2. Zufallsvariable, Verteilungsfunktion, Erwartungswert,

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Zufallsvariable, Verteilungsfunktion, Erwartungswert,"

Transkript

1 2. Zufallsvariable, Verteilungsfunktion, Erwartungswert, momentenerzeugende Funktion Ziel des Kapitels: Mathematische Präzisierung der Konzepte Zufallsvariable Verteilungsfunktion Dichtefunktion Erwartungswerte und Momente Momentenerzeugende Funktion 8

2 Dazu zunächst: Wiederholung der Begriffe Zufallsvorgang Ergebnis und Ergebnismenge Ereignis Wahrscheinlichkeit (vgl. Wilfling (2011), Kapitel 2) 9

3 2.1 Grundlegende Begriffe Definition 2.1: (Zufallsvorgang, Zufallsexperiment) Unter einem Zufallsvorgang verstehen wir einen Vorgang, bei dem (a) im Voraus feststeht, welche möglichen Ausgänge dieser theoretisch haben kann, (b) der sich einstellende, tatsächliche Ausgang im Voraus jedoch unbekannt ist. Zufallsvorgänge, die geplant sind und kontrolliert ablaufen, heißen Zufallsexperimente. 10

4 Beispiele für Zufallsexperimente: Ziehung der Lottozahlen Roulette, Münzwurf, Würfelwurf Technische Versuche (Härtetest von Stahlproben etc.) In der VWL: Oft keine Zufallsexperimente (historische Daten, Bedingungen nicht kontrollierbar) Moderne VWL-Disziplin: Experimentelle Ökonomik 11

5 Definition 2.2: (Ergebnis, Ergebnismenge) Die Menge aller möglichen Ausgänge eines Zufallsvorgangs heißt Ergebnismenge und wird mit Ω bezeichnet. Ein einzelnes Element ω Ω heißt Ergebnis. Beispiele: Zufallsvorgang Werfen eines Würfels : Ω = {1, 2, 3, 4, 5, 6} Zufallsvorgang Werfen einer Münze solange, bis Kopf erscheint : Ω = {K, ZK, ZZK, ZZZK, ZZZZK,...} Zufallsvorgang Bestimmung des morgigen Wechselkurses zwischen Euro und US-$ : Ω = [0, ) 12

6 Offensichtlich: Die Anzahl der Elemente von Ω kann endlich, abzählbar unendlich oder nicht abzählbar unendlich sein Jetzt: Mengentheoretische Definition des Begriffes Ereignis Definition 2.3: (Ereignis) Unter einem Ereignis verstehen wir eine Zusammenfassung von Ergebnissen eines Zufallsvorgangs, d.h. ein Ereignis ist eine Teilmenge der Ergebnismenge Ω. Man sagt Das Ereignis A tritt ein, wenn der Zufallsvorgang ein ω A als Ergebnis hat. 13

7 Bemerkungen: Notation von Ereignissen: A, B, C,... oder A 1, A 2,... A = Ω heißt das sichere Ereignis (denn für jedes Ergebnis ω gilt: ω A) A = (leere Menge) heißt das unmögliche Ereignis (denn für jedes ω gilt: ω / A) Falls das Ereignis A eine Teilmenge des Ereignisses B ist (A B), so sagt man: Das Eintreten von A impliziert das Eintreten von B (denn für jedes ω A folgt ω B) Offensichtlich: Ereignisse sind Mengen Anwendung von Mengenoperationen auf Ereignisse 14

8 Ereignisverknüpfungen (Mengenoperationen): Durchschnittsereignis (-menge): n i=1 Vereinigungsereignis (-menge): n i=1 A i tritt ein, wenn alle A i eintreten A i tritt ein, wenn mindestens ein A i eintritt Differenzereignis (-menge): C = A\B tritt ein, wenn A eintritt, aber B nicht Komplementärereignis: C = Ω\A A tritt ein, wenn A nicht eintritt Die Ereignisse A und B heißen unvereinbar oder disjunkt, wenn A B = (beide Ereignisse können nicht gleichzeitig eintreten) 15

9 Jetzt: Jedem Ereignis A soll eine Zahl P (A) zugeordnet werden, welche die Wahrscheinlichkeit für das Eintreten von A repräsentiert Formal: P : A P (A) Frage: Welche Eigenschaften sollte die Zuordnung (Mengenfunktion) P besitzen? 16

10 Definition 2.4: (Kolmogorov sche Axiome) werden als Kol- Die folgenden 3 Mindestanforderungen an P mogorov sche Axiome bezeichnet: Nichtnegativität: Für alle A soll gelten: P (A) 0 Normierung: P (Ω) = 1 Additivität: Für zwei disjunkte Ereignisse A und B (d.h. für A B = ) soll gelten: P (A B) = P (A) + P (B) 17

