Integrierte Schaltungen

Größe: px
Ab Seite anzeigen:

Download "Integrierte Schaltungen"

Transkript

1 Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis Gatter VLSI (Very Large Scale Integrated) circuit: > Gatter Von Transistoren nichts mehr zu sehen: Robin WS 2004/ Katinka Wolter

2 Einfacher SSI Chip 4 NAND Gatter brauchen je 2 Eingänge einen Ausgang + Power (VCC) + Erde (GND). Kerbe zur Orientierung. Funktionalität wird generiert durch verbinden der Ein /Ausgänge. Gatterverzögerung: 1 10 nsec. Vernachlässigen wir. SSI Chips kosten im Handel wenige Cent. In den 1970er Jahren wurden daraus Computer gebaut. Robin WS 2004/ Katinka Wolter

3 Moderne Chips Heutige Chips enthalten ca. 5 Mio. NAND Gatter Anschlüsse (Pins) 0.1 inch Standardabstand zwischen zwei Anschlüssen Länge des Chips: 18 km. Gatter auf Chips bilden logische und arithmetische Funktionen, weniger Anschlüsse nötig. Wir betrachten Speicher kombinatorische Schaltungen arithmetische Schaltungen Robin WS 2004/ Katinka Wolter

4 Latches und Flip Flops S R Q vorher Q vorher Q nachher Q nachher Anmerkung stabil (a) stabil (b) \ \ inkonsistent \ \ inkonsistent set Q kein Effekt reset Q Robin WS 2004/ Katinka Wolter

5 Latches und Flip Flops (II) Initialzustand beispielsweise S = R = 0, dann sind Q = 0, Q = 1, Q=1 Q=0 und stabile Zustände. Ist dagegen Q = 0, und wird S = 1 gesetzt, so wird Q = 1. Falls aber Q = 1 und es wird S = 1 gesetzt, so ändert sich nichts. Zustand des latch wird berücksichtigt. Charakteristik des SR Latch SR Latch ist ein einfaches Speicherelement. Erinnert ob zuletzt S oder R gesetzt waren. output nicht eindeutig durch input bestimmt Robin WS 2004/ Katinka Wolter

6 Getakteter SR Latch Zustandswechsel nur zur Taktzeit Latches und Flip Flops (III) Wenn der Takt = 1, dann agiert der Schaltkreis wie zuvor. Takt = 0 deaktiviert S und R (AND = 0) S = R zurückgesetzt auf Null führt zu nicht deterministischem Verhalten. Q = 0 und Q = 1 möglich. S = R = 1 hat nur einen konsistenten Zustand: Q = Q = 0. Sobald S = R = 0, kehrt der latch in einen stabilen Zustand zurück. S zuerst bewirkt Q = 1, Q = 0, R zuerst bewirkt Q = 0, Q = 1 Robin WS 2004/ Katinka Wolter

7 Latches und Flip Flops (IV) Getakteter D Latch Uneindeutigkeit des SR latch (wenn S = R = 1) wird vermieden durch nur eine Eingabe, D und ihr Komplement. Wert von D wird in Q gespeichert, 1 Bit Speicher Element Schaltkreis benötigt 11 Transistoren In der Praxis werden geschicktere Schaltkreise mit 6 Transistoren verwendet. Robin WS 2004/ Katinka Wolter

8 D Flip Flop Latches und Flip Flops (V) latch mit Pulsgenerator. Verzögerung des NICHT Gatters bewirkt Speichern von D zu Beginn des Taktes. ebenfalls 1 Bit Speicher Element, das immer zu Beginn eines Taktzyklus speichert. Robin WS 2004/ Katinka Wolter

9 Latches und Flip Flops (VI) Anmerkung: Pulsgenerator Robin WS 2004/ Katinka Wolter

10 Register Symbole für latches und flip flops CK = clock (a) Latch (b) Latch mit inversem Takt (c) Flip flop, speichert auf der steigenden Flanke (d) Flip flop, speichert zur fallenden Flanke. Wichtig sind (a) und (c). Register bestehen üblicherweise aus mehreren Flip flops. FF FF Robin WS 2004/ Katinka Wolter

