Einführung in die Korrelationsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Korrelationsrechnung"

Transkript

1 Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 1 / 49

2 Agenda Kovarianz Produkt-Moment-Korrelation Datenbeispiel Bestimmtheitsmaß Spearman-Rangkorrelation Datenbeispiel Signifikanztest für Korrelationen S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 2 / 49

3 Agenda (Forts. 2) Weitere Korrelationstechniken S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 3 / 49

4 Kovarianz Outline Kovarianz Zusammenhangshypothesen Kovarianz Grafische Darstellung der Kovarianz Berechnung der Kovarianz Rechenbeispiel S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 4 / 49

5 Kovarianz Zusammenhangshypothesen Zusammenhangshypothesen Zusammenhangshypothesen prüfen, ob es zwischen zwei Variablen einen Zusammenhang gibt. Beispiel: Gibt es zwischen dem Alter eines Mitarbeiters und der Unfallhäufigkeit ein Zusammenhang? Um einen solchen Zusammenhang quantifizieren zu können, stehen die Kovarianz und Korrelationen zur Verfügung. Kovarianz und Korrelationen bzw. der Korrelationskoeffizienten sind Zahlen zur Beschreibung eines linearen Zusammenhangs zwischen Variablen. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 5 / 49

6 Kovarianz Kovarianz Kovarianz Die Kovarianz cov(x, y) ist ein Maß für den Zusammenhang von zwei Variablen. Die Kovarianz hat einen Wertebereich von < cov(x, y) <. Positive Kovarianz: Je größer die Werte von x, desto größer die Werte von y, und andersherum. 0 Kovarianz: Kein Zusammenhang zwischen x und y. Negative Kovarianz: Je größer die Werte von x, desto kleiner die Werte von y und andersherum. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 6 / 49

7 Kovarianz Grafische Darstellung der Kovarianz Grafische Darstellung der Kovarianz keine Kovarianz positive Kovarianz negative Kovarianz S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 7 / 49

8 Kovarianz Berechnung der Kovarianz Berechnung der Kovarianz Kovarianz mit: n i=1 cov(x, y) = (x i x) (y i ȳ) ( n 1 n ) = 1 n 1 x i y i n x ȳ i=1 (1) (2) n x y x ȳ Anzahl der Messpaare Ausprägung der Variablen x bei Objekt i Ausprägung der Variablen y bei Objekt i Mittelwert der Variablen x Mittelwert der Variablen y S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 8 / 49

9 Kovarianz Rechenbeispiel Rechenbeispiel Zwei Messwertreihen: x = 13, 8, 8, 10, 5, 10, 6, 10, 8, 8 y = 15, 16, 14, 16, 12, 17, 13, 13, 14, 22 Mittelwerte: x = 8.6; ȳ = 15.2, jeweils n = 10. Damit: n i=1 cov(x, y) = (x i x) (y i ȳ) n 1 = 1 [(13 8.6) ( ) + (8 8.6) ( ) (8 8.6) ( )] = 1.53 S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 9 / 49

10 Kovarianz Rechenbeispiel Rechenbeispiel (Forts. 2) Bzw.: cov(x, y) = 1 n 1 ( n ) x i y i n x ȳ i=1 = 1 ((13 15) + (8 16) (8 22) ) 9 = 1.53 S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 10 / 49

11 Kovarianz Rechenbeispiel Kovarianz für Alter & Unfälle Für das Alter und Unfälle Beispiel aus Deskriptiver Statistik erhält man für Ihre Produktionsstraße folgendes Punktwolkediagramm und Kovarianz: Kovarianz: 8.44 Unfälle [N] Alter in Jahren S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 11 / 49

12 Produkt-Moment-Korrelation Outline Produkt-Moment-Korrelation Nachteile der Kovarianz Produkt-Moment-Korrelation Interpretation von Korrelationen Korrelation und Kausalität S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 12 / 49

