6. Zusammenhangsmaße (Kovarianz und Korrelation)

Größe: px
Ab Seite anzeigen:

Download "6. Zusammenhangsmaße (Kovarianz und Korrelation)"

Transkript

1 Problemstellug: Bsher: Gesucht: 6. Zusammehagsmaße (Kovaraz ud Korrelato) Ee Varable pro Merkmalsträger, Stchprobe x1,, x Maße für Durchschtt, Streuug, usw. Bespel: Kurse zweer Akte ud a 9 aufeader folgede Börsetage: Zetpukt Akte Akte Jetzt: Gesucht: Zwe (metrsche!) Varable pro Merkmalsträger, Stchprobe (x1, y1),,(x, y) Geegetes Maß für de Zusammehag 1. Schrtt: Graphsche Darstellug der Date eem zwedmesoale Streudagramm (Scatterplot) Bespele: Merkmalsträger: BA-Studete Varable 1: Körpergröße Varable 2: Gewcht Merkmalsträger: Metwohuge Sege Varable 1: Größe m 2 Varable 2: Metapres Merkmalsträger: Gebrauchtwage Varable 1: Alter Varable 2: Kaufpres Merkmalsträger: Täglche Aktekurse Varable 1: Bayer-Akte Varable 2: BASF-Akte 20,00 15,00 10,00 5,00 0,00 0,00 5,00 10,00 15,00 20,00 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

2 2. Schrtt: De arthmetsche Mttel ausreche 3. Schrtt: Berechug des Trefferquotete x 10 ud y 10 ud als Le das Koordatesystem zeche. 4 Quadrate 20,00 15,00 II. (-) I. (+) 20,00 15,00 II. (-) I. (+) 10,00 10,00 5,00 III. (+) IV. (-) 5,00 III. (+) IV. (-) 0,00 0,00 5,00 10,00 15,00 20,00 0,00 0,00 5,00 10,00 15,00 20,00 Quadrat I.: x x ud y y ( + + = + pos. Zshg.) Quadrat II.: x x ud y y ( + = eg. Zshg.) Quadrat III.: x x ud y y ( = + pos. Zshg.) Quadrat IV.: x x ud y y ( + = eg. Zshg.) Postver Zusammehag Häufug der Pukte I. ud III. Negatver Zusammehag Häufug der Pukte II. ud IV. Ke Zusammehag Glechmäßge Belegug der Quadrate. Belegug der ezele Quadrate: Quadrat I.: 3,5 Quadrat II.: 1,5 Quadrat III.: 3 Quadrat IV.: 1 6,5 2,5 D.h.: I ud III gewe gege II ud IV mt 6,5:2,5 ( Trefferquotet ) Trefferquotet > 1 Postver Zusammehag. Trefferquotet < 1 Negatver Zusammehag. Trefferquotet = 1 Ke Zusammehag. Aber 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

3 Trefferquotet st als Maß für de Zusammehag zu grob. Bespel: De uterschedlche Gewchtug erfolgt durch Betrachtug der Fläche, de de Pukte mt de arthmetsche Mttel blde. Täglche Kurse zweer Akte ud über zwe Woche: 1. Woche 2. Woche Zetpukt Akte Akte x y 10 x y 10 (x 2, y 2 ) y 2 x 2 x 1 (x 1, y 1 ) y Woche 2. Woche Achtug! Negatve Fläche! Für de Fläche, also de Gewchte der Pukte (x, y), = 1,,, glt: Offeschtlch: Zusammehag st der zwete Woche ausgeprägter. Problem: Trefferquotet st bede Woche glech. x x y y > 0, falls x x ud y y oder x x ud y y = 0, falls x x oder y y < 0, falls x x ud y y oder x x ud y y Lösug: Berückschtgug der Lage der ezele Datepukte, relatv betrachtet zu de arthmetsche Mttel uterschedlche Gewchtug der Pukte (x, y) Das arthmetsche Mttel deser Gewchte ( Fläche ) st e geegetes Maß für de Zusammehag Emprsche Kovaraz 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

4 Emprsche Kovaraz vo ud s 1 1 x xy y Berechug der Kovaraz m Bespel: Kurse zweer Akte ud a 9 aufeader folgede Börsetage: Zetpukt Akte Akte Arbetstabelle: x x x y y y x x y y x y x 10 y 10 s = 4,67 Alteratv: s 1 x y x y 1 = 942/ = 104, = 4,67 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