11 Register (II) Darstellungen auf unterschiedlichem Abstraktionsniveau: 8 Bit Register bestehend aus einzelnen Flip Flops. Kompaktdarstellung eines 8 Bit Registers. d 0 D FF Q CK q 0 d 1 D FF Q CK q 1 d 2 d 3 D FF Q CK D FF Q CK q 2 q d 4 D FF Q CK q 4 d 5 D FF Q CK q 5 d 6 d 7 D FF Q CK q 6 q 7 D FF Q CK CK Robin WS 2004/ Katinka Wolter

12 Kombinatorische Schaltungen Kombinatorische Schaltungen ordnen eindeutig jeder Eingabe eine Ausgabe zu. Wir betrachten: Multiplexer. Hat 2 n Dateneingabeleitungen, n Steuerleitungen und eine Datenausgabeleitung. Die Belegung der Steuerleitungen bestimmt, welche Eingabeleitung ausgegeben wird. Dekodierer. Wählt eine der 2 n Ausgabeleitungen in Abhängigkeit von der n stelligen Eingabe. Comparator (vergleichende Schaltung). Vergleicht zwei Eingabeworte und gibt 0 bei verschieden, oder 1 bei gleichen Worten aus. Robin WS 2004/ Katinka Wolter

13 Multiplexer Von 8 Eingabesignalen wird nur eines ausgegeben in Abhängigkeit von A,BC. Ein De Multiplexer erhält eine Eingabe und gibt n Signale aus (in Abhängigkeit von A,B,C). Er wird für die ALU Steuerung verwendet. Robin WS 2004/ Katinka Wolter

14 Dekodierer Der Dekodierer setzt eine von 2 n Ausgangsleitungen, in Abhängigkeit von den Eingaben A,B,C. Kann z.b. zur Umsetzung von Adressen in die Ansteuerung verwendet werden. Entschlüsselt Befehle und übersetzt sie in eine Steuerung ( > Arithmetik) Robin WS 2004/ Katinka Wolter

15 Vergleichende Schaltung Vergleicht zwei Worte und gibt 1 aus, wenn sie gleich sind. Hier: Wortlänge 4 Bit. Robin WS 2004/ Katinka Wolter

16 Arithmetische Schaltungen Elementare Schaltkreise, die für alle arithmetischen Operationen gebraucht werden sind Shifter, bit weise Verschiebung. Halbaddierer, bit weise Addition Volladdierer, Addition von binären Zahlen. Robin WS 2004/ Katinka Wolter

17 1 Bit Shifter (Schieberegister) Verschiebt alle Bits um eine Stelle nach rechts oder links. Multiplikation mit 2, bzw. Division durch 2. Robin WS 2004/ Katinka Wolter

18 Halbaddierer Carry=A B s um=a xor B Addition wird abgebildet auf logische Verknüpfungen. Additiert zwei binäre Ziffern ohne Berücksichtigung des carry bit. Erzeugt Übertrag. Robin WS 2004/ Katinka Wolter

19 Volladdierer Additiert zwei binäre Ziffern mit Berücksichtigung des carry bit. Carry out braucht 3 Gatterlaufzeiten, Sum braucht 2 Gatterlaufzeiten. Robin WS 2004/ Katinka Wolter

20 n Bit Addition x 0 y 0 x 1 y 1 x y x y ADD ADD q c o q c o s 0 s 1 Das erste carry bit braucht 3 Gatterlaufzeiten Alle weiteren carry bits brauchen 2 zusätzliche Gatterlaufzeiten Die s i können simultan berechnet werden. Addition von zwei 4 Bit Zahlen braucht: x 2 y 2 x y ADD q c o s 2 (3 + 3*2) = 9 Gatterlaufzeiten. Gatterlaufzeit von 15 ns = 15 * 10 9 s x 3 y 3 x y ADD q c o s 3 c o Addition braucht 135 ns. Robin WS 2004/ Katinka Wolter

21 Addition und schnelle Addition x y n q c out Tabelle der bitweisen Addition von x und y. Aufstellen der logischen Formel für diese Operation. q = x y n + x y n + x y n + x y n = x y n c out = x y n + x y n + x y n + x y n = x y (n + n ) + (x y) n = x y + (x y) n Robin WS 2004/ Katinka Wolter

