» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "» S C H R I T T - F Ü R - S C H R I T T - A N L E I T U N G «M U L T I P L E L I N E A R E R E G R E S S I O N M I T S P S S / I B M Daniela Keller"

Transkript

1 » SCHRITT-FÜR-SCHRITTANLEITUNG«MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Daniela Keller

2 Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Impressum 2016 Statistik und Beratung Dipl.-Math. Daniela Keller Kürnach Cover: HIVERY by Canva, Lektorat: Dr. Regina Moritz, Diese Anleitung oder Teile dieser Anleitung dürfen nicht vervielfältigt, in Datenbanken gespeichert oder in irgendeiner Form übertragen werden ohne die schriftliche Genehmigung der Autorin. Daniela Keller i

3 Inhaltsverzeichnis Vorwort 1 1 Einstieg in die multiple lineare Regression Anwendungsgebiet und Ziel der multiplen linearen Regression Überblick über die Voraussetzungen Ergebnis und Interpretation Vorgehensweise Modelle aufstellen und Einbeziehen von Variablen Vorüberlegungen zur Variablenauswahl Methoden zum Aufstellen der Modelle Multiple lineare Regression Variablentypen Voraussetzungen der multiplen linearen Regression Durchführung der multiplen linearen Regression mit SPSS Schritt 1: Rechnen mehrerer Modelle zur Modellauswahl Schritt 2: Rechnen des ausgewählten Modells und genaue Betrachtung der Ergebnisse Was tun bei...? Modell mit Bootstrapping Dummy-Kodierung Darstellung der Ergebnisse Checkliste Multiple lineare Regression 29 Literaturempfehlungen 30 ii

4 Vorwort Schön, dass Du Dich entschieden hast, Deine Analyse einer multiplen linearen Regression anhand dieser Schritt-für-Schritt-Anleitung durchzuführen. Ich hoffe, sie unterstützt Dich gut, und Du kommst sicher und schnell zu den gewünschten Ergebnissen. Da die multiple lineare Regression eine fortgeschrittene Methode ist, werden einige Grundkentnisse im Umgang mit SPSS (IBM, Corporation, Armonk, USA) und einfachen statistischen Methoden benötigt. Du solltest folgendes können bzw. Dich vorab damit vertraut machen: Daten in SPSS laden Daten in SPSS bearbeiten (neue Variable berechnen, transformieren, umkodieren, Fälle auswählen...) speichern und exportieren der Ausgabe in SPSS deskriptive Statistik und Umsetzung mit SPSS prüfen einer Normalverteilung und Umsetzung in SPSS bivariate Korrelationen und Umsetzung mit SPSS Analyse von Kreuztabellen und Umsetzung mit SPSS erstellen von Abbildungen mit SPSS (Streudiagramm, Boxplot) Wenn Du Anmerkungen oder weitere Fragen hast, kannst Du gern auf mich zukommen. Sieh Dich auf meiner Internetseite und in meinem Blog um ( oder schreibe mir eine Jetzt wünsche ich Dir viel Freude und viele neue Erkenntnisse bei Deiner Analyse! Herzliche Grüße Daniela 1

5 KAPITEL 1 Einstieg in die multiple lineare Regression 1.1 Anwendungsgebiet und Ziel der multiplen linearen Regression Die multiple lineare Regression wird verwendet, wenn der Einfluss mehrerer Faktoren auf eine metrische abhängige Variable untersucht werden soll. Dabei können die Faktoren metrisch oder kategorial sein. Es wird also ein Modell mit einer abhängigen und mehreren unabhängigen Variablen aufgestellt. Untersucht wird der Effekt jeder unabhängigen Variablen auf die abhängige Variable, wobei gleichzeitig für die Einflüsse der anderen unabhängigen Variablen kontrolliert wird. 1.2 Überblick über die Voraussetzungen Damit die multiple lineare Regression anwendbar ist, müssen einige Voraussetzungen gegeben sein. Diese Voraussetzungen liste ich in diesem Kapitel als Überblick auf. Im Detail gehen wir sie und ihre Überprüfung im weiteren Verlauf dieser Anleitung durch. Von den Voraussetzungen für die multiple lineare Regression können nicht alle vor der Analyse kontrolliert werden. Teilweise können Sie erst nach der Rechnung des Modells geprüft werden, da hierfür z.b. die Residuen (Abweichungen vom Modell) bekannt sein müssen. In der folgenden Auflistung (siehe Tabelle 1.1) habe ich vermerkt, ob und wie die Voraussetzungen jeweils vorab oder nach der Rechnung der Regression geprüft werden. 2

6 Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM linearer Zusammenhang zwischen den metrischen Faktoren und der unabhängigen Variablen Überprüfung vorab: Streudiagramme keine Ausreißer Überprüfung vorab: deskriptive Statistik, Boxplots Überprüfung nachher: Untersuchung der Residuen Normalverteilung der Residuen Überprüfung vorab: Normalverteilungsdiagramme zur Prüfung der Normalverteilung der metrischen Faktoren und der abhängigen Variablen (das ist keine zwingede Voraussetzung, aber mit normalverteilten Ausgangsvariablen werden auch die Residuen eher normalverteilt sein) Überprüfung nachher: Prüfung der Verteilung der Residuen mit Normalverteilungsdiagramm Unabhängigkeit der Residuen Überprüfung: nach Rechnung des Modells mit Durbin-Watson Linearität und Homoskedastizität Überprüfung: nach Rechnung des Modells mit Streudiagramm der Residuen (Zresid vs. ZPred) keine Multikollinearität zwischen den unabhängigen metrischen Variablen Überprüfung vorab: kein starker Zusammenhang zwischen den unabhängigen metrischen Variablen Überprüfung nachher: VIF und Toleranzwert Tabelle 1.1: Voraussetzungen der multiplen linearen Regression mit der Möglichkeit der Überprüfung jeweils vorab oder nachher. 1.3 Ergebnis und Interpretation Im Ergebnis der Regression wird der Effekt jedes Faktors auf die abhängige Variable zu sehen sein. Dabei ist dieser Effekt jeweils für die Einflüsse der anderen im Modell enthaltenen Variablen kontrolliert und kann also unabhängig von deren Einfluss interpretiert werden. Der Effekt wird in Form des Regressionskoeffizienten angegeben, der in der Höhe die Stärke und mit dem Vorzeichen die Richtung des Effekts beschreibt. Zusätzlich gibt der p-wert an, ob dieser Effekt statistisch signifikant ist. Die standardisierten Korrelationskoeffizienten ermöglichen zudem einen Vergleich der verschiedenen Daniela Keller

7 Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Abbildung 2.1: Screenshot der multiplen linearen Regression in SPSS. Interpretation der ersten Ergebnisse Egal ob hierarchisch oder schrittweise: es werden hier verschiedene Modelle gerechnet und deren Ergebnisse ausgegeben. Bei dieser ersten Ausgabe geht es darum, das Modell auszuwählen, das am besten auf die Daten passt (Güte des Modells) und trotzdem möglichst wenige Variablen enthält. Abbildung 2.2: SPSS-Ausgabe MODELLÜBERSICHT mit angepasstem RQuadrat-Wert. Als Maß für die Güte des Modells betrachtest du den angepassten R-QuadratWert (Tabelle MODELLÜBERSICHT, siehe Abbildung 2.2). Du solltest nicht den Daniela Keller

8 Daniela Keller - MULTIPLE LINEARE REGRESSION MIT SPSS/IBM Abbildung 2.5: Einstellungen über die Schaltfläche SPEICHERN. Grobe Daumenregel zur Interpretation: Ein Wert nahe 2 spricht für unabhängige Fehler, ein Wert größer 3 oder kleiner 1 ist problematisch; in diesen Fällen kann dann nicht von unabhängigen Residuen ausgegangen werden. Abbildung 2.6: SPSS-Ausgabe MODELLÜBERSICHT mit Durbin-Watson-Wert zur Prüfung der Unabhängigkeit der Residuen. Der Wert sollte nahe 2, zumindest zwischen 1 und 3 liegen, damit die Residuen unabhängig sind. Das ist hier mit der Fall. In Tabelle KOEFFIZIENTEN liest Du den Einfluss der einzelnen Faktoren auf die abhängige Variable ab, siehe Abbildung 2.7. Diese Tabelle ist also relevant für die Interpretation des Ergebnisses und damit für die Beantwortung der Forschungsfrage. In Spalte B steht hier der geschätzte Koeffizient aus der Regressionsgleichung Daniela Keller

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen

Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen Seite 1 von 8 Bonus-Lektion: Prüfung der Voraussetzungen und Transformationen Ziel dieser Lektion: Du weißt, wie Du die einzelnen Voraussetzungen für die Signifikanztests und komplexeren Modelle prüfen

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Ziel der linearen Regression

Ziel der linearen Regression Regression 1 Ziel der linearen Regression Bei der linearen Regression wird untersucht, in welcher Weise eine abhängige metrische Variable durch eine oder mehrere unabhängige metrische Variablen durch eine

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Übung 3 im Fach "Biometrie / Q1"

Übung 3 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Statistische Methoden in der Geographie

Statistische Methoden in der Geographie Statistische Methoden in der Geographie Band 2.; Multivariate Statistik Von Dr. rer. nat. Gerhard Bahrenberg Professor an der Universität Bremen Dr. rer. nat. Ernst Giese Professor an der Universität Gießen

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Lehrinhalte Statistik (Sozialwissenschaften)

Lehrinhalte Statistik (Sozialwissenschaften) Lehrinhalte Technische Universität Dresden Institut für Mathematische Stochastik Dresden, 13. November 2007 Seit 2004 Vorlesungen durch Klaus Th. Hess und Hans Otfried Müller. Statistik I: Beschreibende

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Regressionsanalysen mit Stata

Regressionsanalysen mit Stata Regressionsanalysen mit Stata Wiederholung: Deskriptive Analysen - Univariate deskriptive Analysen (Häufigkeitsauszählungen einer Variablen) - Multivariate deskriptive Analysen (Untersuchung gemeinsamer

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Vorwort zur vierten Auflage Einleitung 13

Vorwort zur vierten Auflage Einleitung 13 http://www.beltz.de/de/nc/verlagsgruppe-beltz/gesamtprogramm.html?isbn=978-3-621-28249-9 6 Inhalt Inhalt Vorwort zur vierten Auflage 11 1 Einleitung 13 1.1 Warum R? 13 1.2 Fürwen ist dieses Buch? 14 1.3

Mehr

Die Regressionsanalyse

Die Regressionsanalyse Die Regressionsanalyse Zielsetzung: Untersuchung und Quantifizierung funktionaler Abhängigkeiten zwischen metrisch skalierten Variablen eine unabhängige Variable Einfachregression mehr als eine unabhängige

Mehr

Name Vorname Matrikelnummer Unterschrift

Name Vorname Matrikelnummer Unterschrift Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am 26.10.2007 Gruppe

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistik für Psychologen, Pädagogen und Mediziner

Statistik für Psychologen, Pädagogen und Mediziner Thomas Köhler Statistik für Psychologen, Pädagogen und Mediziner Ein Lehrbuch ^~i: Verlag W. Kohlhammer 1 Einführung: Begriffsklärungen und Überblick 11 1.1 Aufgaben und Subdisziplinen der Statistik 11

Mehr

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz.

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz. Statistik II Übung : Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (6-24 Jahre alt) und der Anzahl der unter

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho Übungen (HS-2010): Urteilsfehler Autor: Siegfried Macho Inhaltsverzeichnis i Inhaltsverzeichnis 1. Übungen zu Kapitel 2 1 Übungen zu Kontingenz- und Kausalurteile 1 Übung 1-1: 1. Übungen zu Kapitel 2 Gegeben:

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

5 Beschreibung und Analyse empirischer Zusammenhänge

5 Beschreibung und Analyse empirischer Zusammenhänge 5 Beschreibung und Analyse empirischer Zusammenhänge 132 5 Beschreibung und Analyse empirischer Zusammenhänge 5.1 Zusammenhänge zwischen kategorialen Merkmalen 137 5.1.1 Kontingenztabellen 137 Verteilungen

Mehr

SPSS Übung 4. Schlüsselwörter. Regressionsanalyse (Wiederholung) Regressionsanalyse mit Clementine. Neuronale Netze mit Clementine.

SPSS Übung 4. Schlüsselwörter. Regressionsanalyse (Wiederholung) Regressionsanalyse mit Clementine. Neuronale Netze mit Clementine. SPSS Übung 4 Schlüsselwörter Regressionsanalyse (Wiederholung) Regressionsanalyse mit Clementine Neuronale Netze mit Clementine Conjoint Analyse 1 Aufgabe (1) 1. Transformieren Sie die Werte der Modellvariablen

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

Aufgaben Klausur Statistik WiSe 2014/15 1. Termin (gesamt: 40 Punkte)

Aufgaben Klausur Statistik WiSe 2014/15 1. Termin (gesamt: 40 Punkte) Aufgaben Klausur Statistik WiSe 2014/15 1. Termin (gesamt: 40 Punkte) Aufgabe 1 (20 Punkte) Aufgabe 1: varibale/prädiktor 1 = soziale Situation (x). Kodiert in: "Situation1": situation mit den ausprägungen

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung:

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Sozialwissenschaftliche Datenanalyse mit R

Sozialwissenschaftliche Datenanalyse mit R Katharina Manderscheid Sozialwissenschaftliche Datenanalyse mit R Eine Einführung F' 4-1 V : 'i rl ö LiSl VS VERLAG Inhaltsverzeichnis Vorwort 5 Danksagung 7 Inhaltsverzeichnis 9 R für sozialwissenschaftliche

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

JMP 10 Student Edition Quick Guide

JMP 10 Student Edition Quick Guide JMP 10 Student Edition Quick Guide Voraussetzung für die Befehle sind eine geöffnete Datentabelle, Standard Voreinstellungen und nutzerdefinierte Variablen mit geeigneter Typisierung. RMC = Rechter Mausklick

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 2C a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Bei HHEINK handelt es sich um eine metrische Variable. Bei den Analysen sollen Extremwerte ausgeschlossen werden. Man sollte

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Diagnostik von Regressionsmodellen (1)

Diagnostik von Regressionsmodellen (1) Diagnostik von Regressionsmodellen (1) Bei Regressionsanalysen sollte immer geprüft werden, ob das Modell angemessen ist und ob die Voraussetzungen eines Regressionsmodells erfüllt sind. Das Modell einer

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Es können von den Antwortmöglichkeiten alle, mehrere, eine oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen Ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario

Mehr

Übung 5 im Fach "Biometrie / Q1" Thema: Wilcoxon, Chi-Quadrat, multiples Testen

Übung 5 im Fach Biometrie / Q1 Thema: Wilcoxon, Chi-Quadrat, multiples Testen Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Wiederholungsübungen zu den Kapiteln 7 bis 11

Wiederholungsübungen zu den Kapiteln 7 bis 11 Mittelwert-Tests Übung Wiederholungsübungen zu den Kapiteln 7 bis 11 In dieser Übung wird der Datensatz 4 verwendet. In dem (fiktiven) Datensatz sind für 50 Personen vier Variablen erfasst: das Geschlecht,

Mehr

Statistik für Psychologen und Sozialwissenschaftler

Statistik für Psychologen und Sozialwissenschaftler Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Statistische Messdatenauswertung

Statistische Messdatenauswertung Roland Looser Statistische Messdatenauswertung Praktische Einführung in die Auswertung von Messdaten mit Excel und spezifischer Statistik-Software für naturwissenschaftlich und technisch orientierte Anwender

Mehr

Vorlesung: Multivariate Statistik für Psychologen

Vorlesung: Multivariate Statistik für Psychologen Vorlesung: Multivariate Statistik für Psychologen 1. Vorlesung:.5.3 Agenda 4. Multivariate Varianzanalyse i. Einführung in die multivariate Variananalyse ii. iii. iv. Statistisches Modell, Hypothesentestung

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS tfü. Springer Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R 3 1.1 Installieren und Starten von R 3 1.2 R-Befehle

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Einführung in die Datenanalyse mit SPSS

Einführung in die Datenanalyse mit SPSS Einführung in die Datenanalyse mit SPSS - Allgemeines - Dateneingabe - Datenbereinigung/ Auswahl - Datenbeschreibung und exploration - Statistische Tests Geschichtliches Lizenzen Installation Versionen

Mehr

Inhaltsverzeichnis 1 SPSS Statistics 2 SPSS Datenmanagement 3 Verteilungsanalyse

Inhaltsverzeichnis 1 SPSS Statistics 2 SPSS Datenmanagement 3 Verteilungsanalyse VII 1 SPSS Statistics... 1 1.1 Wofür steht SPSS?... 2 1.2 SPSS starten und beenden... 3 1.3 SPSS Editoren und SPSS Viewer... 5 SPSS Dateneditor... 5 SPSS Viewer... 6 SPSS Pivot-Tabellen-Editor... 7 SPSS

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Eigene MC-Fragen SPSS

Eigene MC-Fragen SPSS Eigene MC-Fragen SPSS 1. Welche Spalte ist in der Variablenansicht unbedingt festzulegen? [a] Variablenlabel [b] Skala [c] Name [d] Typ [e] Wertelabel 2. Wie heißt das Standardfenster von SPSS? [a] Dialogfenster

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Implizite Ausfallwahrscheinlichkeiten und deren Determinanten

Implizite Ausfallwahrscheinlichkeiten und deren Determinanten Timo Schwertberger Implizite Ausfallwahrscheinlichkeiten und deren Determinanten Eine empirische Untersuchung US-amerikanischer Unternehmen A 257390 Verlag Dr. Kovac Hamburg 2009 VII Inhaltsverzeichnis

Mehr

AUSBLICK AUF WEITERE ANALYSEVERFAHREN IN DER STATISTIK 1

AUSBLICK AUF WEITERE ANALYSEVERFAHREN IN DER STATISTIK 1 AUSBLICK AUF WEITERE ANALYSEVERFAHREN IN DER STATISTIK 1 1 Hier wird nicht der Anspruch erhoben, eine exhaustive Abhandlung zu geben Unterscheidung: Deskriptive vs. Inferenzstatistik Deskriptive Statistik:

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 28. August 2009 28. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Korrelation vs. Regression 2. Ziel der Regressionsanalyse 3. Syntax für den

Mehr

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 2013 MATHEMATIK 3 STUNDEN DATUM : 10. Juni 2013, Vormittag DAUER DER PRÜFUNG: 2 Stunden (120 Minuten) ERLAUBTES HILFSMITTEL Prüfung mit technologischem Hilfsmittel 1/6 DE AUFGABE B1

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 13 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen.

Mehr

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.

Mehr