5 (!) Satz: Es glt: (!) Satz: Für de Bravas-Pearso-Korrelatoskoeffzete glt: (a) (b) r s s ( s s s s s s ) s s s y ax b mt a 0. Bravas-Pearso-Korrelatoskoeffzet s s s 1 1 ( x x)( y ( x x) 1 1 y) ( y y) 2 (a) -1 r 1. (b) r = 1 y = ax + b mt a > 0 für alle. 10,00 8,00 6,00 4,00 2, Größter postver learer Zusammehag: Alle Pukte lege auf eer Gerade mt postver Stegug. 0,00 0,00 2,00 4,00 6,00 8,00 10,00 (c) r = -1 y = ax + b mt a < 0 für alle. Im Bespel: s s 3, 40 s s 1, 63 4,67 r 0, 84 3,4 1,63 10,00 8,00 6,00 4,00 2,00 4 Größter egatver learer Zusammehag: Alle Pukte lege auf eer Gerade mt egatver Stegug. 0,00 0,00 2,00 4,00 6,00 8,00 10, Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

6 (!) Warug 1: Vorscht be r 0!!! Bedeutet r = 0, dass ke Zusammehag besteht? x y x y 1 5 s ( s s r s ) 0-1 0,5-0, Aber es exstert e perfekter 1 0,5 0,5 fuktoaler Zusammehag: y x Der Korrelatoskoeffzet st ur als Maß für de leare Zusammehag geeget! Stuato: Optmale Kombato vo Progose Progose des mttlere Dollarkurses 6 Moate: Progose Volatltät Commerzbak ( ) 0,60 ( x ) 0,05 ( Deutsche Bak ( ) 0,80 ( y ) 0,10 ( Aus vergagee Progose bekat: r = 0,25 s ) s ) (!) Warug 2: Gesucht: Ee Kombato der bede Progose, ud zwar derart, dass das Rsko (Volatltät) mmert wrd. Korrelato bedeutet cht otwedg Kausaltät!!! Ee hohe (postve oder egatve) Korrelato zwsche ud ka mdestes folgede Ursache habe: ( st Ursache für ) Z ud Z Zufall Naheleged: Betrachte e gewogees arthmetsches Mttel der bede Progose. Der mttlere Dollarkurs st da z 1 2 w x w y. Wähle de Gewchte w1 ud w2 so, dass sz ( bzw. sz 2 ) mmal wrd. 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

7 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

8 Wesetlcher Nachtel: Der Bravas-Pearso-Korrelatoskoeffzet st ur für metrsch skalerte Merkmale defert. Allerdgs st e Zusammehag durchaus auch für ordale (oder omale) Merkmale svoll. Bespel: Merkmalsträger: 8 Agestellte Merkmal : Bldugsabschluss Merkmal : Jahresgehalt (etto) 1000 Agestellter x Ab Hauptschule Ab Fachhochschule Hauptschule Ab Uverstät Mttlere Refe y I.d.R. glt: Gesucht: Problem: Ausweg: Je höher der Abschluss, desto höher das Gehalt. Maß für de Zusammehag Bravas-Pearso-Korrelatoskoeffzet st cht berechebar. Ersetze de Merkmalsauspräguge durch hre Räge R(x) bzw. R(y), ud bereche de Bravas-Pearso-Korrelatoskoeffzete mt dese Räge (Voraussetzug: Wegstes ordales Nveau). 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

9 Ragkorrelatoskoeffzet ach Spearma r S, ( R( x ) R )( R( 1 2 ( R( x ) R 1 ) 1 y ) R ) ( R( y ) R ) 2 Ählchketsmaße Stuato: Utersuchug mt 20 Probade Befragug: Welcher Fersehseder st am sympathschste? Bldtest: Dre Colamarke; welche schmeckt am beste? Agestellter x A HS A FH HS A U M.R. R(x) 4 7, , y R(y) (!) Satz (Spezalfall): Lösug: rs, = 0,638 Falls be ud jewels alle Räge verschede sd, da glt: r S, 6 ( R( x ) R( y )) 1 1 ( 1) ( 1) 2 Marke Seder Marke Seder Coca Pro7 Coca Pro7 Salco MTV Peps Sat1 Salco Sat1 Peps RTL Coca RTL Salco Pro7 Peps Sat1 Salco Sat1 Coca RTL Coca Pro7 Coca Pro7 Peps RTL Peps RTL Peps MTV Peps Sat1 Coca Pro7 Salco RTL Peps RTL Gesucht: Maß für de Zusammehag Problem: Nomales Skaleveau der Date, d.h. Korrelatoskoeffzete sd cht awedbar Lösug: Betrachte cht de Zusammehag zwsche de zwe Merkmale, soder de Ählchket zweer ausgesuchter Merkmalsauspräguge jewels ees Merkmals 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

