schim bzw. eine Tafel pojiziet. Anschließend kann so duch Heanziehen des Stahlensatzes de Radius beechnet weden. In Abschnitt 4 Beechnung von g aus den Messweten wid die hegeleitete Gleichung II unte Beücksichtigung des beechneten Zwischenegebnisses fü den Radius zu Beechnung von g vewendet weden.. Aufbau De Aufbau ist in seinen Gundzügen den beiden nachfolgenden Skizzen zu entnehmen.

5 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Benötigte Mateialien 1x Laptop + Netzgeät 1x SensoCassy + Netzgeät und seielles Schnittstellenkabel 1x Time-Box 1x Cassy-Lichtschanke + Anschlusskabel an Time-Box div. Stativstangen, Muffen, Stativfüße, - klemmen, etc. (nach Bedaf) 1x Elektomoto inkl. Spannungsvesogung; empfohlen: Moto de am Gootmoo als Antieb fü die Wellenmaschine vewendet wid 1x ca. 50cm nahezu masselose Bindfaden 1x kleines Massestück beliebige Masse, abe nicht zu schwe (maximal 50g) 1x optische Bank zu Befestigung de Lampe, vegleichbaes sollte auch vewendba sein 1x Halogenlampe inkl. Spannungsvesogung div. Messgeäte zu Messung von Stecken (nach Bedaf und Vefügbakeit) 1x Tafel inkl. Keide zum Makieen des pojizieten Radius R (vgl. 3..) div. Kabel zum Anschließen von Moto, Lampe und Messgeäten.. Hinweise und Tipps zum Aufbau 1) Das Massestück wid mit dem Faden an de Achse des Elektomotos befestigt. ) Die Lichtschanke kann auch späte est eingesetzt weden, wenn sich das Massestück auf eine gleichmäßigen Keisbahn bewegt. 3) Fü eine besse Kontolle des Elektomotos sollte ein Spannungswandle eingesetzt weden. Wi empfehlen sowohl die Vesogung des Wandles als auch die Spannung am Moto ständig duch Messgeäte zu übewachen (vgl. Bild). 4) Die Spannung, die de Halogenlampe zugefüht wid, sollte ebenfalls ständig pe ein Messgeät übewacht weden. 5) Fü bessee Kontaste beim Anzeichnen de Pojektion an die Tafel sollte de Raum gänzlich vedunkelt weden.

6 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Konfiguation von CassyLab Es wid voausgesetzt, dass de Umgang mit de zu Cassy gehöigen Had- und Softwae kein Poblem fü den Duchfühenden des Vesuches dastellt. Nachdem das die Lichtschanke übe die Time-Box an das SensoCassy angeschlossen wude, kann die Anodnung in Betieb genommen weden. Folgende einfache Einstellungen sind fü die Messung de Umlaufzeit vozunehmen: Messpaamete automatische Aufnahme Intevall x Anzahl aktiviet 100ms 10 (ode meh nach Belieben) Einstellungen Sensoeingang (Eingang A1 Time-Box) Messgöße Peiodendaue T A1 (E) Messbeeich 10s Flanken invetieen deaktiviet Pendel deaktiviet 3. Duchfühung und Messegebnisse Die Vesuchsduchfühung teilt sich in zwei Beeiche. Die Messungen von Umlaufzeit und das Anzeichnen des pojizieten Radius R wuden gleichzeitig bzw. seh zeitnah zueinande duchgefüht Messung de Umlaufzeit de Masse Duch langsames Steigen de zugefühten dem Elektomoto zugefühten Spannung kann das Massestück auf seine Bahn gebacht weden. Wid dem Moto eine konstante Spannung zugefüht, so sollte noch 5 bis 10min gewatet weden, bevo die Messung beginnen kann, damit sich die Masse auf eine möglichst gleichmäßigen Keisbahn bewegt. Die Messung kann dann in CassyLab einfach pe Duck auf die Taste <F9> gestatet weden. Zehn Messwete sollten auseichen um einen als exakt anzunehmenden Mittelwet fü die Umlaufzeit t U1 beechnen zu können. Wi haben aus unseen in de nebenstehenden Tabelle zusammengefassten Messweten auf einen gemittelten Wet t U1 1,34s geschlossen. Messegebnisse t / s t U1 / s 1,4 1,34 4,0 1,35 6,7 1,35 1,0 1,34 14,5 1,34 17,1 1,34 19,8 1,33,4 1,34 5,1 1, Pojektion des gesuchten Radius Wie beeits in den Voübelegungen ewähnt, wid de Radius de eigentlichen Keisbahn de Masse auf eine Tafel pojiziet. Dies geschieht wie in nachfolgende Skizze ekennba. Es muss beim Anzeichnen sowie beim Vemessen de Länge des Fadens daauf geachtet weden, dass z. B. jeweils de Punkt als Ende des Fadens gewählt wid, an dem die Masse angehängt ist. Diese Punkt lässt sich eindeutig bestimmen (z. B. dot, wo die Schlaufe beginnt ode endet). An de Tafel weden nun die beiden äußesten Punkte des Schattens des Knoten, an dem die Masse hängt, angezeichnet. Diese Abstand sei die Stecke D R. Beim Vemessen des