11 Es ist leicht zu zeigen: Die 3 Kolmogorov schen Axiome implizieren bestimmte Eigenschaften und Rechenregeln für Wahrscheinlichkeiten Satz 2.5: (Eigenschaften von Wahrscheinlichkeiten) Aus den Kolmogorov schen Axiomen ergeben sich folgende Eigenschaften für die Wahrscheinlichkeit beliebiger Ereignisse: Wahrscheinlichkeit des Komplimentärereignisses: P (A) = 1 P (A) Wahrscheinlichkeit des unmöglichen Ereignisses: P ( ) = 0 Wertebereich der Wahrscheinlichkeit: 0 P (A) 1 18

12 Weiterhin: Allgemeine Rechenregeln für Wahrscheinlichkeiten, die aus den Kolmogorov schen Axiomen folgen Satz 2.6: (Rechenregeln für Wahrscheinlichkeiten) Aus den Kolmogorov schen Axiomen ergeben sich die folgenden Rechenregeln für die Wahrscheinlichkeit von beliebigen Ereignissen A, B, C: Additionssatz für Wahrscheinlichkeiten: P (A B) = P (A) + P (B) P (A B) (Wahrscheinlichkeit, dass A oder B eintritt) 19

13 Additionssatz für 3 Ereignisse: P (A B C) = P (A) + P (B) + P (C) P (A B) P (B C) P (A C) + P (A B C) (Wahrscheinlichkeit, dass A oder B oder C eintritt) Wahrscheinlichkeit des Differenzereignisses: P (A\B) = P (A B) = P (A) P (A B) 20

14 Man beachte: Wenn das Ereignis B das Ereignis A impliziert (d.h. wenn B A gilt), dann folgt P (A\B) = P (A) P (B) 21

15 2.2 Zufallsvariable, Verteilungs- und Dichtefkt Häufige Situation in der Praxis: Es interessiert weniger das konkrete Ergebnis ω Ω eines Zufallsexperimentes, sondern eine Zahl, die von ω abhängt Beispiele: Gewinn in Euro im Roulette Gewinn einer Aktie an der Börse Monatsgehalt einer zufällig ausgewählten Person Intuitive Bedeutung einer Zufallsvariablen: Vorschrift, die das abstrakte ω in eine Zahl übersetzt 22

16 Definition 2.7: (Zufallsvariable [kurz: ZV]) Unter einer Zufallsvariablen versteht man formal eine (mathematische) Funktion X : Ω R ω X(ω). Bemerkungen: Eine Zufallsvariable ordnet jedem Ergebnis ω Ω eine reelle Zahl zu Intuition: Eine Zufallsvariable X charakterisiert eine Zahl, deren Wert man noch nicht kennt 23

17 Nach der Durchführung des Zufallsexperimentes realisiert sich die Zufallsvariable X im Wert x x heißt die Realisation oder Realisierung der ZV X nach Durchführung des zugehörigen Zufallsexperimentes In dieser VL: Zufallsvariablen werden immer mit Großbuchstaben, Realisationen immer mit Kleinbuchstaben bezeichnet Die Zufallsvariable X beschreibt die Situation ex ante, d.h. vor der tatsächlichen Durchführung des Zufallsexperimentes Die Realisation x beschreibt die Situation ex post, d.h. nach der Durchführung des Zufallsexperimentes 24

18 Beispiel 1: Betrachte den 1-maligen Münzwurf (Z=Zahl, K=Kopf). Die ZV X bezeichne die Anzahl der Köpfe bei diesem Zufallsexperiment Es gilt: Ω = {K, Z} Die ZV X kann 2 Werte annehmen: X(Z) = 0, X(K) = 1 25

19 Beispiel 2: Betrachte den 3-maligen Münzwurf. erneut die Anzahl der Köpfe Die ZV X bezeichne Es gilt: Ω = {(K, K, K), (K, K, Z),..., (Z, Z, Z) }{{}}{{}}{{} =ω 1 =ω 2 Die Zufallsvariable X ist definiert durch X(ω) = Anzahl der K in ω =ω 8 } Offensichtlich: X ordnet verschiedenen ω dieselbe Zahl zu, z.b. X((K, K, Z)) = X((K, Z, K)) = X((Z, K, K)) = 2 26

20 Beispiel 3: Aus einer Personengruppe wird zufällig 1 Person ausgewählt. Die ZV X soll den Erwerbsstatus der ausgewählten Person bezeichnen Es gilt: Ω = { erwerbstätig }{{}, } nicht erwerbstätig {{} =ω 1 =ω 2 } Die ZV X kann codiert werden durch X(ω 1 ) = 1, X(ω 2 ) = 0 27

21 Beispiel 4: Das Zufallsexperiment bestehe in der Messung des morgigen Kurses einer bestimmten Aktie. Die ZV X bezeichne diesen Aktienkurs Es gilt Ω = [0, ), d.h. X ist definiert durch X(ω) = ω Zwischenfazit: Die ZV X kann verschiedene Werte annehmen und zwar mit bestimmten Wskt en 28