13 Produkt-Moment-Korrelation Nachteile der Kovarianz Nachteile der Kovarianz Die Kovarianz ist nicht dimensionslos. Je nach gewählter Einheit kann diese damit variieren. Ein Vergleich von verschiedenen Kovarianzen ist daher nur bedingt möglich: anhand des Vorzeichens kann ein eventueller Zusammenhang der Variablen abgeleitet werden. Die Product-Moment Korrelation entspricht der standardisierten Kovarianz. Der Wertebereich der Korrelation wird auf 1 bis 1 begrenzt und Korrelationen zwischen verschiedenen Variablen sind vergleichbar. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 13 / 49

14 Produkt-Moment-Korrelation Produkt-Moment-Korrelation Produkt-Moment-Korrelation Produkt-Moment-Korrelation Der auf Bavais und Pearson zurückgehende Korrelationskoeffizient r PM relativiert die Kovarianz an den Standardabweichungen s x und s y : cov(x, y) r PM = (3) s x s y n i=1 = (x i x) (y i ȳ) n i=1 (x i x) 2 n i (y (4) i ȳ) 2 mit: n Anzahl der Messpaare x, y Ausprägung der Variablen x bzw. y bei Messpaar i x, y Mittelwert der Variablen x bzw. y Bortz und Schuster (2010, Kap. 10.2, S. 156ff) S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 14 / 49

15 Produkt-Moment-Korrelation Produkt-Moment-Korrelation Alternative Berechnung von r PM Durch die Verwendung des arithmetischen Mittels können bei der Berechnung per Hand Rundungsungenauigkeiten kumulieren. Wird r PM per Hand berechnet, empfiehlt sich folgende alternative Berechnung: Alternative Berechnung von r PM r PM = n n i=1 (x i y i ) ( n i=1 x ( i) n i=1 y ) i ) ] 2 [ n n i=1 x2 i ( n i=1 x i [ n n i=1 y2 i ( n i=1 y i ) 2 ] (5) S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 15 / 49

16 Produkt-Moment-Korrelation Interpretation von Korrelationen Interpretation von Korrelationen Der Wertebereich von Korrelationen liegt zwischen -1 und 1: r 0: Kein Zusammenhang, es gibt keinen Zusammenhang zwischen den beiden Variablen. r > 0: positiver Zusammenhang, steigt eine Variable in ihrem Wert, steigt auch die andere Variable in ihrem Wert (z. B. je älter ein Arbeitnehmer, desto größer dessen Unfallhäufigkeit). r < 0: negativer Zusammenhang, steigt eine Variable in ihrem Wert, fällt der Wert der anderen Variablen (z. B. Zufriedenheit mit der Arbeit und Stressbelastung). S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 16 / 49

17 Produkt-Moment-Korrelation Interpretation von Korrelationen Einteilung von Korrelationen Für den Betrag einer Korrelation gelten folgende Einteilungen: 0 < r < 0.1 Nullkorrelation 0.1 < r < 0.3 geringe Korrelation 0.3 < r < 0.7 mittlere Korrelation 0.7 < r < 1 hohe Korrelation S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 17 / 49

18 Produkt-Moment-Korrelation Korrelation und Kausalität Korrelation und Kausalität Die Korrelation gibt keinen Aufschluss über den Kausalzusammenhang zwischen Variablen: Variable 1 kann Variable 2 kausal beeinflussen, oder anders herum. Beide Variablen werden von einer dritten, möglichenerweise unbekannten Variablen beeinflusst. Variable 1 und 2 beeinflussen sich Wechselseitig kausal. Eine Korrelation ist eine notwendige, aber keine hinreichende Voraussetzung für kausale Abhängigkeiten (Bortz & Schuster, 2010, S. 160). S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 18 / 49

19 Datenbeispiel Outline Datenbeispiel Beispieldaten Berechnung von r PM Interpretation Punktwolkendiagramm Beispiel: Hohe positive Korrelation Beispiel: Hohe negative Korrelation S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 19 / 49

20 Datenbeispiel Beispieldaten Beispieldaten Sie haben die Vermutung, dass es zwischen Unfallhäufigkeit und Alter einen Zusammenhang geben könnte: Produktionsstraße Ihre Kollegin Unfallhäufigkeit Alter Unfallhäufigkeit Alter S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 20 / 49