7 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Fadens (am Besten fei von Moto und Masse) wid die Stecke d zwischen den beiden Knoten de Befestigung an Moto und Masse gemessen. Außedem weden die Stecken s und b fü die weitefühenden Beechnungen benötigt. In de folgenden Tabelle sind unsee Messwete sowie die Fadenlänge l F zusammengefasst. Göße / Einheit Wet / Einheit s / m 0,710 b / m 0,489 D / m 0,733 l F / m 0,47 Duch Anwendung des Stahlensatzes lässt sich nun aus den gemessenen Weten s, b und R de Radius beechnen: s D b + s Duch Multiplizieen mit s ehält man nun D s ( b + s) Es folgt also fü unse Zwischenegebnis fü : 0, 170m 4. Beechnung von g aus den Messweten Wi einnen uns an Gleichung II aus Abschnitt 1: 4π g t tan accos l 1U F Duch Zusammenfügen alle Ekenntnisse und Messwete und Einsetzen, folgt nun: 4π g 0,170m 0,170m tan accos 9,44 m s ( 1,34s) 0,47m

8 --- Lotfi & Reuschel. Bestimmung de Natukonstante g Fehlebetachtung, Auswetung und Ausblick Die Genauigkeit des bestimmten Wetes fü g beechnet sich aus den Genauigkeiten mit de die einzelnen Messwete angegeben weden können. Vewendete Faustfomeln de Fehleechnung Weden Messwete addiet, so weden ihe jeweiligen absoluten Fehle ebenfalls addiet, um die Genauigkeit de Summe des Messwetes zu ehalten. Weden Messwete multipliziet, so weden ihe jeweiligen elativen Fehle addiet, um die Genauigkeit des Poduktes de Messwete zu bestimmen. In de nachfolgenden Tabelle weden die eingeschätzten absoluten Fehle fü alle Messwete angegeben. Ein kuze Kommenta in de ditten Spalte gibt Aufschluss übe die Günde fü die jeweilige Ungenauigkeit. Göße / Einheit abs. Fehle el. Fehle Bemekungen s / m +/- 0,00m +/- 0,8% goße Genauigkeit duch mehfaches genaues Ablesen b / m +/- 0,00m +/- 0,409% goße Genauigkeit duch mehfaches genaues Ablesen D / m +/- 0,01m +/- 1,36% ungenau, da die Masse wähend de Messung ständig in Bewegung wa l F / m +/- 0,005m +/- 1,06% ungenau da sich de Faden je nach Belastung etwas spannte t U1 / s +/- 0,001s +/- 7, % Mittelwet aus 10 Messungen / m +/- 0,430m +/- 1,98% beechnet aus s, b, D Sofen die Winkelfunktionen, die in de Gleichung II zu Beechnung von g heangezogen weden, bei de Fehleechnung venachlässig weden, folgt aus de Tabelle ein elative Fehle von etwa +/- 5,% fü den aus den Messweten beechneten Wet fü die Natukonstante g. Das entspicht einem absoluten Fehle von +/- 0,49 m/s. Das Egebnis eine eneuten Duchfühung des Vesuches sollte also in dem Intevall 8,95 m/s bis 9,93 m/s liegen. Einige de Methoden, mit denen gemessen wude, könnten ückblickend optimiet weden bzw. könnten Fehle enthalten: 1) Anstelle von Nähgan könnte z. B. Nylon als Mateial fü den Faden gewählt weden, damit sich de Faden bei geinge Belastung wenige stak dehnt. ) Die Vemessung de Stecke D wa duch die Vewendung von Keide an eine Tafel noch echt ungenau. In de Schule stehen alledings kaum Mittel zu Vefügung, um eine genauee Messung duchzufühen. Geingee Fehle ließen sich evtl. duch den Einsatz computegesteuete Lase ode optisch aktiven Obeflächen ezielen. 3) Es wid angenommen, dass sich die Masse konstante Geschwindigkeit auf eine gleichfömigen Keisbahn bewegte. Kleinste Abweichungen können die Messung beeinflussen, wenn in Pojektionsichtung gesehen kein Keis sonden eine Ellipse voliegt. Diese Fehlequelle ist alledings ielevant, solange D mit Tafel und Keide gemessen wid. 4) Bei de Vemessung sämtliche Stecken wude nach Augenmaß angelegt. Auch dies ist ein Gund fü die teilweise elativ hoch eingeschätzten absoluten Fehle. 5) Nach dem Bilden eines Mittelwetes wid von eine echt hohen Genauigkeit de von Cassy geliefeten Messwete angenommen. Dies ist alledings nicht bewiesen.