22 Frage: Wie kann man diese Wskt en bestimmen und mit diesen rechnen? Zunächst vereinfachte Schreibweise: (a, b, x R) P (X = a) P ({ω X(ω) = a}) P (a < X < b) P ({ω a < X(ω) < b}) P (X x) P ({ω X(ω) x}) Lösung: Die Berechnung solcher Wskt en kann über die sogenannte Verteilungsfunktion der ZV en X erfolgen 29

23 Intuition: Die Verteilungsfunktion der ZV en X charakterisiert die Wahrscheinlichkeiten, mit denen sich die potenziellen Realisationen x auf der reellen Zahlenachse verteilen (die sogenannte Verteilung der ZV en X) Definition 2.8: (Verteilungsfunktion [kurz: VF]) Gegeben sei die Zufallsvariable X. Unter der Verteilungsfunktion der ZV en X (in Zeichen: F X ) versteht man die folgende Abbildung: F X : R [0, 1] x F X (x) = P ({ω X(ω) x}) = P (X x). 30

24 Beispiel: Betrachte den 3-fachen Münzwurf. Anzahl Kopf. Die ZV X messe die Zunächst gilt: Ω = {(K, K, K), (K, K, Z),..., (Z, Z, Z) } }{{}}{{}}{{} = ω 1 = ω 2 = ω 8 Für die Wskt en der ZV X errechnet sich: P (X = 0) = P ({(Z, Z, Z)}) = 1/8 P (X = 1) = P ({(Z, Z, K), (Z, K, Z), (K, Z, Z)}) = 3/8 P (X = 2) = P ({(Z, K, K), (K, Z, K), (K, K, Z)}) = 3/8 P (X = 3) = P ({(K, K, K)}) = 1/8 31

25 Daraus ergibt sich die VF: F X (x) = für x < für 0 x < für 1 x < für 2 x < 3 1 für x 3 Bemerkungen: Es genügt (fast immer), lediglich die VF F X der ZV X zu kennen Oft ist es in praxi gar nicht möglich, den Grundraum Ω oder die explizite Abbildung X : Ω R anzugeben (jedoch kann man meistens die VF F X aus sachlogischen Überlegungen heraus angeben) 32

26 Allgemeingültige Eigenschaften von F X : F X (x) ist monoton wachsend Es gilt stets: lim x F X(x) = 0 und lim x + F X(x) = 1 F X ist rechtsseitig stetig, d.h. lim z x z>x F X (z) = F X (x) 33

27 Fazit: VF F X (x) der ZV en X gibt Antwort auf die Frage Wie hoch ist die Wahrscheinlichkeit, dass X höchstens den Wert x annimmt? Jetzt: Antwort auf die Frage Welchen Wert wird die ZV e X mit einer vorgegebenen Wahrscheinlichkeit p (0, 1) nicht überschreiten? Quantilfunktion der ZV en X 34

28 Definition 2.9: (Quantilfunktion) Gegeben sei die ZV X mit VF F X. Für jeden reellen Wert p (0, 1) versteht man unter der Quantilfunktion von X (in Zeichen: Q X (p)) die folgende Abbildung: Q X : (0, 1) R p Q X (p) = min{x F X (x) p}. Der Wert der Quantilfunktion x p = Q X (p) heißt p Quantil der ZV en X. Bemerkungen: Das p-quantil x p ist die kleinste Zahl x R mit der Eigenschaft, dass F X (x) den Wert p erreicht oder überschreitet Interpretiert man p (0, 1) als eine Wahrscheinlichkeit, so ist das p-quantil x p die kleinste Realisation der ZV en X, die X mit Wskt. p nicht überschreitet 35

29 Spezielle Quantile: Median: p = 0.5 Quartile: p = 0.25, 0.5, 0.75 Quintile: p = 0.2, 0.4, 0.6, 0.8 Dezile: p = 0.1, 0.2,..., 0.9 Jetzt: Typisierung von ZV en (diskrete vs. stetige ZV en) 36

30 Grund: Unterschiedliche mathematische Methoden zur Behandlung von ZV en Bei diskreten ZV en: Endliche und unendliche Summen Bei stetigen ZV en: Differential- und Integralrechnung Bemerkungen: Es gibt auch ZV en, die gleichzeitig teilweise diskret und teilweise stetig sind Solche ZV en werden hier nicht behandelt 37

31 Definition 2.10: (Diskrete Zufallsvariable) Die ZV X heißt diskret, wenn sie entweder (a) nur endlich viele Realisationen x 1, x 2,..., x J oder (b) abzählbar unendlich viele Realisationen x 1, x 2,... mit streng positiver Wahrscheinlichkeit annehmen kann, d.h. falls für alle j = 1,..., J,... gilt P (X = x j ) > 0 und J,... j=1 P (X = x j ) = 1. 38