22 Schnelle Addition Carry Look Ahead Betrachte Addition von zwei n Bit Zahlen. Logisch unabhängige Teile können schneller berechnet werden. Formuliere etwas um +1 = x i + x i + x i + x i + x i + x i = x i + + x i = x i + (x i + ) s i+1 = x i + x i + x i + x i = x i Sei G i = x i und P i = x i + G i und P i sind unabhängig von und können daher parallel berechnet werden. +1 = x i + (x i + ) = G i + P i = G i + P i (G i 1 + P i 1 1 ) = G i + P i G i 1 +P i P i 1 G i P i P i 1... P 1 G 0 + P i P i 1... P 1 P 0 c 0 Robin WS 2004/ Katinka Wolter

23 Carry Look Ahead Laufzeit Für die Addition von zwei n Bit Zahlen braucht man bei 15 ns Gatterlaufzeit: G i und P i +1 (AND und OR) s i (XOR) 15 ns 30 ns 15 ns 60 ns Dabei gehen wir davon aus, daß die UND und ODER Gatter beliebig viele Eingänge haben. Meist haben Gatter nicht mehr als 4 Eingänge. Daher: Kaskadierung mehrerer 4 bit carry look ahead Addierer. Laufzeit ist (fast) unabhängig von n. Robin WS 2004/ Katinka Wolter

24 Papier und Stift Methode: Multiplikation = = = = Robin WS 2004/ Katinka Wolter

25 Vorzeichenbehaftete Multiplikation = 143 Was ist binär? = verdopple für die Multiplikation die Bitstellen Bilde das Zweierkomplement: = : Dies ist eine negative Zahl im Zweierkomplement. Rücktransformation: ( ) 2 ( 1) 10 = ( ) 2 ( 1) 10 = 143 Robin WS 2004/ Katinka Wolter

26 Vorzeichenbehaftete Multiplikation (II) Multiplikation ist kommutativ, d.h. die Reihenfolge spielt keine Rolle, auch bei negativen Zahlen, auch beim Zweierkomplement. Wie multiplizieren sich zwei negative Zahlen? = = 143 Robin WS 2004/ Katinka Wolter

27 Multiplikation mit Schieberegister Faktoren in f und g a =0 und c = 0 Wenn g 0 = 1 wird f nach a geladen. Das Doppelregister ag wird um eine Stelle nach rechts geschoben, das LSB des Ergebnis steht damit in g n 1. Wenn (das neue) g 0 = 1 wird f zu dem Wert in a addiert und das Ergebnis nach a geladen Das Doppelregister ag wird um eine Stelle nach rechts geschoben. etc. Robin WS 2004/ Katinka Wolter

ROBIN Rechnerorganisation und Betriebssysteme im. Nebenfach (Einführung in die Technische Informatik) Dr. Katinka Wolter

ROBIN Rechnerorganisation und Betriebssysteme im. Nebenfach (Einführung in die Technische Informatik) Dr. Katinka Wolter ROBIN Rechnerorganisation und Betriebssysteme im Nebenfach (Einführung in die Technische Informatik) Dr. Katinka Wolter wolter@informatik.hu-berlin.de http://www.informatik.hu-berlin.de/~wolter/teaching/

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch Schaltlogik Armin Burgmeier (1347488) Gruppe 15 6. Januar 2008 1 Gatter aus diskreten Bauelementen Es sollen logische Bausteine (Gatter) aus bekannten, elektrischen Bauteilen aufgebaut

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L Elektronische Grundlagen Versuch E7, Grundelemente der Digitaltechnik Praktikumsgruppe IngIF, 04. Juni 2003 Stefan Schumacher Sandra Ruske Oliver Liebold

Mehr

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch "inkonsistentem" Verhalten!