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008

Abitur - Leistungskurs Physik. Sachsen-Anhalt 2008 Abitu - Leistungskus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Messungen am Kondensator Q C = (1) U

Messungen am Kondensator Q C = (1) U E3 Physikalisches Paktiku Messungen a Kondensato Die Abhängigkeit de Kapazität eines Plattenkondensatos von de Göße bzw. de Abstand de Platten ist nachzuweisen. De Einfluss von Dielektika ist zu untesuchen..

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Vom Strahlensatz zum Pythagoras

Vom Strahlensatz zum Pythagoras Vom Stahlensatz zum Pythagoas Maio Spengle 28.05.2008 Zusammenfassung Eine mögliche Unteichtseihe, um die Satzguppe des Pythagoas unte Umgehung de Ähnlichkeitsabbildungen diekt aus den Stahlensätzen hezuleiten.

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1,

Gravitationsgesetz. Name. d in km m in kg Chaldene 4 7, Callirrhoe 9 8, Ananke 28 3, Sinope 38 7, Carme 46 1, . De Jupite hat etwa 60 Monde auch Tabanten genannt. De Duchesse seines gößten Mondes Ganyed betägt 56k. Es gibt abe auch Monde die nu einen Duchesse von etwa eine Kiloete haben. Die Monde des Jupites

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Jan Auffenberg. der wirkenden Kraft auf die Berandungslinie der Flüssigkeit, also als

Jan Auffenberg. der wirkenden Kraft auf die Berandungslinie der Flüssigkeit, also als Guppe 8 Bjön Baueie Potokoll zu Vesuch M8: Obeflächenspannung 1. Einleitung Die Obeflächenspannung ist ein Beispiel fü die Wikung von inteolekulaen Käften in Flüssigkeiten. I weiteen weden veschiedene

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik

Abiturprüfung Physik 2016 (Nordrhein-Westfalen) Leistungskurs Aufgabe 1: Induktion bei der Torlinientechnik Abitupüfung Physik 2016 (Nodhein-Westfalen) Leistungskus Aufgabe 1: Induktion bei de Tolinientechnik Im Fußball sogen egelmäßig umstittene Entscheidungen übe zu Unecht gegebene bzw. nicht gegebene Toe

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden. Gavitation Massen zeihen sich gegenseitig an. Aus astonomischen Beobachtungen de Planetenbewegungen kann das Gavitationsgesetz abgeleitet weden. Von 1573-1601 sammelte Tycho Bahe mit bloßem Auge (ohne

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn.

a) Berechne die Geschwindigkeit des Wagens im höchsten Punkt der Bahn. Keisbeweun 1. Ein kleine Waen de Masse 0,5 k bewet sich auf eine vetikalen Keisbahn it Radius 0,60. De Waen soll den höchsten Punkt de Bahn so duchfahen, dass de Waen it eine Kaft von de Göße seine Gewichtskaft

Mehr

IM6. Modul Mechanik. Zentrifugalkraft

IM6. Modul Mechanik. Zentrifugalkraft IM6 Modul Mechanik Zentifugalkaft Damit ein Köpe eine gleichfömige Keisbewegung ausfüht, muss auf ihn eine Radialkaft, die Zentipetalkaft, wiken, die imme zu einem festen Punkt, dem Zentum, hinzeigt. In

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Skala. Lichtstrahl. Wasserbad