32 Typische diskrete Merkmale sind: Zählmerkmale ( X = Anzahl von... ) Codierte qualitative Merkmale Weitere Definitionen: Definition 2.11: (Träger einer diskreten Zufallsvariablen) Die Menge aller Realisationen, die eine diskrete ZV X mit streng positiver Wskt. annehmen kann, heißt Träger von X (in Zeichen: T X ): T X = {x 1,..., x J } bzw. T X = {x 1, x 2,...}. 39

33 Definition 2.12: (Wahrscheinlichkeitsfunktion) Für eine diskrete ZV X heißt die Funktion f X (x) = P (X = x) die Wahrscheinlichkeitsfunktion von X. Bemerkungen: Die Wahrscheinlichkeitsfunktion f X der ZV X nimmt nur für die Elemente des Trägers T X positive Werte an. Für Werte außerhalb des Trägers, d.h. für x / T X, gilt f X (x) = 0: f X (x) = { P (X = xj ) > 0 für x = x j T X 0 für x / T X 40

34 Die Wahrscheinlichkeitsfkt. f X hat die Eigenschaften f X (x) 0 für alle x x j T X f X (x j ) = 1 Für eine beliebige Menge A R berechnet sich die Wskt. des Ereignisses {ω X(ω) A} = {X A} durch P (X A) = x j A f X (x j ) 41

35 Beispiel: Betrachte 3-fachen Münzwurf und X = Anzahl Kopf (vgl. Folien 31, 32) Offensichtlich: X ist diskret mit dem Träger T X = {0, 1, 2, 3} Die Wahrscheinlichkeitsfunktion ist gegeben durch f X (x) = P (X = 0) = für x = 0 P (X = 1) = für x = 1 P (X = 2) = für x = 2 P (X = 3) = für x = 3 0 für x / T X 42

36 Die Verteilungsfunktion ist gegeben durch F X (x) = für x < für 0 x < für 1 x < für 2 x < 3 1 für x 3 Offensichtlich: Für die Verteilungsfunktion gilt F X (x) = P (X x) = {x j T X x j x} =P (X=x j ) {}}{ f X (x j ) 43

37 Fazit: Die VF einer diskreten ZV en X ist eine Treppenfunktion mit Sprüngen an den Stellen x j T X. Die Sprunghöhe an der Stelle x j beträgt F X (x j ) lim x xj x<x j F (x) = P (X = x j ) = f X (x j ), d.h. die Sprunghöhe ist der Wert der Wskt.-Funktion (Beziehung: Verteilungs- und Wahrscheinlichkeitsfunktion) 44

38 Jetzt: Definition von stetigen Zufallsvariablen Intuition: Im Gegensatz zu diskreten ZV en können stetige ZV e überabzählbar viele Realisationen (z.b. jede reelle Zahl in einem Intervall) annehmen Tatsächlich: Definition stetiger ZV en komplizierter (technischer) 45

39 Definition 2.13: (Stetige ZV, Dichtefunktion) Eine ZV X heißt stetig, wenn sich ihre Verteilungsfunktion F X als Integral einer Funktion f X : R [0, ) schreiben lässt, d.h. wenn x F X (x) = f X(t)dt für alle x R. Die Funktion f X (x) heißt Dichtefunktion [kurz: Dichte] von X. Bemerkungen: Die VF F X einer stetigen ZV en X ist (eine) Stammfunktion der Dichtefunktion f X F X (x) = P (X x) ist gleich dem Flächeninhalt unter der Dichtefunktion f X von bis zur Stelle x 46

40 Verteilungsfunktion F X und Dichte f X P(X x) = F X (x) f X (t) x t 47

41 Eigenschaften der Dichtefunktion f X : 1. Die Dichte f X ist niemals negativ, d.h. f X (x) 0 für alle x R 2. Die Fläche unter der Dichte ist gleich 1, d.h. + f X(x)dx = 1 3. Wenn F X (x) differenzierbar ist, gilt f X (x) = F X (x) df X(x)/dx 48

42 Beispiel: (Gleichverteilung über [0, 10]) Gegeben sei die ZV X mit Dichtefunktion f X (x) = { 0, für x / [0, 10] 0.1, für x [0, 10] Berechnung der VF F X : Für x < 0 gilt: F X (x) = x f X(t) dt = x 0 dt = 0 49

43 Für x [0, 10] gilt: F X (x) = = x f X(t) dt 0 0 dt }{{} =0 + x dt = [0.1 t] x 0 = 0.1 x = 0.1 x 50

44 Für x > 10 gilt: F X (x) = x f X(t) dt = = dt }{{} = dt + } 0 {{ } = dt }{{} =0 51

45 Jetzt: Wskt. en für Intervalle, d.h. (für a, b R, a < b) P (X (a, b]) = P (a < X b) Es gilt: P (a < X b) = P ({ω a < X(ω) b}) = P ({ω X(ω) > a} {ω X(ω) b}) = 1 P ({ω X(ω) > a} {ω X(ω) b}) = 1 P ({ω X(ω) > a} {ω X(ω) b}) = 1 P ({ω X(ω) a} {ω X(ω) > b}) 52