21 Datenbeispiel Berechnung von r PM Berechnung von r PM x = Unfallhäufigkeit, y = Alter Nr. x y x 2 y 2 x y S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 21 / 49

22 Datenbeispiel Berechnung von r PM Einsetzen der Werte x = 136; y = 1079; x 2 = 1220; y 2 = 58745; (x y) = 7344 r PM = n n i=1 (x i y i ) ( n i=1 x ( i) n i=1 y ) i ) ] 2 [ n n i=1 x2 i ( n i=1 x i [ n n i=1 y2 i ( n i=1 y i = [ ] ] (136) 2 [ (1079) 2 = = [ ] = = [ = ] ) 2 ] S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 22 / 49

23 Datenbeispiel Interpretation Interpretation Der positive Korrelationskoeffizient r PM = ist sehr klein, praktisch Null. Fazit: Zwischen dem Alter und den Unfallhäufigkeiten eines Mitarbeiters gibt es praktisch keinen Zusammenhang. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 23 / 49

24 Datenbeispiel Punktwolkendiagramm Punktwolkendiagramm Alter in Jahren Anzahl der Unfälle S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 24 / 49

25 Datenbeispiel Beispiel: Hohe positive Korrelation Beispiel: Hohe positive Korrelation Angenommen wir hätten einen r PM = Dies entspricht einer sehr hohen positiven Korrelation. Fazit: Zwischen dem Alter und den Unfallhäufigkeiten eines Mitarbeiters gibt es einen hohen positiven Zusammenhang: Je höher das Alter, desto häufiger passieren Unfälle. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 25 / 49

26 Datenbeispiel Beispiel: Hohe negative Korrelation Beispiel: Hohe negative Korrelation Angenommen wir hätten einen r PM = Dies entspricht einer sehr hohen negativen Korrelation. Fazit: Zwischen dem Alter und den Unfallhäufigkeiten eines Mitarbeiters gibt es einen hohen negativen Zusammenhang: Je höher das Alter, desto seltener passieren Unfälle. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 26 / 49

27 Bestimmtheitsmaß Outline Bestimmtheitsmaß Bedeutung Bestimmtheitsmaß im Beispiel S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 27 / 49

28 Bestimmtheitsmaß Bedeutung Bestimmtheitsmaß Das Bestimmtheitsmaß oder der Determinationskoeffizient entspricht dem quadrierten und mit 100 multiplizierten Korrelationskoeffizienten: r Es gibt den Anteil der gemeinsamen Varianz (bzw. gemeinsamer Variation) zweier Merkmale wieder. Beispiel: r =.90 r 2 = 0.81 und damit ist das Bestimmtheitsmaß 81%, oder 81% gemeinsame Varianz. Manchmal wird auch von 81% Zusammenhang gesprochen. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 28 / 49

29 Bestimmtheitsmaß Bestimmtheitsmaß im Beispiel R 2 im Beispiel Für den Zusammenhang zwischen Alter und Unfallhäufigkeit wurde eine Korrelation r PM = berechnet. Daraus ergibt sich das Bestimmheitsmaß von r 2 PM = = und damit etwa = , d. h. es bestehen lediglich 0.03% Zusammenhang bzw. gemeinsame Varianz. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 29 / 49

30 Spearman-Rangkorrelation Outline Spearman-Rangkorrelation Definition Berechenung Verbundene Ränge S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 30 / 49

31 Spearman-Rangkorrelation Definition Spearman-Rangkorrelation Die Spearman-Rang-Korrelation findet bei ordinalskalierten Variablen Anwendung. Die Messwerte werden in Rangplätze überführt. Problem: Gleiche Messwerte führen zu Rangbindungen. Aus der Formel der Produkt-Moment-Korrelation kann eine Berechnungsvorschrift für den Rangkorrelationskoeffizienten r s abgeleitet werden. Alternativ: Mit den Rangplätzen wird eine Produkt-Momentkorrelation berechnet. Bei vielen Rangbindungen (>20%) sollte eher ein anderer Korrelationskoeffizient herangezogen werden. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 31 / 49