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch inkonsistentem Verhalten! Schaltwerke Schaltwerke 22 Prof. Dr. Rainer Manthey Informatik II Schaltwerke: Übersicht generelles Problem grösserer Schaltnetze: Länge der Laufzeiten wird relevant Notwendigkeit der Zwischenspeicherung

Mehr

Digitalelektronik. Philipp Fischer. 9. Dezember 2002

Digitalelektronik. Philipp Fischer. 9. Dezember 2002 Digitalelektronik Philipp Fischer 9. Dezember 2002 1 Inhaltsverzeichnis Einfache TTL-Schaltungen 4 EOR-Logik 5 Realisation verschiedener Logiken 5 Addierer 6 Parity-Check 6 Multiplexer 7 Basis Flip-Flop

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

Versuch: D1 Gatter und Flipflops

Versuch: D1 Gatter und Flipflops Versuch: D1 Gatter und Flipflops Vorbemerkung Es ist nicht beabsichtigt, daß Sie einfach eine vorgegebene Versuchsanordnung abarbeiten. Sie sollen die hier angewendeten Zusammenhänge erkennen und verstehen.

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 5. Digitale Speicherbausteine Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Digitale Elektronik, Schaltlogik

Digitale Elektronik, Schaltlogik Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-64 Digitale Elektronik, Schaltlogik - Vorbereitung - Die Grundlage unserer modernen Welt

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik dig Datum : 1.06.2009 A) Vorbereitungsaufgaben 1) Was unterscheidet sequentielle und kombinatorische Schaltungen? Kombinatorische ~ Sequentielle ~ Ausgänge sind nur vom Zustand der Eingangsgrößen abhängig

Mehr

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Darstellung eines 1-Bit seriellen Addierwerks mit VHDL Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Inhalt: 1. Verwendete Tools 1.1 Simili 3.1 1.2 Tina 2. Vorgehensweise

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Arithmetische und Logische Einheit (ALU)

Arithmetische und Logische Einheit (ALU) Arithmetische und Logische Einheit (ALU) Enthält Blöcke für logische und arithmetische Operationen. n Bit Worte werden mit n hintereinander geschalteten 1 Bit ALUs bearbeitet. Steuerleitungen bestimmen

Mehr

Von der Aussagenlogik zum Computer

Von der Aussagenlogik zum Computer Von der Aussagenlogik zum Computer Markus Koch Gymnasium in der Glemsaue Ditzingen Januar 2012 Inhaltsverzeichnis Einleitung...3 Der Computer...3 Grundlagen...4 Wahrheitstabellen...4 Aussagenlogik...4

Mehr

Speicherung digitaler Signale

Speicherung digitaler Signale Speicherung digitaler Signale von Fabian K. Grundlagen Flipflops Bisher: Schaltungen ohne Speichermöglichkeit Jetzt: Speichermöglichkeit durch Flipflops Flipflops Grundlagen Flipflops Was sind Flipflops?

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929)

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-64 Schaltlogik - Vorbereitung - Vorbemerkung In diesem Versuch geht es darum, die Grundlagen

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 28. November 2012 Rechnertechnologie III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

Schaltlogik Versuch P1-63,64,65

Schaltlogik Versuch P1-63,64,65 Vorbereitung Schaltlogik Versuch 1-63,64,65 Iris onradi Gruppe Mo-02 23. Oktober 2010 In diesem Versuch sollen die Grundlagen der digitalen Elektronik erarbeitet werden. Das der Schaltlogik zugrunde liegende

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Speicherung von Signalen - Flipflops, Zähler, Schieberegister

Speicherung von Signalen - Flipflops, Zähler, Schieberegister Lehrbehelf für Prozessregelung und echnerverbund, 3. Klasse HTL Speicherung von Signalen - Flipflops, Zähler, Schieberegister S - Flipflop Sequentielle Schaltungen unterscheiden sich gegenüber den kombinatorischen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris VHDL VHDL Akronym für Very High-Speed Integrated Circuit Hardware Description Language

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert.

Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert. Blatt:4.1 4. RECHENFUNKTIONEN Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert. 4.1 ADDITION VON DUALZAHLEN Sollen Dualzahlen addiert werden, so gilt folgende Rechenregel: 0

Mehr

Semestralklausur Einführung in Computer Microsystems

Semestralklausur Einführung in Computer Microsystems Semestralklausur Einführung in Computer Microsystems 07. Juli 2008 Dr.-Ing. Wolfgang Heenes Name (Nachname, Vorname) Matrikelnummer Unterschrift Prüfung Bitte ankreuzen Anzahl abgegebene Zusatzblätter:

Mehr

GTI ÜBUNG 10 FLIPFLOPS UND AUTOMATEN

GTI ÜBUNG 10 FLIPFLOPS UND AUTOMATEN GTI ÜBUNG FLIPFLOPS UND AUTOMATEN Aufgabe Flipflps 2 Beschreibung In dieser Aufgabe sllen die Eigenschaften ausgesuchter Flipflpschaltungen untersucht werden. Die Verzögerungszeit eines jeden Lgikgatters

Mehr

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm

5. Übung: Binäres Rechnen und Fließkommazahlen Abteilung Verteilte Systeme, Universität Ulm 5. Übung: Binäres Rechnen und Fließkommazahlen Aufgabe 1: Binäres Rechnen a) Berechnen Sie: x = 01100101b*(0101101b-10110100b)+10101b. Alle Zahlen sind 8 Bit breit und in Zweierkomplement-Notation angegeben.

Mehr

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Michael Walz Gruppe 10 28. Oktober 2007 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Vorwort 3 1 Gatter aus diskreten Bauelementen 3 1.1 AND-Gatter.....................................

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

P1-63,64,65: Schaltlogik

P1-63,64,65: Schaltlogik Physikalisches Anfängerpraktikum (P1) P1-63,64,65: Schaltlogik Matthias Ernst (Gruppe Mo-24) Karlsruhe, 14.12.2009 Ziel des Versuchs ist ein erster Kontakt mit nichtprogrammierbaren Schaltungen, deren

Mehr

Logik mit Gedächtnis : Sequentielle Logik

Logik mit Gedächtnis : Sequentielle Logik Logik mit Gedächtnis : Sequentielle Logik Schaltwerke Grundkomponenten zur Informationspeicherung: Flip-Flops Typische Schaltwerke Entwurf eines Schaltwerks Wintersemester 12/13 1 asynchrone und synchrone

Mehr

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M 1 Übersicht Im Praktikum zur Vorlesung Computergestütztes Experimentieren I wird der Vorlesungsstoff geübt und vertieft. Ausserdem werden die speziellen

Mehr

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Sequentielle Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Schaltwerke Flip-Flops Entwurf eines Schaltwerks Zähler Realisierung Sequentielle

Mehr

1. Übung aus Digitaltechnik 2. 1. Aufgabe. Die folgende CMOS-Anordnung weist einen Fehler auf:

1. Übung aus Digitaltechnik 2. 1. Aufgabe. Die folgende CMOS-Anordnung weist einen Fehler auf: Fachhochschule Regensburg Fachbereich Elektrotechnik 1. Übung aus Digitaltechnik 2 1. Aufgabe Die folgende CMOS-Anordnung weist einen Fehler auf: A B C p p p Y VDD a) Worin besteht der Fehler? b) Bei welcher

Mehr

Kapitel 5: Schieberegister. Anwendungen von Schieberegistern. Grundschaltung eines Schieberegisters. Kapitelverzeichnis (Buch Künzli)

Kapitel 5: Schieberegister. Anwendungen von Schieberegistern. Grundschaltung eines Schieberegisters. Kapitelverzeichnis (Buch Künzli) Kapitelverzeichnis (Buch Künzli). Begriffe und efinitionen. Kombinatorische Logik und Schaltalgebra. Speicherbausteine (Flip-Flops). Zähler 5. Register und Schieberegister 6. Automaten. Programmierbare

Mehr

Die digitale logische Ebene

Die digitale logische Ebene 3 Die digitale logische Ebene 3 Die digitale logische Ebene Unten in der Hierarchie von Abb. 1.2 liegt die digitale logische Ebene die echte Computer-Hardware. In diesem Kapitel untersuchen wir viele Aspekte

Mehr

Outline Schieberegister Multiplexer Barrel-Shifter Zähler Addierer. Rechenschaltungen 1. Marc Reichenbach

Outline Schieberegister Multiplexer Barrel-Shifter Zähler Addierer. Rechenschaltungen 1. Marc Reichenbach Rechenschaltungen 1 Marc Reichenbach Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 06/14 1 / 32 Gliederung Schieberegister Multiplexer Barrel-Shifter Zähler Addierer 2 / 32 Schieberegister