46 = 1 [P (X a) + P (X > b)] = 1 [F X (a) + (1 P (X b))] = 1 [F X (a) + 1 F X (b)] = F X (b) F X (a) = = b f X(t) dt b a f X(t) dt a f X(t) dt 53

47 Intervall-Wahrscheinlichkeit mit den Grenzen a und b f X (x) P(a < X b) a b x 54

48 Wichtiges Ergebnis für stetige ZV X: P (X = a) = 0 für alle a R Begründung: P (X = a) = lim b a P (a < X b) = = a a f X(x)dx = 0 b lim f b a X(x) dx a Fazit: Die Wskt., dass eine stetige ZV X einen einzelnen Wert annimmt, ist immer Null!! 55

49 Punkt-Wahrscheinlichkeit f X (x) a b 3 b 2 b 1 x 56

50 Vorsicht: Das bedeutet nicht, dass dieses Ereignis unmöglich ist Konsequenz: Da bei stetigen ZV en für alle a R stets P (X = a) = 0 gilt, folgt für stetige ZV stets P (a < X < b) = P (a X < b) = P (a X b) = P (a < X b) = F X (b) F X (a) (Ob Intervalle offen oder geschlossen sind, spielt für die Wskt.-Bestimmung bei stetigen ZV keine Rolle) 57

51 2.3 Erwartungswerte, Momente und momentenerzeugende Funktionen Bekannt aus WRUSS: Der Erwartungswert einer ZV en X ist eine Maßzahl für die Lage der Verteilung (Lagemaß) Definition 2.14: (Erwartungswert) Der Erwartungswert der ZV en X [in Zeichen: E(X)] ist definiert als E(X) = {x j T X } + x j P (X = x j ), falls X diskret ist x f X(x) dx, falls X stetig ist. 58

52 Bemerkungen: Der Erwartungswert der ZV en X entspricht also (in etwa) der Summe aller möglichen Realisationen jeweils gewichtet mit der Wskt. ihres Eintretens Anstelle von E(X) schreibt man häufig µ X Es gibt ZV en, die keinen Erwartungswert besitzen (vgl. Übung) 59

53 Beispiel 1: (Diskrete ZV) Man betrachte den 2-maligen Würfelwurf. Die ZV X stehe für die (betragliche) Differenz der Augenzahlen. Man berechne den Erwartungswert von X Zunächst ergibt sich als Träger der Zufallsvariablen T X = {0, 1, 2, 3, 4, 5} 60

54 Die Wahrscheinlichkeitsfunktion ist gegeben durch f X (x) = Als Erwartungswert ergibt sich E(X) = 0 P (X = 0) = 6/36 für x = 0 P (X = 1) = 10/36 für x = 1 P (X = 2) = 8/36 für x = 2 P (X = 3) = 6/36 für x = 3 P (X = 4) = 4/36 für x = 4 P (X = 5) = 2/36 für x = 5 0 für x / T X = =

55 Beispiel 2: (Stetige ZV) Es sei X eine stetige ZV mit der Dichte f X (x) = x, für 1 x 3 4 0, sonst Zur Berechnung des Erwartungswertes spaltet man das Integral auf: E(X) = + x f X(x) dx = dx + x x dx dx 62

56 = 3 1 = 1 4 x 2 4 dx = 1 4 ( ) [ ] x3 1 = = Häufige Situation: Kenne ZV X mit Wskt.- oder Dichtefunktion f X Suche den Erwartungswert der transformierten ZV Y = g(x) 63

57 Satz 2.15: (Erwartungswert einer Transformierten) Gegeben sei die ZV X mit Wskt.- oder Dichtefunktion f X. Für eine beliebige (Baire)Funktion g : R R berechnet sich der Erwartungswert der transformierten ZV Y = g(x) als E(Y ) = E[g(X)] = {x j T X } + g(x j ) P (X = x j ), falls X diskret ist g(x) f X(x) dx, falls X stetig ist. 64

58 Bemerkungen: Alle Funktionen, die in unserer Veranstaltung auftauchen, sind Baire-Funktionen Für den Spezialfall g(x) = x (die Identitätsfunktion) fällt der Satz 2.15 mit der Definition 2.14 zusammen Zunächst: Erste wichtige Rechenregeln für Erwartungswerte 65