10 Merkmal: Fersehseder Auspräguge: RTL, Sat1, Pro7, MTV Merkmal: Colamarke Auspräguge: Coca Cola, Peps, Salco Vorgeheswese am Bespel vo Peps ud Sat1 Trasformere omale Date dchotome (bäre) Date (0 oder 1). Merkmal st erfüllt (Ausprägug vorhade) = 1 Peps schmeckt am beste = 1 Frage: Sollte ee Werbug für Peps eher be Sat1 oder be RTL platzert werde? Sat1 st sympathschster Seder = 1 Merkmal st cht erfüllt (Ausprägug cht vorhade) = 0 Peps schmeckt cht am beste = 0 Sat1 st cht sympathschster Seder = 0 Führt zu eem Verglech der Ählchket zwsche Peps ud Sat1 Peps ud RTL Welche der jewels bede Merkmalsauspräguge sd sch ählcher? Gesucht: E Maß für de Ählchket Bestmme de Azahl der daraus resulterede eue Realsatoe (1,1), (0,1), (1,0) ud (0,0) Bespel: Bede Auspräguge vorhade (1,1) Marke Seder Marke Seder Coca Pro7 Coca Pro7 Salco MTV Peps Sat1 Salco Sat1 Peps RTL Coca RTL Salco Pro7 Peps Sat1 Salco Sat1 Coca RTL Coca Pro7 Coca Pro7 Peps RTL Peps RTL Peps MTV Peps Sat1 Coca Pro7 Salco RTL Peps RTL Neue Realsato (1,1) 3 Aalog ergbt sch: (0,1) 2; (1,0) 5; (0,0) Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

11 Des ergbt ver eue verschedee Häufgkete, de eer Kreuztabelle egetrage werde: Peps schmeckt am beste Sat1 st am sympathschste Erfüllt (Ja = 1) Ncht erfüllt (Ne = 0) Erfüllt (Ja = 1) Ncht erfüllt (Ne = 0) Allgeme: Varable Σ Erfüllt (Ja = 1) Varable 2 Ncht erfüllt (Ne = 0) Erfüllt (Ja = 1) a c a+c Ncht erfüllt (Ne = 0) Ählchketsmaße b d b+d Σ a+b c+d a+b+c+d = Σ Σ Im Bespel (Ählchkete zwsche Peps ud Sat1): SM 0, RR 0, J 0, Als Ählchket zwsche Peps ud RTL ergbt sch: Peps schmeckt am beste SM 0, RR 0, J 0, RTL st am sympathschste Ja Ne Σ Ja Ne Σ Smple Matchg (Efache Überestmmug) Russel ud Rao Jaccard (Tamoto) a RR a J a b c a d SM De dre Ählchketsmaße köe ur Werte zwsche 0 ud 1 (eschleßlch) aehme, d.h.: SM [0,1 ] ; RR [0,1 ] ; J [0,1 ] Je äher der Wert a der 1 legt, desto ählcher sd sch de jewelge Merkmalsauspräguge, je äher a der 0, desto uählcher. De Werbug für Peps sollte be RTL platzert werde. 6. Zusammehagsmaße (Kovaraz ud Korrelato) Zusammehagsmaße (Kovaraz ud Korrelato)

12 Achtug, aufgepasst! Platz für Notze De Kaptel 1, 2, 3 ud 6 behadelte statstsche Verfahre sd aufwärtskompatbel. Bespele: Modus ud Meda köe auch auf ordale ud metrsche Date agewedet werde. Ebeso de Spawete. Der Ragkorrelatoskoeffzet ach Spearma ka auch zusamme mt metrsche Date agewadt werde. Ählchketsmaße köe auch zwsche omale ud ordale oder metrsche Date berechet werde. Voraussetzug dafür st atürlch ud selbstverstädlch de svolle Trasformato der chtomale Varable dchotome (bäre) Date (Merkmal st vorhade oder Merkmal st cht vorhade). 6. Zusammehagsmaße (Kovaraz ud Korrelato)