32 Spearman-Rangkorrelation Berechenung Berechnung Spearman-Rangkorrelation Der Spearman-Rangkorreationskoeffizient kann folgendermaßen berechnet werden: r s = 1 6 n i=1 d2 i n (n 2 1) mit d als Differenz zwischen zwei Rangplätzen eines Messwertpaares. (6) Bortz und Schuster (2010, S. 178f) S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 32 / 49

33 Spearman-Rangkorrelation Verbundene Ränge Verbundene Ränge Oft kommen einige Messwerte doppelt vor. In diesem Fall spricht man von verbundenen Rängen, die eine Verbindungsgruppe bilden. Es gibt verschiedene Möglichkeiten, gleiche Messwerte in Rangplätze zu transformieren. In der Regel wird der Mittelwert der Rangplätze einer Verbindungsgruppe vergeben. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 33 / 49

34 Spearman-Rangkorrelation Verbundene Ränge Beispiel verbundene Ränge Die Beobachtungen von 18 Individuen seien wie folgt (gleiche Beobachtungswerte liegen übereinander): Rangplätze: Mittelwert: 7:2=3.5 34:4=8.5 45:3=15 Damit ergeben sich folgende Rangplätze mit drei Rangbindungsgruppen: 1, 2, 3.5, 3.5, 5, 6, 8.5, 8.5, 8.5, 8.5, 11, 12, 13, 15, 15, 15, 17, 18 S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 34 / 49

35 Datenbeispiel Outline Datenbeispiel Fragestellung Daten Vergabe der Rangplätze Berechnung der Differenzpaare Berechnung von r s S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 35 / 49

36 Datenbeispiel Fragestellung Fragestellung An einem Assessment-Center haben zehn Bewerber teilgenommen. Unter anderem gab es eine Postkorb-Aufgabe und eine Sortier-Aufgabe. Die Testwerte beider Aufgaben sind nicht normalverteilt, zudem ist fraglich, ob die Testwerte intervallskaliert sind. Zur Berechnung des Zusammenhangs zwischen Postkorb- und Sortier-Aufgabe eignet sich daher die Spearman-Rang-Korrelation. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 36 / 49

37 Datenbeispiel Daten Daten Nr. Postkorb Rang Postkorb Sortier Rang Sortier S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 37 / 49

38 Datenbeispiel Vergabe der Rangplätze Vergabe der Rangplätze Nr. Postkorb Rang Postkorb Sortier Rang Sortier S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 38 / 49

39 Datenbeispiel Vergabe der Rangplätze Vergabe der Rangplätze Nr. Postkorb Rang Postkorb Sortier Rang Sortier S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 39 / 49

40 Datenbeispiel Berechnung der Differenzpaare Berechnung der Differenzpaare Nr. Rang Postkorb Rang Sortier Differenz d 2 i d 2 i = 16.5 S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 40 / 49

41 Datenbeispiel Berechnung von r s Berechnung von r s d 2 = 16.5, n = 10, damit: r s = 1 6 n i=1 d2 i n (n 2 1) = 1 10 (100 1) = Schlusssatz: Zwischen den Variablen Postkorb-Aufgabe und Sortieraufgabe ergibt sich ein positiver Zusammenhang von r s = 0.9. Dies entspricht 81% erklärbarer Variation. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 41 / 49

42 Signifikanztest für Korrelationen Outline Signifikanztest für Korrelationen Hypothesen Prüfgröße für Korrelationen Berechnung von t emp S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 42 / 49

43 Signifikanztest für Korrelationen Hypothesen Hypothesen Ein Korrelationskoeffizient liegt zwischen 1 < r < 1. Ist r = 0, gibt es keinen Zusammenhang zwischen zwei Variablen: H 0 : ρ = 0 H 1 : ρ 0 Es kann natürlich auch gerichtet, also einseitig geprüft werden. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 43 / 49