59 Satz 2.16: (Regeln für E-Werte) Es seien X eine beliebige ZV (diskret oder stetig), c, c 1, c 2 R konstante Zahlen und g, g 1, g 2 : R R Funktionen. Dann gelten die folgenden Aussagen: 1. E(c) = c. 2. E[c g(x)] = c E[g(X)]. 3. E[c 1 g 1 (X) + c 2 g 2 (X)] = c 1 E[g 1 (X)] + c 2 E[g 2 (X)]. 4. Falls g 1 (x) g 2 (x) für alle x R gilt, so folgt: E[g 1 (X)] E[g 2 (X)]. Beweis: Übungsaufgabe 66

60 Jetzt: Betrachte die ZV X (diskret oder stetig) und die explizite Funktion g(x) = [x E(X)] 2 Varianz und Standardabweichung der ZV en X Definition 2.17: (Varianz, Standardabweichung) Für eine beliebige stetige oder diskrete ZV X ist die Varianz von X [in Zeichen: Var(X)] definiert als die erwartete quadrierte Abweichung der ZV von ihrem Erwartungswert E(X), d.h. Var(X) = E[(X E(X)) 2 ]. Unter der Standardabweichung von X [in Zeichen: SD(X)] versteht man die (positive) Wurzel aus der Varianz, d.h. SD(X) = + Var(X). 67

61 Bemerkungen: Mit g(x) = [X E(X)] 2 und Satz 2.15 (Folie 64) berechnet sich die Varianz von X explizit als Var(X) = E[g(X)] = {x j T X } + [x j E(X)] 2 P (X = x j ), für diskretes X [x E(X)]2 f X (x) dx Es gibt ZV en, die keine endliche Varianz besitzen (vgl. Übung), für stetiges X 68

62 Beispiel: (Diskrete ZV) Betrachte erneut den 2-maligen Würfelwurf mit der ZV X als (betraglicher) Differenz der Augenzahlen (vgl. Beispiel 1, Folie 35). Für die Varianz gilt: Var(X) = (0 70/36) 2 6/36 + (1 70/36) 2 10/36 + (2 70/36) 2 8/36 + (3 70/36) 2 6/36 + (4 70/36) 2 4/36 + (5 70/36) 2 2/36 = Man beachte: Die Varianz ist per definitionem ein Erwartungswert Rechenregeln für Erwartungswerte anwendbar 69

63 Satz 2.18: (Rechenregeln für Varianzen) Es seien X eine beliebige ZV (diskret oder stetig) sowie a, b R reelle Zahlen. Es gilt 1. Var(X) = E(X 2 ) [E(X)] Var(a + b X) = b 2 Var(X). Beweis: Übungsaufgabe Jetzt: Zwei wichtige Ungleichungen im Zusammenhang mit Erwartungswerten und transformierten ZV en 70

64 Satz 2.19: (Allgemeine Chebyshey-Ungleichung) Es seien X eine beliebige ZV sowie g : R R + eine nichtnegative Funktion. Dann gilt für jedes k > 0 Jetzt Spezialfall: Betrachte P [g(x) k] E [g(x)]. k g(x) = [x E(X)] 2 und k = r 2 Var(X) (r > 0) Hierfür liefert der Satz 2.19 P { [X E(X)] 2 r 2 Var(X) } Var(X) r 2 Var(X) = 1 r 2 71

65 Nun gilt P { [X E(X)] 2 r 2 Var(X) } = P { X E(X) r SD(X)} = 1 P { X E(X) < r SD(X)} Daraus folgt P { X E(X) < r SD(X)} 1 1 r 2 (spezielle Chebyshev-Ungleichung) 72

66 Bemerkung: Die spezielle Chebyshev-Ungleichung gibt die Mindestwahrscheinlichkeit an, mit der eine beliebige ZV in das folgende (offene oder geschlossene) Intervall fällt: Z.B. gilt für r = 3: [E(X) r SD(X), E(X) + r SD(X)] P { X E(X) < 3 SD(X)} = 8 9 was äquivalent ist zu P {E(X) 3 SD(X) < X < E(X) + 3 SD(X)} bzw. P {X (E(X) 3 SD(X), E(X) + 3 SD(X))}

67 Satz 2.20: (Jensen-Ungleichung) Es seien X eine beliebige ZV sowie g : R R eine konvexe (bzw. eine konkave) Funktion, d.h. für alle x gelte g (x) 0 (bzw. g (x) 0). Dann folgt E [g(x)] g(e[x]) bzw. E [g(x)] g(e[x]). Bemerkung: Es ist wichtig zu beachten, dass im Allgemeinen E [g(x)] g(e[x]) 74

68 Beispiel: Betrachte die ZV X und die Funktion g(x) = x 2 Es gilt: g (x) = 2 0 für alle x, d.h. g ist konvex Mit der Jensen-Ungleichung folgt d.h. E [g(x)] }{{} =E(X 2 ) g(e[x]) }{{} =[E(X)] 2 E(X 2 ) [E(X)] 2 0 Mit dem Satz 2.18 folgt also Var(X) = E(X 2 ) [E(X)] 2 0 (die Varianz einer ZV en kann niemals negativ sein) 75