Skala. Lichtstrahl. Wasserbad . Coulomb sches Gesetz Wi haben gelent, dass sich zwei gleichatige Ladungen abstoßen und zwei ungleichatige Ladungen einande anziehen. Von welchen Gößen diese abstoßende bzw. anziehende Kaft jedoch abhängt

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 10 Abitupüfung 2011 Physik, Gundkus Aufgabenstellung: Aufgabe 1: Definition und Messung de Feldstäke B (auch Flussdichte genannt) magnetische Felde kontaktlose Messung goße Stöme 1.1 Die Abbildung

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Abitur - Grundkurs Physik. Sachsen-Anhalt 2008

Abitur - Grundkurs Physik. Sachsen-Anhalt 2008 Abitu - Gundkus Physik Sachsen-Anhalt 008 Thema G Efoschung des Weltalls Die Entdeckungen von Johannes Keple und Isaac Newton sowie die Estellung de Gundgleichung des Raketenantiebs duch Konstantin Ziolkowski

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI

Wintersemester 2012/2013 Prof. Dr. Stefan Müller AG Computergraphik km 2 0,1571 0, km 2. r d. 4πI 1. Übungsblatt zu Volesung CV-Integation (Lösung) ufgabe 1: Kugelobefläche ufgabe : Raumwinkel 15 43 Wintesemeste 1/13 Pof.. Stefan Mülle G Computegaphik sinθ θ ϕ 43 [ ϕ] 6 ---------- [ cosθ] 18 35 6 35

Mehr

Messung von Kapazitäten Auf- und Entladungen von Kondensatoren

Messung von Kapazitäten Auf- und Entladungen von Kondensatoren 8.. Guppe Maximilian Kauet Hendik Heißelmann Messung von Kapazitäten Auf- und Entladungen von Kondensatoen Inhalt: Einleitung Vesuchduchfühung. Bestimmung des Eingangswidestandes eines Oszillogaphen. Bestimmung

Mehr

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau

Testnormal. Mikroprozessorgesteuerter Universal-Simulator für fast alle gängigen Prozessgrössen im Auto- Mobilbereich und Maschinenbau Testnomal Mikopozessogesteuete Univesal-Simulato fü fast alle gängigen Pozessgössen im Auto- Mobilbeeich und Maschinenbau Inhalt 1. Einsatzmöglichkeiten 2. Allgemeines 2.1. Einstellbae Sensoaten 2.2. Tastatu

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

8. Bewegte Bezugssysteme

8. Bewegte Bezugssysteme 8. Bewegte Bezugssysteme 8.1. Vobemekungen Die gundlegenden Gesetze de Mechanik haben wi bishe ohne Bezug auf ein spezielles Bezugssystem definiet. Gundgesetze sollen ja auch unabhängig vom Bezugssystem

Mehr

Bogenweichen. Entstehung von Außen- und Innenbogenweichen aus einer einfachen Weiche

Bogenweichen. Entstehung von Außen- und Innenbogenweichen aus einer einfachen Weiche Technische Univesität Desden Faultät Veehswissenschaften "Fiedich List" Pof. f. Gestaltung v. Bahnanlagen Bogenweichen Pof. Fengle A 9 Vesion 1-1 Gundlagen Die feizügige Anodnung von Weichen in einem Gleisplan

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 5. Übung (KW 48) Verschiebungsarbeit ) 5. Übung (KW 48) Aufgabe 1 (M 4.1 Veschiebungsabeit ) Welche Abeit muss aufgewendet weden, um eine Fede mit Fedekonstanten k (a) ohne Vospannung, d. h. von de Vospannlänge x 1 0, (b) von de Vospannlänge

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut fü Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 21.10.2004 Name / Voname(n): Kenn-Mat.N.: BONUSPUNKE aus Computeechenübung SS2003: BONUSPUNKE aus Computeechenübung

Mehr

7.1 Mechanik der trockenen Reibung

7.1 Mechanik der trockenen Reibung 41 7 eibung Bei Köpekontakt titt neben eine omalkaft senkecht zu Beühebene i. Allg. auch eine tangentiale Kaftkomponente auf. Zu untescheiden ist de haftende Kontakt, de eine tangentiale Bindung dastellt,