44 Signifikanztest für Korrelationen Prüfgröße für Korrelationen Prüfgröße für Korrelationen Prüfgröße Korrelationen Zur Überprüfung von H 0 : ρ = 0 kann folgende Prüfgröße berechnet werden: t emp = r n 2 1 r 2 (7) ist unter H 0 t-verteilt mit n 2 Freiheitsgraden; wobei: r Korrelationskoeffizient r PM oder r s n Anzahl der Messwertpaare S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 44 / 49

45 Signifikanztest für Korrelationen Berechnung von t emp Berechnung von t emp Es sei n = 10, r PM = 0.9. Berechnung von t emp : t emp = r n 2 1 r 2 = = = 5.79 t krit,df=8,α=0.05,zweiseitig = Damit t emp > t krit H 1! Schlussatz: Mit einer Irrtumswahrscheinlichkeit von 5% ist die Produkt-Moment-Korrelation statistisch signifikant. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 45 / 49

46 Weitere Korrelationstechniken Outline Weitere Korrelationstechniken Datenniveau und Korrelation Sind Korrelationen immer sinnvoll? S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 46 / 49

47 Weitere Korrelationstechniken Datenniveau und Korrelation Datenniveau und Korrelation Variable 1 Variable 2 Nominal Ordinal Intervall Nominal Phi, Kontingenzkoeffizient C Biseriale Rangkorrelation Spearman- Ordinal bei Rang- dichotomer Nominalskala Korrelation, Kendall s τ Intervall (Punkt-) Biseriale und Polyseriale Korrelation Empfehlung: Spearman- Rang- Korrelation (Pearson-) Produkt- Moment- Korrelation S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 47 / 49

48 Weitere Korrelationstechniken Sind Korrelationen immer sinnvoll? Sind Korrelationen immer sinnvoll? Korrelationskoeffizienten sind für alle möglichen Kombinationen von Skalenniveaus vorgeschlagen worden. Oft können Korrelationen durch einen anderen Test ersetzt werden, z. B. Phi-Korrelation durch den χ 2 -Test, biserale Korrelation durch den t-test. Oft sind Tests einfacher zu interpretieren als eine Korrelation. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 48 / 49

49 Weitere Korrelationstechniken Sind Korrelationen immer sinnvoll? Literaturverzeichnis Bortz, J. & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler (7. Auflage). Berlin: Springer. S. Garbade (SRH Heidelberg) Korrelationsrechnung Statistik 1 49 / 49

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik

Mehr

Sven Garbade. Statistik 1

Sven Garbade. Statistik 1 χ 2 -Test für nominale Daten Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) χ 2 -Test für nominale

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

2. Zusammenhangsmaße

2. Zusammenhangsmaße 2. Zusammenhangsmaße Signifikante χ²-werte von Kreuztabellen weisen auf die Existenz von Zusammenhängen zwischen den zwei untersuchten Variablen X und Y hin. Für die Interpretation interessieren jedoch

Mehr

Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen

Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen 5.1 Darstellung der Verteilung zweidimensionaler Merkmale 5.2 Maßzahlen für den Zusammenhang zweier nominaler Merkmale 5.3 Maßzahlen

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143 Lineare Korrelation Statistik für SozialwissenschaftlerInnen II p.143 Produkt-Moment-Korrelation Der Produkt-Moment-Korrelationskoffizient r von Pearson ist ein Zusammenhangsmaß für metrische Variablen

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Deskriptive Statistik

Deskriptive Statistik Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

Sitzung 4: Übungsaufgaben für Statistik 1

Sitzung 4: Übungsaufgaben für Statistik 1 1 Sitzung 4: Übungsaufgaben für Statistik 1 Aufgabe 1: In einem Leistungstest werden von den Teilnehmern folgende Werte erzielt: 42.3; 28.2; 30.5, 32.0, 33.0, 38.8. Geben Sie den Median, die Spannweite

Mehr

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06

Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06 Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Deskriptive Statistik & grafische Darstellung