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

Korrelations- und Assoziationsmaße

Korrelations- und Assoziationsmaße k m χ : j l r +. Zusammehagsmaße ( o e ) jl jl e jl Korrelatos- ud Assozatosmaße e jl 5 Merkmal Y Summe X b b m a H (a,b) H (a,b). a H (a,b) H (a,b). Summe.. Zusammehagsmaße Eführug Sche- ud Noses-Korrelato

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen.

Zur Interpretation einer Beobachtungsreihe kann man neben der grafischen Darstellung weitere charakteristische Größen heranziehen. Rudolf Brkma http://brkma-du.de Sete 0.0.008 Lagemaße der beschrebede Statstk. Zur Iterpretato eer Beobachtugsrehe ka ma ebe der grafsche Darstellug wetere charakterstsche Größe herazehe. Mttelwert ud

Mehr

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung.

Spannweite, Median Quartilsabstand, Varianz und Standardabweichung. Rudolf Brkma http://brkma-du.de Sete 06.0.008 Spawete, Meda Quartlsabstad, Varaz ud Stadardabwechug. Streuug um de Mttelwert. I de folgede Säuledagramme st de Notevertelug zweer Schülergruppe (Mädche,

Mehr

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik

Universitätslehrgang Sports Physiotherapy Einführung in die Statistik Departmet of Sport Scece ad Kesolog Uverstätslehrgag Sports Phsotherap Eführug de Statstk Gerda Strutzeberger Block I Block Mttwoch 5..0 3:00 bs 4:50 Grudlage, Skaleveau 5:05 bs 7:00 Gütekrtere, Hpothese,

Mehr

Verdichtete Informationen

Verdichtete Informationen Verdchtete Iormatoe Maßzahle Statstke be Stchprobe Parameter be Grudgesamthete Maßzahle zur Beschrebug uvarater Verteluge Maßzahle der zetrale Tedez (Mttelwerte) Maßzahle der Varabltät (Streuugswerte)

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

Statistik mit Excel und SPSS

Statistik mit Excel und SPSS Stattk mt Excel ud SPSS G. Kargl Grudbegrffe Grudgeamthet Erhebugehet Merkmale Werteberech Stchprobe Telbereche der Stattk: Dekrtpve Stattk Iduktve Stattk Exploratve Stattk U- / B- / Multvarate Stattk

Mehr

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt. Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget 0 5 3 4 6 0

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Regressionsrechnung und Korrelationsrechnung

Regressionsrechnung und Korrelationsrechnung Regressosrechug ud Korrelatosrechug Beschrebede Statstk Modul : Probleme be der Abhäggketsaalyse Problem : Es gbt mest cht ur ee Eflussfaktor (Probleme sd selte mookausal ) A Ursache() Wrkug B C - efache

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK Mathematk: Mag. Schmd Wolfgag & LehrerIeteam Arbetsblatt 7-7 7. Semester ARBEITSBLATT 7-8 WAHRSCHEINLICHKEITSRECHNUNG UND STATISTIK STATISTISCHE GRUNDBEGRIFFE Statstk gledert sch zwe Telbereche De Beschrebede

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

Schiefe- und Konzentrationsmaße

Schiefe- und Konzentrationsmaße Statst für SozologIe Schefe- ud Kozetratosmaße Uv.Prof. Dr. Marcus Hudec Höhere Vertelugsmaßzahle E stetges Mermal wurde 3 Gruppe beobachtet ud Form der folgede Häufgetstabelle berchtet: Klasse m Gruppe

Mehr

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8,

Ingrid A. Uhlemann (2015): Einführung in die Statistik für Kommunikationswissenschaftler. Online Anhang: Lösung der Übungsaufgaben Kapitel 5-8, Igrd A. Uhlema (015): Eführug de Statstk für Kommukatoswsseschaftler. Ole Ahag: Lösug der Übugsaufgabe Kaptel 5-8, Lösug der Übugsaufgabe Kaptel 5: Aufgabe 1: Geg.: Persoalserug ordal skalert, dskret Dauer