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

Protokoll zum Versuch: Supraleitung Kritisches Magnetfeld

Protokoll zum Versuch: Supraleitung Kritisches Magnetfeld Potokoll zum Vesuch: Supaleitung Kitisches Magnetfeld des Fotgeschittenenpaktikums Teil A vom 1/14.3.3 Jan Wenisch, Tobias Schmitt 1) Einleitung Ziel des Vesuches wa es, dem Studieenden einen Einblick

Mehr

Abituraufgabe Stochastik: Fliesenproduktion

Abituraufgabe Stochastik: Fliesenproduktion Abituaufgabe Stochastik: Fliesenpoduktion Eine Fima stellt mit zwei veschiedenen Maschinen A und B Bodenfliesen aus Keamik he. Damit eine Fliese als 1. Wahl gilt, muss sie stenge Qualitätsnomen efüllen.

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

11.11 Das elektrische Potential

11.11 Das elektrische Potential . Das elektische Potential Wie wi im voigen Abschnitt gesehen haben kann eine Pobeladung q in jedem Punkt P eines elektischen Feldes eine feldezeugenden Ladung Q eindeutig eine entielle negie zugeodnet

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort.

Bestimmung der Fallbeschleunigung. (1) dt. Durch Integration ergibt sich für die Zeitabhängigkeit von Geschwindigkeit und Ort. M09 Bestimmung de allbeschleunigung Die usammenhänge zwischen eschwindigkeit, Beschleunigung, Masse und Kaft weden am Beispiel des feien alles mit de Atwoodschen allmaschine expeimentell untesucht. Im

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton

STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG. Spule mit Eisenkern. Abgabedatum: Teilnehmer: Ludwik Anton STUDIENPRÜFUNGSARBEIT RATIONELLE ENERGIEWANDLUNG Spule mit Eisenken Abgabedatum: 4.6.7 Teilnehme: Ludwik Anton 676 - - Aufgabe ist es, eine velustbehaftete Spule mit Eisenken (Skizze) zu untesuchen. Dies

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Für den Endkunden: Produkt- und Preissuche

Für den Endkunden: Produkt- und Preissuche Fü den Endkunden: Podukt- und Peissuche Ducke Mit finde.ch bietet PoSelle AG eine eigene, umfassende Podukt- und Peissuchmaschine fü die Beeiche IT und Elektonik. Diese basiet auf de umfassenden Datenbank

Mehr

Elektrischer Strom. Strom als Ladungstransport

Elektrischer Strom. Strom als Ladungstransport Elektische Stom 1. Elektische Stom als Ladungstanspot 2. Wikungen des ektischen Stomes 3. Mikoskopische Betachtung des Stoms, ektische Widestand, Ohmsches Gesetz i. Diftgeschwindigkeit und Stomdichte ii.

Mehr

Physik II Übung 1 - Lösungshinweise

Physik II Übung 1 - Lösungshinweise Physik II Übung 1 - Lösungshinweise Stefan Reutte SoSe 01 Moitz Kütt Stand: 19.04.01 Fanz Fujaa Aufgabe 1 We kennt wen? Möglicheweise kennt ih schon einige de Studieenden in eue Übungsguppe, vielleicht

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In ein gleichschenklig-echtwinkliges Deieck mit Kathetenlänge 2 weden zwei Quadate so einbeschieben, dass a) beim esten Quadat eine Seite auf de Hypotenuse liegt und b) beim zweiten

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHLE FÜ TECHNK ND WTSCHFT DESDEN (FH) nivesity of pplied Sciences Fachbeeich Elektotechnik Paktikum Gundlagen de Elektotechnik Vesuch: Stellwidestände Vesuchsanleitung 0. llgemeines Eine sinnvolle

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Repetition: Kinetische und potentielle Energie, Zentripetalkraft

Repetition: Kinetische und potentielle Energie, Zentripetalkraft Us Wyde CH-4057 Basel Us.Wyde@edubs.ch Repetition: Kinetische und entielle negie, Zentipetalkaft. in Kindekaussell deht sich po Minute viemal im Keis. ine auf dem Kaussell stehende Peson elebt dabei die

Mehr

V = 200 cm 3 p = 1 bar T = 300 K

V = 200 cm 3 p = 1 bar T = 300 K gibb BMS Physik Beufsmatu 009 1/6 Aufgabe 1 Keuzen Sie alle koekten Lösungen diekt auf dem Blatt an. Es können mehee Antwoten ichtig sein. Bewetung: Teile a) und b) je ein Punkt, Teil c) zwei Punkte. a)

Mehr