Deskriptive Statistik & grafische Darstellung Deskriptive Statistik & grafische Darstellung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Deskriptive

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Weitere Korrelationskoeffizienten (1)

Weitere Korrelationskoeffizienten (1) Weitere Korrelationskoeffizienten () Welche Korrelationskoeffizienten man für die Analyse von Zusammenhängen benutzen kann, hängt entscheidend von dem Skalenniveau der beteiligen Variablen und der Fragestellung

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Deskriptive Statistik Winfried Zinn

Deskriptive Statistik Winfried Zinn Deskriptive Statistik Winfried Zinn Inhalte Statistik 1 1. Themenblock: Grundlagen der beschreibenden Statistik: Skalenniveaus Häufigkeitsverteilungen Mittelwerte (Lagemaße) Standardabweichung und Varianzen

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Zusammenhangsmaße II

Zusammenhangsmaße II Sommersemester 2009 Wiederholung/ Eine nominale und eine intervallskalierte Variable χ 2 =?!? Übung von Simone Reutzel Heute im HS1, altes ReWi-Haus Zum Nachlesen Agresti/Finlay: Kapitel 8.5, 9.4 Gehring/Weins:

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Häufigkeitsverteilungen

Häufigkeitsverteilungen Häufigkeitsverteilungen Eine Häufigkeitsverteilung gibt die Verteilung eines erhobenen Merkmals an und ordnet jeder Ausprägung die jeweilige Häufigkeit zu. Bsp.: 100 Studenten werden gefragt, was sie studieren.

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS

Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Statistik III Regressionsanalyse, Varianzanalyse und Verfahren bei Messwiederholung mit SPSS Verena Hofmann Dr. phil. des. Departement für Sonderpädagogik Universität Freiburg Petrus-Kanisius-Gasse 21

Mehr

Eigene MC-Fragen (Teil II) "Kap. 9 Zusammenhangsmaße

Eigene MC-Fragen (Teil II) Kap. 9 Zusammenhangsmaße Eigene MC-Fragen (Teil II) "Kap. 9 Zusammenhangsmaße 1. Kreuze die richtige Aussage an! positiv sind, ist r stets identisch mit s xy. negativ sind, ist r stets identisch mit s xy. positiv sind, ist das

Mehr

= = =0,2=20% 25 Plätze Zufallsübereinstimmung: 0.80 x x 0.20 = %

= = =0,2=20% 25 Plätze Zufallsübereinstimmung: 0.80 x x 0.20 = % allgemein Klassifizierung nach Persönlichkeitseigenschaften Messung von Persönlichkeitseigenschaften Zuordnung von Objekten zu Zahlen, so dass die Beziehungen zwischen den Zahlen den Beziehungen zwischen

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

(Σy i) 2 ) (Formel 6.1)

(Σy i) 2 ) (Formel 6.1) 6.1 Der Pearsonsche Maßkorrelationskoeffizient 6 Zur Korrelationsanalyse 47 Im Weiteren gehen wir näher auf den Spezialfall der linearen Korrelation ein, d.h. die durch die Punktwolke nahegelegte Ausgleichskurve

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften 00 180 160 Frauen 140 10 100 80 80 100 10 140 160 180 00 Männer Modul 08 Testen von Hypothesen Lernumgebung. Teil 1 Hans Walser: Modul 08, Testen von Hypothesen.

Mehr

Karl Entacher. FH-Salzburg

Karl Entacher. FH-Salzburg Ahorn Versteinert Bernhard.Zimmer@fh-salzburg.ac.at Statistik @ HTK Karl Entacher FH-Salzburg karl.entacher@fh-salzburg.ac.at Beispiel 3 Gegeben sind 241 NIR Spektren (Vektoren der Länge 223) zu Holzproben

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

Korrelation und Regression

Korrelation und Regression Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Korrelation und Regression Überblick Kovarianz und Korrelation Korrelation und Kausalität

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)?

Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)? 3 Beschreibende Statistik 3.1. Daten, Datentypen, Skalen Daten Datum, Daten (data) das Gegebene Fragen über Daten Datenerhebung: Was wurde gemessen, erfragt? Warum? Wie wurden die Daten erhalten? Versuchsplanung:

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Einführung in die Test- und Fragebogenkonstruktion

Einführung in die Test- und Fragebogenkonstruktion Markus Bühner 1 Einführung in die Test- und Fragebogenkonstruktion 2., aktualisierte und erweiterte Auflage PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Bivariate Verteilungen [bivariate data]

Bivariate Verteilungen [bivariate data] Bivariate Verteilungen [bivariate data] Zwei Variablen X, Y werden gemeinsam betrachtet, d.h. an jedem Objekt i werden zwei Merkmale beobachtet. Beobachtungswerte sind Paare/Kombinationen von Merkmalsausprägungen

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Aufgaben zu Kapitel 3

Aufgaben zu Kapitel 3 Aufgaben zu Kapitel 3 Aufgabe 1 a) Berechnen Sie einen t-test für unabhängige Stichproben für den Vergleich der beiden Verarbeitungsgruppen strukturell und emotional für die abhängige Variable neutrale

Mehr

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1

Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Grundlagen sportwissenschaftlicher Forschung Deskriptive Statistik 2 Inferenzstatistik 1 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Rückblick: Besonders wichtige Themen Wissenschaftstheoretischer

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

5 Beschreibung und Analyse empirischer Zusammenhänge

5 Beschreibung und Analyse empirischer Zusammenhänge 5 Beschreibung und Analyse empirischer Zusammenhänge 132 5 Beschreibung und Analyse empirischer Zusammenhänge 5.1 Zusammenhänge zwischen kategorialen Merkmalen 137 5.1.1 Kontingenztabellen 137 Verteilungen

Mehr

Begriffe zur Statistik-Vorlesung

Begriffe zur Statistik-Vorlesung Begriffe zur Statistik-Vorlesung 1. Vorlesung Grundgesamtheit gesamte zu beobachtende Menge, über die man eine Aussage machen möchte; z.b. alle Studenten der FH BRS Stichprobe Teil der GGH; nutze ich,

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Mehrfaktorielle Varianzanalyse

Mehrfaktorielle Varianzanalyse Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mehrfaktorielle Varianzanalyse Überblick Einführung Empirische F-Werte zu einer zweifaktoriellen

Mehr

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Jürgen Bortz Statistik Für Sozialwissenschaftler Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Springer-Verlag Berlin Heidelberg Newlfork London Paris Tokyo Inhaltsverzeichnis Einleitung

Mehr

Statistik für Psychologen

Statistik für Psychologen Peter Zöfel Statistik für Psychologen Im Klartext Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide Statistik für Psychologen

Mehr

I Einführung 1. 1 Über den Umgang mit Statistik 3

I Einführung 1. 1 Über den Umgang mit Statistik 3 I Einführung 1 1 Über den Umgang mit Statistik 3 1.1 Statistik richtig lehren und lernen 3 1.2 Testergebnisse richtig interpretieren 6 1.3 Einfluss des Zufalls 8 1.4 Die Interpretation von Zusammenhängen

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.

Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06. Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder Formelsammlung Beschreibende Statistik Univariate Häufigkeitsverteilungen X ist ein diskretes Merkmal, mit k Ausprägungen TR: Mode 2 1 = AC absolute relative Häufigkeit Häufigkeiten Bivariate Häufigkeitsverteilungen

Mehr

Angewandte Statistik mit R

Angewandte Statistik mit R Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 2., überarbeitete Auflage B 374545 GABLER Inhaltsverzeichnis Vorwort zur zweiten Auflage Tabellenverzeichnis

Mehr

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale

Inhaltsverzeichnis Grundlagen aufigkeitsverteilungen Maßzahlen und Grafiken f ur eindimensionale Merkmale 1. Grundlagen... 1 1.1 Grundgesamtheit und Untersuchungseinheit................ 1 1.2 Merkmal oder statistische Variable........................ 2 1.3 Datenerhebung.........................................

Mehr