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Ordnungsstatistiken und Quantile

Ordnungsstatistiken und Quantile KAPITEL Ordugsstatste ud Quatle Um robuste Lage- ud Streuugsparameter eführe zu öe, beötge wr Ordugsstatste ud Quatle... Ordugsstatste ud Quatle Defto... Se (x,..., x R ee Stchprobe. Wr öe de Elemete der

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 54 Prof. Dr. H. Rommelfager: tschedugstheore, Katel 3 54 3.2.8 ARROW-PRATT-Maß für de Rskoestellug Rskoverhalte bsher grob kategorsert ach Rskoeutraltät, -symathe ud averso be Rskoaverso: (X) < SÄ Rskoräme

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

Quantitative Methoden in der klinischen Epidemiologie

Quantitative Methoden in der klinischen Epidemiologie Quattatve Methode der klsche Epdemologe Korrelato ud leare Regresso Lerzele Besteht e fuktoeller Zusammehag zwsche zwe Messuge a eem Patete? Korrelato als Maßzahl für de Stärke ees leare Zusammehages Beschrebe

Mehr

Maße zur Kennzeichnung der Form einer Verteilung (1)

Maße zur Kennzeichnung der Form einer Verteilung (1) Maße zur Kezechug der Form eer Vertelug (1) - Schefe (skewess): Defto I - Ee Vertelug vo Messwerte wrd als schef bezechet, we se der Wese asymmetrsch st, dass lks oder rechts des Durchschtts ee Häufug

Mehr

Statistik. (Inferenzstatistik)

Statistik. (Inferenzstatistik) Statstk Mathematsche Hlfswsseschaft mt der Aufgabe, Methode für de Sammlug, Aufberetug, Aalyse ud Iterpretato vo umersche Date beretzustelle, um de Struktur vo Masseerscheuge zu erkee. Deskrptve (beschrebede)

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1

Was ist Statistik? Wozu Statistik? Wie Statistik? Statistische Daten. Statistische Merkmale. Page 1 Vorlesugsuterlage Statstk ud Wahrschelchketstheore für Iformatker (Tel: Deskrptve Statstk) (WS 6/7) vorläufge Fassug Was st Statstk? Deskrptve Statstk (beschrebed, zusammefassed) Iduktve Statstk (vo Stchprobe

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statstk für SozologIe Lage- ud Streuugsmaße Uv.Prof. Dr. Marcus Hudec Beschrebug quattatver Date Um de emprsche Vertelug ees quattatve Merkmals zu beschrebe, betrachte wr Parameter, de ee Verdchtug der

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Regressions- und Korrelationsanalyse

Regressions- und Korrelationsanalyse Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme aus der deskrptve Statstk Regressos- ud Korrelatosaalyse Modellaufgabe Übuge Lösuge www.f-lere.de Was bedeutet Regressos-

Mehr

Deskriptive Statistik - Aufgabe 3

Deskriptive Statistik - Aufgabe 3 Desrptve Statst - Aufgabe 3 De Überachtugszahle der Fremdeverehrsgemede "Bachstadt" für de Moate ud zege auf de erste Blc scho deutlche Uterschede de ezele Ortschafte. We seht e etsprecheder Verglech der

Mehr

Maßzahlen zur Beschreibung von Verteilungen

Maßzahlen zur Beschreibung von Verteilungen Programmcode: Lagemaße Maßzahle zur Beschrebug vo Verteluge > c(0,,5,6,3,0,-) > mea() [] > meda() [] > table() - 0 3 5 6 kee drekte Modusfukto 0 zwemal Uvarate Deskrpto ud Eplorato vo Date - Maßzahle zur

Mehr

Einführung Fehlerrechnung

Einführung Fehlerrechnung IV Eführug Fehlerrechug Fehlerrechuge werde durchgeführt, um de Vertraueswürdgket vo Meßergebsse beurtele zu köe. Uter dem Fehler eer Messug versteht ma de Abwechug ees Meßergebsses vom (grudsätzlch ubekate

Mehr

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern

4. Marshallsche Nachfragefunktionen Frage: Wie hängt die Nachfrage nach Gütern Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 Prof. Dr. Fredel Bolle Vorlesug "Mkroökoome" WS 008/009 III. Theore des Haushalts 0 4. Marshallsche Nachfragefuktoe Frage:

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Lageparameter (Mittelwerte) und Streuungsparameter

Lageparameter (Mittelwerte) und Streuungsparameter Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Lageparameter (Mttelwerte) ud Streuugsparameter Mttelwerte: Gebe

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und:

2. Die Elementarereignisse sind die Kombinationsmöglichkeiten von: Wappen = W und: 1 L - Hausaufgabe Nr. 55 Sotag, 1. Ju 2003 Ee Müze werde dremal geworfe. Was st das Zufallsexpermet, das Elemetareregs, das zusammegesetzte Eregs, der Eregsraum ud de Wahrschelchket? Lösugs kte.: 1 De

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Lösungen zum Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Lösuge zum Übugs-Blatt 7 Wahrschelchketsrechug BMT Bostatstk Prof. Dr. B. Grabowsk ----------------------------------------------------------------------------------------------- Bedgte Wahrschelchket

Mehr

1.2.2 Prozentrechnung

1.2.2 Prozentrechnung .2. Verhältsglechuge, Produktglechuge Ee Awedug vo leare Glechuge sd Verhälts- ud Produktglechuge Be Verhältsglechuge st das Verhälts zwsche zwe Varable kostat, z.b. hergestellte Stückzahl zu beötgter

Mehr

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz

Asymptotische Normalverteilung nach dem zentralen Grenzwertsatz Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Erwartugswert eer Summe vo Zufallsvarable mt jewels de Erwartugswert x (Y Y Asymptotsche ormalvertelug ach dem zetrale Grezwertsatz Varaz eer Summe

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung

1 Mathe Formeln Statistik und Wahrscheinlichkeitsrechnung 1 Mathe Formel Statstk ud Wahrschelchketsrechug Jör Horstma, 6.10.003. Alle Agabe ohe Gewähr. http://www.ba-stuttgart.de/ w017/ 1.1 Grudlage Ezelklasse [a ; b [ Klassewete Klassemtte Mttelwert b a = w

Mehr

Das virtuelle Bildungsnetzwerk für Textilberufe

Das virtuelle Bildungsnetzwerk für Textilberufe Das vrtuelle Bldugsetzwerk für Textlberufe Grudlage der Statstk 003 Hochschule Nederrhe Autor: Prof. Dr. Rud Voller Stad: 0.0.0033 Sete / 9 Grudlage der Statstk Uter eer Statstk versteht ma ee Aufglederug

Mehr

Regressionsgerade, lineares Modell:

Regressionsgerade, lineares Modell: Statstk Grudlage Charakterserug vo Verteluge Eführug Wahrschelchketsrechug Wahrschelchketsverteluge Schätze ud Teste Korrelato Regresso Eführug Durch de Regressosaalyse wrd versucht, de Art des Zusammehags

Mehr

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini

Lorenz' sche Konzentrationskurve und Disparitätsindex nach Gini Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Lorez' sche Kozetratoskurve ud Dspartätsdex ach G Übuge Aufgabe Lösuge www.f-lere.de Begrff Lorez'

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Grundgesetze der BOOLEschen Algebra und Rechenregeln

Grundgesetze der BOOLEschen Algebra und Rechenregeln 5... Grudgesetze der BOOLEsche Algebra ud Recheregel Auf de mathematsch korrekte Eführug der BOOLEsche Algebra ka ch verzchte, da das Ihrer Mathematkausbldug ausführlch behadelt wrd. Ich stelle Ihe zuächst

Mehr

19. Amortisierte Analyse

19. Amortisierte Analyse 9. Amortserte Aalyse Amortserte Aalyse wrd egesetzt zur Aalyse der Laufzet vo Operatoe Datestrukture. Allerdgs wrd cht mehr Laufzet ezeler Operatoe aalysert, soder de Gesamtlaufzet eer Folge vo Operatoe.

Mehr

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik

Übungen zur Wahrscheinlichkeitsrechnung und Schliessenden Statistik Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Aufgabe ud Lösuge vo Peter M Schulze, Verea Dexhemer. Auflage Übuge zur Wahrschelchketsrechug ud Schlessede Statstk Schulze / Dexhemer schell ud portofre

Mehr

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik

Grundlagen der Energietechnik Energiewirtschaft Kostenrechnung. Vorlesung EEG Grundlagen der Energietechnik Prof. Dr. Ig. Post Grudlage der Eergetechk Eergewrtschaft Kosterechug EEG. Vorlesug EEG Grudlage der Eergetechk De elektrsche Eergetechk st e sogeates klasssches Fach. Folglch st deses Fach vele detallert

Mehr

II. Beschreibende Statistik

II. Beschreibende Statistik II. Beschrebede Statstk II. Merkmale ud wchtge Begrffe Aufgabe der beschrebede Statstk: Große ud uüberschtlche Datemege so aufberete, dass wege aussagekräftge Kegröße ud/oder Graphke etstehe, dee de gesamte

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Skript Teil 7: Polygonzug

Skript Teil 7: Polygonzug Prof. Dr. tech. Alfred Mschke Vorlesug zur Verastaltug Vermessugskude Skrpt Tel 7: Polgozug Der Begrff Polgo letet sch aus Pol = vel ud Go = Wkel ab ud bedeutet uregelmäßges Veleck. Das Polgoere det zum

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6

Übung Statistik II SS 2006 Musterlösung Arbeitsblatt 6 Ihalt: Efaktorelle Varazaalyse Bortz: Bortz Kap. 7.0-7. Übug Statstk II SS 006 Musterlösug rbetsblatt 6 ufgabe 1: Nee Se de Verfahre für Mttelwertsvergleche, de Se bsher für tervallskalerte Date kee gelert

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen

Zahlensysteme. Dezimalsystem. Binär- oder Dualsystem. Hexadezimal- oder Sedezimalzahlen IT Zahlesysteme Zahledarstellug eem Stellewertcode (jede Stelle hat ee bestmmte Wert) Def. Code: Edeutge Abbldugsvorschrft für de Abbldug ees Zeche-Vorrates eem adere Zechevorrat. Dezmalsystem De Bass

Mehr

Eigenwerteinschließungen I

Eigenwerteinschließungen I auptsemar: Numersche Lösuge für Egewertaufgabe Egewerteschleßuge I Referet: Wolfgag Wesselsky Glederug Eletug Kodto vo Egewerte 3 Eschleßugssätze Bauer-Fke, Gershgor, Wlkso, Bedxo 4 Zusatz: Courat / Weyl

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Gliederung des Kurses:

Gliederung des Kurses: Lageparameter Sete Glederug des Kurses: I II Allgemee Grudlage Statstsche Aalyse ees ezele Merkmals Aalyse/Beschrebug ees ezele Merkmals Zel: Verdchtug (Komprmerug) eer uüberschaubare Datemege Komprmerede

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

Methoden der computergestützten Produktion und Logistik

Methoden der computergestützten Produktion und Logistik Methode der comutergestützte Produkto ud Logstk 9. Bedesysteme ud Warteschlage Prof. Dr.-Ig. habl. Wlhelm Dagelmaer Modul W 336 SS 06 Bedesysteme ud Warteschlage Besel: Fahrradfabrk Presse Puffer Lackerere

Mehr

1 Elementare Finanzmathematik

1 Elementare Finanzmathematik Elemetare Fazmathemat 4 Elemetare Fazmathemat Zel: Bewertug ud Verglech atueller ud zuüftger Geldströme. Determstsche Zahlugsströme Defto: E determstscher Zahlugsstrom st ee Futo Z: N R, de jedem Zetput

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen II. Clustering 2

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen II. Clustering 2 Uverstät Potsdam Isttut für Iformatk Lehrstuhl Maschelles Lere Maschelles Lere II Clusterg 2 Chrstoph Sawade/Nels Ladwehr Tobas Scheffer Überblck Zuletzt: K-meas Mxture of Gaussas Herarchsches Cluster

Mehr

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation

Thema 5: Reduzierte Datenanforderungen II: Naive Diversifikation Thea 5: Reduzerte Dateaforderuge II: Nave Dversfkato roble: Klealeger verfüge oft cht eal über hrechede Iforatoe zur Awedug des Sgle-Idex-Modells. I wetere: Herletug eer Hadlugsepfehlug für de Fall fehleder

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Vorlesung Multivariate Statistik. Sommersemester 2009

Vorlesung Multivariate Statistik. Sommersemester 2009 P.Martus, Multvarate Statstk, SoSe 009 Free Uverstät Berl Charté Uverstätsmedz Berl Bachelor Studegag Boformatk Vorlesug Multvarate Statstk Sommersemester 009 Prof. Dr. rer. at. Peter Martus Isttut für

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

Deskriptive Statistik - Aufgabe 2

Deskriptive Statistik - Aufgabe 2 Derptve Statt - Augabe Budelad Mäer Fraue Bade-Württemberg 7,5 7,5 Bayer 6,8 7,5 Berl-Wet 4,4 Berl-Ot,8 4, Bradeburg 0, 0,8 Breme 4,6,6 Hamburg, 8, Hee 8, 8, Mecleburg-Vorpommer,3, Nederache 0,3, Nordrhe-Wetale

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ).