69 Jetzt: Betrachte die beliebige ZV X mit E-Wert E(X) = µ X, eine natürliche Zahl n N sowie die Funktionen g 1 (x) = x n g 2 (x) = [x µ X ] n Definition 2.21: (Momente, zentrale Momente) (a) Das n-te Moment der ZV en X (in Zeichen: µ n ) ist definiert als µ n E[g 1(X)] = E(X n ). (b) Das n-te zentrale Moment um den Erwartungswert (in Zeichen: µ n ) ist definiert als µ n E[g 2 (X)] = E[(X µ X ) n ]. 76

70 Beziehungen: µ 1 = E(X) = µ X (das 1. Moment entspricht dem E-Wert) µ 1 = E[X µ X ] = E(X) µ X = 0 (das 1. zentrale Moment ist immer 0) µ 2 = E[(X µ X ) 2 ] = Var(X) (das 2. zentrale Moment entspricht der Varianz) 77

71 Bemerkungen: Speziell die ersten 4 Momente einer ZV en X sind Bausteine für wichtige Kenngrößen der Verteilung (Erwartungswert, Varianz, Schiefe, Kurtosis) Die Momente einer ZV en X spielen eine zentrale Rolle in der theoretischen und angewandten Statistik In einigen Fällen kann aus der Kenntnis aller Momente der ZV en X die vollständige Verteilung (d.h. die Wahrscheinlichkeits- bzw. die Dichtefunktion) hergeleitet werden 78

72 Frage: Gibt es eine mathematische Funktion, die eine Darstellung aller Momente einer Verteilung liefert? Definition 2.22: (Momentenerzeugende Funktion) Es sei X eine ZV mit Wskts- bzw. Dichtefunktion f X (x). Für eine reelle Zahl t R betrachte man den Erwartungswert E [ e t X]. Falls dieser E-Wert für alle t aus einem Intervall h < t < h, h > 0, existiert, so definiert man die momentenerzeugende Funktion von X (in Zeichen: m X (t)) als diesen E-Wert, d.h. m X (t) = E [ e t X]. 79

73 Bemerkungen: Die momentenerzeugende Funktion m X (t) wird als Funktion in t aufgefasst Es gibt ZV en X, für die m X (t) nicht existiert Falls m X (t) existiert, so berechnet sich die Funktion aufgrund des Satzes 2.15 (Folie 64) als m X (t) = E [ e t X] = {x j T X } + e t x j P (X = x j ), falls X diskret et x f X (x) dx, falls X stetig 80

74 Frage: Warum heißt m X (t) momentenerzeugende Funktion? Antwort: Man betrachte die n-te Ableitung von m X (t) nach t: d n dt nm X(t) = {x j T X } + (x j ) n e t x j P (X = x j ), falls X diskret xn e t x f X (x) dx, falls X stetig 81

75 Für die n-te Ableitung an der Stelle t = 0 gilt d n dt nm X(0) = {x j T X } + (x j ) n P (X = x j ), falls X diskret xn f X (x) dx, falls X stetig = E(X n ) = µ n (vgl. Definition 2.21(a), Folie 76) 82

76 Beispiel: Es sei X eine stetige ZV mit Dichtefunktion f X (x) = { 0, falls x < 0 λ e λ x, falls x 0 (Exponentialverteilung mit Parameter λ > 0) Es gilt m X (t) = E [ e t X] = + et x f X (x) dx für t < λ = + 0 λ e (t λ) x dx = λ λ t 83

77 Es folgt und somit m X (t) = λ (λ t) 2 sowie m 2λ X (t) = (λ t) 3 m X (0) = E(X) = 1 λ sowie m X (0) = E(X2 ) = 2 λ 2 Jetzt: Zentrales Resultat über momentenerzeugende Funktionen 84

78 Satz 2.23: (Identifikationseigenschaft) Es seien X und Y zwei ZV en mit Wskts- bzw. Dichtefunktionen f X ( ) und f Y ( ). Angenommen, die beiden momentenerzeugenden Funktionen m X (t) und m Y (t) existieren und es gilt m X (t) = m Y (t) für alle t im Intervall h < t < h, h > 0. Dann haben die beiden ZV en identische Verteilungsfunktionen, d.h. es gilt F X (x) = F Y (x) für alle x. Bemerkung: Der Satz 2.23 besagt, dass zu einer gegebenen momentenerzeugenden Funktion m X (t) eine eindeutige Verteilungsfunktion F X (x) gehört Wenn m X (t) für die ZV X bekannt ist, dann kann man (zumindest theoretisch) die Verteilung von X bestimmen Diese Eigenschaft werden wir in Kapitel 4 benutzen 85