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop

Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop Rechnerarchitektur und Betriebssysteme (CS201): Architektur, ALU, Flip-Flop 17. September 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Uebersicht Ausgewählte

Mehr

Schaltwerke Schaltwerk

Schaltwerke Schaltwerk Schaltwerke Bisher habe wir uns nur mit Schaltnetzen befasst, also Schaltungen aus Gattern, die die Ausgaben als eine Funktion der Eingaben unmittelbar (durch Schaltvorgänge) berechnen. Diese Schaltnetze

Mehr

Von-Neumann-Rechner / Rechenwerk

Von-Neumann-Rechner / Rechenwerk Von-Neumann-Rechner / Rechenwerk Aufgaben: Durchführung arithmetischer und logischer Verknüpfungen (daher auch der Name Arithmetic Logical Unit) Steuerwerk und Rechenwerk werden usammen auch als CPU usammengefasst.

Mehr

6. Aufgabenblatt mit Lösungsvorschlag

6. Aufgabenblatt mit Lösungsvorschlag Einführung in Computer Microsystems Sommersemester 2010 Wolfgang Heenes 6. Aufgabenblatt mit Lösungsvorschlag 26.05.2010 Aufgabe 1: Entwurf der Steuerung eines Verkaufsautomaten Folge Spezifikation für

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen DIGITALTECHNIK GD KLAUSUR VOM 19. 3. 2014 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 9 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 19. 3.

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Protokoll zu Grundelemente der Digitaltechnik

Protokoll zu Grundelemente der Digitaltechnik Protokoll zu Grundelemente der Digitaltechnik Ronn Harbich 22. uli 2005 Ronn Harbich Protokoll zu Grundelemente der Digitaltechnik 2 Vorwort Das hier vorliegende Protokoll wurde natürlich mit größter Sorgfalt

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Prof. Dr. Franz J. Rammig Paderborn, 2..2001 C. Böke Klausur zur Vorlesung "Grundlagen der technischen Informatik" und "Grundlagen der Rechnerarchitektur" Sommersemester 2001 1. Teil: GTI Der erste Teil

Mehr

Computer-Generationen

Computer-Generationen (K.Zuses Z3, 1941) (Vorschlag) Generation Beispiel Technologie Geschw./Speich. Software Vorgeneration Z3 Elektro- 0,0002 MIPS Verdrahtet 1941-1944 Mark1 mechanik 1.Generation ENIAC, Z22 Elektronen- 0,02

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Drücken Sie (später) bei Speichere Änderungen in der Bibliothek default? auf Nein.

Drücken Sie (später) bei Speichere Änderungen in der Bibliothek default? auf Nein. Kapitel 5 Ein Schieberegister besteht aus einer linearen Anordnung von Flipflops, die so miteinander verschaltet sind, dass jedes Flipflop den Zustand seines Vorgängers übernimmt und seinen eigenen Zustand

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 2 Sequentielle Logik. Aufgabe 1:

Übungen zur Vorlesung Technische Informatik I, SS 2001 Strey / Guenkova-Luy / Prager Übungsblatt 2 Sequentielle Logik. Aufgabe 1: Übungen zur Vorlesung echnische Informatik I, SS 2 Strey / Guenkova-Luy / Prager Übungsblatt 2 Sequentielle Logik Aufgabe : Analysieren Sie das gezeigte Flip-Flop. Geben Sie eine Wahrheitstabelle an, wie

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Kapitel 2. Elementare Schaltwerke. 2.1 RS-Flipflop

Kapitel 2. Elementare Schaltwerke. 2.1 RS-Flipflop Kapitel 2 Elementare Schaltwerke 2.1 RS-Flipflop Unter dem Gesichtspunkt der Stabilität betrachtet, wird der zweistufige analoge Transistorverstärker des Bildes 2.1 dann instabil, wenn die gestrichelt

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016

Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den

Mehr

Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik

Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik Lehrstuhl für Informatik Cauerstraße 11 91058 Erlangen TECHNISCHE FAKULTÄT Erste praktische Übung zur Vorlesung Grundlagen der Technischen Informatik Ziel dieser praktischen Übung ist es, einen Taschenrechner

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 2. Vorlesung Klaus Kasper Inhalt Schaltnetz vs. Schaltwerk NAND SR-Flip-Flop NOR SR-Flip-Flop Master-Slave Flip-Flop Zustandsdiagramm Flip-Flop Zoo Schaltnetze vs. Schaltwerke Schaltnetz:

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 5.2 Endliche Automaten 129 5.1.6 Kippstufen Flip-Flops werden auch als bistabile Kippstufen bezeichnet. Bistabil meint, dass beide Kippwerte, also 0 und 1 stabil sind. Diese Bezeichnung legt nahe, dass

Mehr

Technische Informatik. Der VON NEUMANN Computer

Technische Informatik. Der VON NEUMANN Computer Technische Informatik Der VON NEUMANN Computer Inhalt! Prinzipieller Aufbau! Schaltkreise! Schaltnetze und Schaltwerke! Rechenwerk! Arbeitsspeicher! Steuerwerk - Programmausführung! Periphere Geräte! Abstraktionsstufen

Mehr

Thema 2. Digtale Logik und wie der Computer rechnet

Thema 2. Digtale Logik und wie der Computer rechnet Thema 2 Digtale Logik und wie der Computer rechnet Motivation: Schaltnetz 74LS83 4 Bit Adder für Interessenten: die Anzeigen sind TIL-3 ...was dahinter steckt Grundlagen der Schaltalgebra Schaltalgebra

Mehr

5. Schaltwerke und Speicherelemente S Q

5. Schaltwerke und Speicherelemente S Q 5. chaltwerke und peicherelemente T chaltwerke Takt, peicherelemente, Flip-Flops Verwendung von Flip-Flops peicherzellen, egister Kodierer, peicher 72 chaltwerke vs. chaltkreise chaltkreise bestehen aus

Mehr

Grundtypen Flip-Flops

Grundtypen Flip-Flops FLIP-FLOPs, sequentielle Logik Bei den bislang behandelten Logikschaltungen (Schaltnetzen) waren die Ausgangsgrößen X, Y... zu jeder Zeit in eindeutiger Weise durch die Kombination der Eingangsvariablen

Mehr

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit Übung 1 Achtung: ld(x) = Logarithmus dualis: ld(x) = log(x)/log(2) = ln(x)/ln(2)! Aufgabe 1 Frage: Wie gross ist der Informationsgehalt einer zufällig aus einem Stapel von 52 Bridgekarten gezogenen Spielkarte?

Mehr

GAL 16V8. 4. Laboreinheit - Hardwarepraktikum SS 2002 VCC / +5V. Eingang / Clock. 8 konfigurierbare Ausgangszellen. 8 Eingänge GND / 0V.

GAL 16V8. 4. Laboreinheit - Hardwarepraktikum SS 2002 VCC / +5V. Eingang / Clock. 8 konfigurierbare Ausgangszellen. 8 Eingänge GND / 0V. 1. Versuch Programmierbare Logik 4. Laboreinheit - Hardwarepraktikum SS 2002 Am Beispiel des GAL16V8 und eines GAL Development Systems werden die Möglichkeiten und Einsatzgebiete von programmierbare Logikbausteine

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

5. Schaltwerke und Speicherelemente

5. Schaltwerke und Speicherelemente 5. chaltwerke und peicherelemente T chaltwerke Takt, peicherelemente, Flip-Flops Verwendung von Flip-Flops peicherzellen, egister Kodierer, peicher 74 chaltwerke vs. chaltkreise chaltkreise bestehen aus

Mehr

Angewandte Physik II: Elektronik

Angewandte Physik II: Elektronik Elektronik für Physiker Prof. Brunner SS 26 Angewandte Physik II: Elektronik 9. Schaltwerke. Monostabile Kippschaltung: Univibrator 2. Astabile Kippschaltung: Multivibrator 3. Bistabile Kippschaltung:

Mehr

Flip Flops allgemein - Digitale Signalspeicher

Flip Flops allgemein - Digitale Signalspeicher INFORMATION: Flip Flops allgemein - Digitale Signalspeicher Jede elektronische Schaltung, die zwei stabile elektrische Zustände hat und durch entsprechende Eingangssignale von einem Zustand in einen anderen

Mehr

Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430

Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430 Elektronikpraktikum - SS 24 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 2-43 (Anfängerpraktikum). Stock, Raum 43 Serie 7: Digitale Schaltungen./.7.24 I. Ziel der Versuche Verständnis für Entwurf

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

Versuchsvorbereitung: P1-63, 64, 65: Schaltlogik

Versuchsvorbereitung: P1-63, 64, 65: Schaltlogik raktikum lassische hysik I Versuchsvorbereitung: 1-63, 64, 65: Schaltlogik hristian untin Gruppe Mo-11 arlsruhe, 26. Oktober 2009 Ausgehend von einfachen Logikgattern wird die Funktionsweise von Addierern,

Mehr

Getaktete Schaltungen

Getaktete Schaltungen Getaktete Schaltung DST SS23 - Flipflops und getaktete Schaltung P. Fischer, TI, Uni Mannheim, Seite Sequtielle Logik Zum Speichern des Zustands eines Systems sind Speicherelemte notwdig Abhängig vom Zustand

Mehr

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht:

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht: 9 Versuch Nr. 7 9.1 Anmerkungen zum Versuch Nr. 7 In den letzten drei Versuchen haben Sie die wichtigsten Bestandteile eines Rechners kennen gelernt, in der Software MAX+PlusII eingegeben und in den Baustein

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

Versuch V10: Flip-Flops

Versuch V10: Flip-Flops Versuch V: Flip-Flops Henri Menke und an rautwein Gruppe Platz k (Betreuer: Boris Bonev) (Datum: 3. anuar 24) In diesem Versuch werden die Funktionen verschiedenenr digitaler Schaltungen auf Basis von

Mehr

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Statt positive Zahlen von 0 bis 2 n -1mit einem Bitmuster der Länge n darzustellen und arithmetische Operationen darauf auszuführen,

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Füllstandsregelung. Technische Informatik - Digitaltechnik II

Füllstandsregelung. Technische Informatik - Digitaltechnik II Füllstandsregelung Kursleiter : W. Zimmer 1/18 Zwei Feuchtigkeitsfühler (trocken F=0; feucht F=1) sollen zusammen mit einer geeigneten Elektronik dafür sorgen, dass das Wasser im Vorratsbehälter niemals

Mehr

Rechnenund. Systemtechnik

Rechnenund. Systemtechnik Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen

Mehr

Daniel Betz Wintersemester 2011/12

Daniel Betz Wintersemester 2011/12 Daniel Betz Wintersemester 2011/12 Digitally signed by daniel.betz@daniel-betz.com Date: 2011.12.04 17:24:40 +01'00' Insgesamt 16 Register von je 16 Bit (=WORD) Breite Untere 8 Register auch als 2 Register

Mehr

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC)

Übungen zu Architektur Eingebetteter Systeme. Teil 1: Grundlagen. Blatt : Grundlagen des Cyclic redundancy code (CRC) Übungen zu Architektur Eingebetteter Systeme Blatt 4 22.05.2009 Teil 1: Grundlagen 1.1: Grundlagen des Cyclic redundancy code (CRC) Im Gegensatz zum Parity-Check, der nur einfache Bit-Fehler erkennen kann,

Mehr

Prozessor HC680 fiktiv

Prozessor HC680 fiktiv Prozessor HC680 fiktiv Dokumentation der Simulation Die Simulation umfasst die Struktur und Funktionalität des Prozessors und wichtiger Baugruppen des Systems. Dabei werden in einem Simulationsfenster

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Computertechnik 1. 4.3 Schaltwerke, Sequentielle Schaltungen. Flip-Flops (FF) 4.3.1 Flip-Flops (FF) Dr. Wolfgang Koch

Computertechnik 1. 4.3 Schaltwerke, Sequentielle Schaltungen. Flip-Flops (FF) 4.3.1 Flip-Flops (FF) Dr. Wolfgang Koch omputertechnik r. Wolfgang Koch 4.3 chwerke, equentielle chungen peicher, egister... : Frühere Eingaben (innere Zustände) spielen eine olle (werden gespeichert) Friedrich chiller University ena epartment

Mehr