Wenn man mehrere Verbraucher in Reihe schaltet, so werden alle vom gleichen Strom durchflossen, siehe auch Abschnitt und Formel ( ). - rudlage der Elektrotechk - 60 22..04 4 Der komplzertere elektrsche lechstromkres 4. Kombato vo Verbraucher 4.. Sere- oder eheschaltug vo Wderstäde We ma mehrere Verbraucher ehe schaltet, so werde alle

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP)

wahlberechtigte Personen der BRD zur Bundestagswahl zugelassene Parteien (SPD, CDU, Grüne, FDP) Zu Aufgabe 1) Sd folgede Merkmale dskret oder stetg? a) De durch ee wahlberechtgte Perso der BRD gewählte Parte be der Budestagswahl. b) Kraftstoffverbrauch ees Persoekraftwages auf 100 km. c) Zahl der

Mehr

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel.

Maßzahlen. 1. Arithmetisches Mittel. Das für quantitative Merkmale am häufigsten verwendete Lokalisationsmaß ist das arithmetische Mittel. J SCHIRA, C MÜLLER / Statstk I / SS 005 Maßzahle 6 Maßzahle Arthmetsches Mttel Das für quattatve Merkmale am häufgste verwedete Lokalsatosmaß st das arthmetsche Mttel Defto: De Größe := = heßt arthmetsches

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practcal Numercal Trag UKNum Statstk, Datemodellerug PD. Dr. C. Mordas Ma-Plack-Isttute für Astroome, Hedelberg Programm: ) Repetto elemetare Statstk 2) Regressosaalyse 3) Leare Regresso 4) Ncht-leare

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN

WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN WISSENSCHAFTLICHE FORSCHUNG QUANTITATIVE METHODEN Davd Tobsk UDE.EDUcato College Uverstät Dusburg-Esse Campus Esse dokforum Verso.0 DESKRIPTIVE STATISTIK. Orgasato ud Darstellug vo Date Koderug Um alle

Mehr

F Fehlerrechnung 1. Systematische und statistische Fehler

F Fehlerrechnung 1. Systematische und statistische Fehler -F.- F Fehlerrechug. Systematsche ud statstsche Fehler Jede Messug eer physkalsche Größe st mt eem Fehler verbude. Es st daher otwedg be der Agabe des Messwertes ee Fehlerabschätzug azugebe. Ma uterschedet

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

Preisindex. und. Mengenindex

Preisindex. und. Mengenindex Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk resdex ud Megedex Übuge Aufgabe ösuge www.f-lere.de resdex 1 De Etwcklug der rese wrd der Öffetlchket

Mehr

Korrelation und Assoziation

Korrelation und Assoziation Sche- ud Noe- Korrelato Korrelato ud Aozato Schekorrelato: zwe Merkmale häge bede vo eem wetere drtte ab Noekorrelato: zwe Merkmale habe ee hohe Korrelato, aber kee urächlche Zuammehag Korrelato ud Aozato

Mehr

Einführung in die beschreibende Statistik

Einführung in die beschreibende Statistik Eführug de beschrebede Statstk Alte Katosschule Aarau Fachschaft Mathematk erstellt vo Roger Sa, Roger Keller ud Marae Ste 05, Verso 6 Ihalt Eletug Grudbegrffe 3 3 Darstellug vo Date 6 4 Etelug Klasse

Mehr

Verteilungen und Schätzungen

Verteilungen und Schätzungen Verteluge ud Schätzuge Zufallseperet Grudbegrffe Vorgag ach eer bestte Vorschrft ausgeführt ( Przp) belebg oft wederholbar se Ergebs st zufallsabhägg be ehralge Durchführug des Eperets beeflusse de Ergebsse

Mehr