79 Beispiel: Angenommen, die ZV X hat die momentenerzeugende Funktion m X (t) = 1 für 1 < t < 1 1 t Dann muss die Dichtefunktion von X gegeben sein durch f X (x) = { 0, falls x < 0 e x, falls x 0 (Exponentialverteilung mit Parameter λ = 1) 86

80 2.4 Spezielle Verteilungen Bisher: Analyse allgemeiner mathematischer Eigenschaften beliebiger Verteilungen Unterscheidung zwischen diskreten und stetigen Verteilungen Betrachtung der Verteilungsfunktion F X (x) der Wskt- bzw. Dichtefunktion f X (x) von Erwartungswerten E[g(X)] der momentenerzeugenden Funktion m X (t) 87

81 Zentrale Erkenntnis: Die Verteilung einer ZV en X ist (im wesentlichen) durch f X (x) oder F X (x) bestimmt Mit f X (x) lässt sich F X (x) bestimmen (vgl. Folie 46) Aus F X (x) lässt sich (im wesentlichen) f X (x) bestimmen (vgl. Folie 48) Frage: Wieviele verschiedene Verteilungen gibt es? 88

82 Antwort: Unendlich viele Jedoch: In der Praxis haben sich einige wichtige parametrische Verteilungsfamilien als gute Modelle für real auftretende Zufallsereignisse herauskristallisiert Diese Verteilungsfamilien werden in allen Statistik-Lehrbüchern ausführlich beschrieben (z.b. in Mosler & Schmid (2008), Mood et al. (1974)) 89

83 Zentrale diskrete Verteilungsfamilien Bernoulli-Verteilung Binomial-Verteilung Geometrische Verteilung Poisson-Verteilung Zentrale stetige Verteilungsfamilien Gleichverteilung Exponentialverteilung Normalverteilung 90

84 Bemerkung: Die wichtigste parametrische Verteilungsfamilie überhaupt ist die Normalverteilung Definition 2.24: (Normalverteilung) Die stetige ZV X heißt normalverteilt mit Parametern µ R und σ 2 > 0 [in Zeichen: X N(µ, σ 2 )], falls X die folgende Dichtefunktion besitzt: f X (x) = 1 ( ) x µ 2 e 1 2 σ, x R. 2π σ 91

85 Dichtefunktionen der Normalverteilung f X (x) N(0,1) N(5,1) N(5,3) N(5,5) 0 5 x 92

86 Bemerkungen: Die Normalverteilung N(0, 1) heißt Standardnormalverteilung. Ihre Dichte wird oft mit ϕ(x) bezeichnet Die Kenntnis aller Eigenschaften sowie das Rechnen mit normalverteilten ZV en ist zwingende Voraussetzung für diese Veranstaltung (vgl. Wilfling (2011), Kapitel 3.4) 93

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Folien zur Vorlesung. Statistik II (Wahrscheinlichkeitsrechnung und schließende Statistik)

Folien zur Vorlesung. Statistik II (Wahrscheinlichkeitsrechnung und schließende Statistik) Folien zur Vorlesung Statistik II (Wahrscheinlichkeitsrechnung und schließende Statistik) Sommersemester 2014 Montag, 16.15-17.45 Uhr Hörsaal: H 1 und H 3 Prof. Dr. Bernd Wilfling Westfälische Wilhelms-Universität

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

2. Zufallsvorgänge und Wahrscheinlichkeiten

2. Zufallsvorgänge und Wahrscheinlichkeiten 2. Zufallsvorgänge und Wahrscheinlichkeiten Ziel des Kapitels: Einführung elementarer Begriffe der Wahrscheinlichkeitsrechnung (definitorisch) Ziel der Wahrscheinlichkeitsrechnung: Modellierung von zufälligen

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen

Kapitel 6. Verteilungsparameter. 6.1 Der Erwartungswert Diskrete Zufallsvariablen Kapitel 6 Verteilungsparameter Wie bei einem Merkmal wollen wir nun die Lage und die Streuung der Verteilung einer diskreten Zufallsvariablen durch geeignete Maßzahlen beschreiben. Beginnen wir mit Maßzahlen

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie

Zentralübung Diskrete Wahrscheinlichkeitstheorie Zentralübung Diskrete Wahrscheinlichkeitstheorie Christian Ivicevic (christian.ivicevic@tum.de) Technische Universität München 14. Juni 2017 Agenda Disclaimer und wichtige Hinweise Übungsaufgaben Disclaimer

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460 Beispiel 78 Wir betrachten

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

12 Erwartungswerte. Erwartungswerte 111. Überblick

12 Erwartungswerte. Erwartungswerte 111. Überblick Erwartungswerte 111 12 Erwartungswerte Zur Motivation der Begrisbildung wird zunächst der Erwartungswert im diskreten Fall als Reihenwert eingeführt. Der allgemeine, auf dem Integral basierende Erwartungswert

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr