Integrierte Schaltungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Integrierte Schaltungen"

Transkript

1 Integrierte Schaltungen Klassen von Chips: SSI (Small Scale Integrated) circuit: 1 bis 10 Gatter MSI (Medium Scale Integrated) circuit: 10 bis 100 Gatter LSI (Large Scale Integrated) circuit: 100 bis Gatter VLSI (Very Large Scale Integrated) circuit: > Gatter Von Transistoren nichts mehr zu sehen: Robin WS 2004/ Katinka Wolter

2 Einfacher SSI Chip 4 NAND Gatter brauchen je 2 Eingänge einen Ausgang + Power (VCC) + Erde (GND). Kerbe zur Orientierung. Funktionalität wird generiert durch verbinden der Ein /Ausgänge. Gatterverzögerung: 1 10 nsec. Vernachlässigen wir. SSI Chips kosten im Handel wenige Cent. In den 1970er Jahren wurden daraus Computer gebaut. Robin WS 2004/ Katinka Wolter

3 Moderne Chips Heutige Chips enthalten ca. 5 Mio. NAND Gatter Anschlüsse (Pins) 0.1 inch Standardabstand zwischen zwei Anschlüssen Länge des Chips: 18 km. Gatter auf Chips bilden logische und arithmetische Funktionen, weniger Anschlüsse nötig. Wir betrachten Speicher kombinatorische Schaltungen arithmetische Schaltungen Robin WS 2004/ Katinka Wolter

4 Latches und Flip Flops S R Q vorher Q vorher Q nachher Q nachher Anmerkung stabil (a) stabil (b) \ \ inkonsistent \ \ inkonsistent set Q kein Effekt reset Q Robin WS 2004/ Katinka Wolter

5 Latches und Flip Flops (II) Initialzustand beispielsweise S = R = 0, dann sind Q = 0, Q = 1, Q=1 Q=0 und stabile Zustände. Ist dagegen Q = 0, und wird S = 1 gesetzt, so wird Q = 1. Falls aber Q = 1 und es wird S = 1 gesetzt, so ändert sich nichts. Zustand des latch wird berücksichtigt. Charakteristik des SR Latch SR Latch ist ein einfaches Speicherelement. Erinnert ob zuletzt S oder R gesetzt waren. output nicht eindeutig durch input bestimmt Robin WS 2004/ Katinka Wolter

6 Getakteter SR Latch Zustandswechsel nur zur Taktzeit Latches und Flip Flops (III) Wenn der Takt = 1, dann agiert der Schaltkreis wie zuvor. Takt = 0 deaktiviert S und R (AND = 0) S = R zurückgesetzt auf Null führt zu nicht deterministischem Verhalten. Q = 0 und Q = 1 möglich. S = R = 1 hat nur einen konsistenten Zustand: Q = Q = 0. Sobald S = R = 0, kehrt der latch in einen stabilen Zustand zurück. S zuerst bewirkt Q = 1, Q = 0, R zuerst bewirkt Q = 0, Q = 1 Robin WS 2004/ Katinka Wolter

7 Latches und Flip Flops (IV) Getakteter D Latch Uneindeutigkeit des SR latch (wenn S = R = 1) wird vermieden durch nur eine Eingabe, D und ihr Komplement. Wert von D wird in Q gespeichert, 1 Bit Speicher Element Schaltkreis benötigt 11 Transistoren In der Praxis werden geschicktere Schaltkreise mit 6 Transistoren verwendet. Robin WS 2004/ Katinka Wolter

8 D Flip Flop Latches und Flip Flops (V) latch mit Pulsgenerator. Verzögerung des NICHT Gatters bewirkt Speichern von D zu Beginn des Taktes. ebenfalls 1 Bit Speicher Element, das immer zu Beginn eines Taktzyklus speichert. Robin WS 2004/ Katinka Wolter

9 Latches und Flip Flops (VI) Anmerkung: Pulsgenerator Robin WS 2004/ Katinka Wolter

10 Register Symbole für latches und flip flops CK = clock (a) Latch (b) Latch mit inversem Takt (c) Flip flop, speichert auf der steigenden Flanke (d) Flip flop, speichert zur fallenden Flanke. Wichtig sind (a) und (c). Register bestehen üblicherweise aus mehreren Flip flops. FF FF Robin WS 2004/ Katinka Wolter

11 Register (II) Darstellungen auf unterschiedlichem Abstraktionsniveau: 8 Bit Register bestehend aus einzelnen Flip Flops. Kompaktdarstellung eines 8 Bit Registers. d 0 D FF Q CK q 0 d 1 D FF Q CK q 1 d 2 d 3 D FF Q CK D FF Q CK q 2 q d 4 D FF Q CK q 4 d 5 D FF Q CK q 5 d 6 d 7 D FF Q CK q 6 q 7 D FF Q CK CK Robin WS 2004/ Katinka Wolter

12 Kombinatorische Schaltungen Kombinatorische Schaltungen ordnen eindeutig jeder Eingabe eine Ausgabe zu. Wir betrachten: Multiplexer. Hat 2 n Dateneingabeleitungen, n Steuerleitungen und eine Datenausgabeleitung. Die Belegung der Steuerleitungen bestimmt, welche Eingabeleitung ausgegeben wird. Dekodierer. Wählt eine der 2 n Ausgabeleitungen in Abhängigkeit von der n stelligen Eingabe. Comparator (vergleichende Schaltung). Vergleicht zwei Eingabeworte und gibt 0 bei verschieden, oder 1 bei gleichen Worten aus. Robin WS 2004/ Katinka Wolter

13 Multiplexer Von 8 Eingabesignalen wird nur eines ausgegeben in Abhängigkeit von A,BC. Ein De Multiplexer erhält eine Eingabe und gibt n Signale aus (in Abhängigkeit von A,B,C). Er wird für die ALU Steuerung verwendet. Robin WS 2004/ Katinka Wolter

14 Dekodierer Der Dekodierer setzt eine von 2 n Ausgangsleitungen, in Abhängigkeit von den Eingaben A,B,C. Kann z.b. zur Umsetzung von Adressen in die Ansteuerung verwendet werden. Entschlüsselt Befehle und übersetzt sie in eine Steuerung ( > Arithmetik) Robin WS 2004/ Katinka Wolter

15 Vergleichende Schaltung Vergleicht zwei Worte und gibt 1 aus, wenn sie gleich sind. Hier: Wortlänge 4 Bit. Robin WS 2004/ Katinka Wolter

16 Arithmetische Schaltungen Elementare Schaltkreise, die für alle arithmetischen Operationen gebraucht werden sind Shifter, bit weise Verschiebung. Halbaddierer, bit weise Addition Volladdierer, Addition von binären Zahlen. Robin WS 2004/ Katinka Wolter

17 1 Bit Shifter (Schieberegister) Verschiebt alle Bits um eine Stelle nach rechts oder links. Multiplikation mit 2, bzw. Division durch 2. Robin WS 2004/ Katinka Wolter

18 Halbaddierer Carry=A B s um=a xor B Addition wird abgebildet auf logische Verknüpfungen. Additiert zwei binäre Ziffern ohne Berücksichtigung des carry bit. Erzeugt Übertrag. Robin WS 2004/ Katinka Wolter

19 Volladdierer Additiert zwei binäre Ziffern mit Berücksichtigung des carry bit. Carry out braucht 3 Gatterlaufzeiten, Sum braucht 2 Gatterlaufzeiten. Robin WS 2004/ Katinka Wolter

20 n Bit Addition x 0 y 0 x 1 y 1 x y x y ADD ADD q c o q c o s 0 s 1 Das erste carry bit braucht 3 Gatterlaufzeiten Alle weiteren carry bits brauchen 2 zusätzliche Gatterlaufzeiten Die s i können simultan berechnet werden. Addition von zwei 4 Bit Zahlen braucht: x 2 y 2 x y ADD q c o s 2 (3 + 3*2) = 9 Gatterlaufzeiten. Gatterlaufzeit von 15 ns = 15 * 10 9 s x 3 y 3 x y ADD q c o s 3 c o Addition braucht 135 ns. Robin WS 2004/ Katinka Wolter

21 Addition und schnelle Addition x y n q c out Tabelle der bitweisen Addition von x und y. Aufstellen der logischen Formel für diese Operation. q = x y n + x y n + x y n + x y n = x y n c out = x y n + x y n + x y n + x y n = x y (n + n ) + (x y) n = x y + (x y) n Robin WS 2004/ Katinka Wolter

22 Schnelle Addition Carry Look Ahead Betrachte Addition von zwei n Bit Zahlen. Logisch unabhängige Teile können schneller berechnet werden. Formuliere etwas um +1 = x i + x i + x i + x i + x i + x i = x i + + x i = x i + (x i + ) s i+1 = x i + x i + x i + x i = x i Sei G i = x i und P i = x i + G i und P i sind unabhängig von und können daher parallel berechnet werden. +1 = x i + (x i + ) = G i + P i = G i + P i (G i 1 + P i 1 1 ) = G i + P i G i 1 +P i P i 1 G i P i P i 1... P 1 G 0 + P i P i 1... P 1 P 0 c 0 Robin WS 2004/ Katinka Wolter

23 Carry Look Ahead Laufzeit Für die Addition von zwei n Bit Zahlen braucht man bei 15 ns Gatterlaufzeit: G i und P i +1 (AND und OR) s i (XOR) 15 ns 30 ns 15 ns 60 ns Dabei gehen wir davon aus, daß die UND und ODER Gatter beliebig viele Eingänge haben. Meist haben Gatter nicht mehr als 4 Eingänge. Daher: Kaskadierung mehrerer 4 bit carry look ahead Addierer. Laufzeit ist (fast) unabhängig von n. Robin WS 2004/ Katinka Wolter

24 Papier und Stift Methode: Multiplikation = = = = Robin WS 2004/ Katinka Wolter

25 Vorzeichenbehaftete Multiplikation = 143 Was ist binär? = verdopple für die Multiplikation die Bitstellen Bilde das Zweierkomplement: = : Dies ist eine negative Zahl im Zweierkomplement. Rücktransformation: ( ) 2 ( 1) 10 = ( ) 2 ( 1) 10 = 143 Robin WS 2004/ Katinka Wolter

26 Vorzeichenbehaftete Multiplikation (II) Multiplikation ist kommutativ, d.h. die Reihenfolge spielt keine Rolle, auch bei negativen Zahlen, auch beim Zweierkomplement. Wie multiplizieren sich zwei negative Zahlen? = = 143 Robin WS 2004/ Katinka Wolter

27 Multiplikation mit Schieberegister Faktoren in f und g a =0 und c = 0 Wenn g 0 = 1 wird f nach a geladen. Das Doppelregister ag wird um eine Stelle nach rechts geschoben, das LSB des Ergebnis steht damit in g n 1. Wenn (das neue) g 0 = 1 wird f zu dem Wert in a addiert und das Ergebnis nach a geladen Das Doppelregister ag wird um eine Stelle nach rechts geschoben. etc. Robin WS 2004/ Katinka Wolter

Teil V. Programmierbare Logische Arrays (PLAs)

Teil V. Programmierbare Logische Arrays (PLAs) Teil V Programmierbare Logische Arrays (PLAs) 1 Aufbau von PLAs Programmierbares Logisches Array (PLA): Programmierbarer Einheitsbaustein aufgebaut als ein Gitter (Array) von Basisbausteinen (Zellen).

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2013/14 22. Januar 2014 Kurzwiederholung / Klausurvorbereitung II Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners

Mehr

Teil IV. Schaltwerke

Teil IV. Schaltwerke Teil IV Schaltwerke 1 Teil IV.1 Flip Flops 2 Bistabile Kippstufe Ziel: Speichere Ausgabe einer Schaltung. Ansatz: Leite Ausgabe wieder als Eingabe in die Schaltung. x t & Q Q = x + P t + t t t y t & P

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Inhalt. Zahlendarstellungen

Inhalt. Zahlendarstellungen Inhalt 1 Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen

Mehr

Tutorium: Einführung in die technische Informatik

Tutorium: Einführung in die technische Informatik Tutorium: Einführung in die technische Informatik Logische Schaltungen (2. 2.3) Sylvia Swoboda e225646@student.tuwien.ac.at Überblick Grundbegriffen von logischen Schaltung Realisierung von Funktionen

Mehr

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation

Multiplizierer. Beispiel komplexer arithmetischer Schaltung. Langsamer als Addition, braucht mehr Platz. Sequentielle Multiplikation Multiplizierer 1 Beispiel komplexer arithmetischer Schaltung Langsamer als Addition, braucht mehr Platz Sequentielle Multiplikation Kompakte kombinatorische Variante mit Carry-Save-Adders (CSA) Vorzeichenbehaftete

Mehr

Hochschule Emden / Leer. Ausarbeitung. Speicherung digitaler Signale

Hochschule Emden / Leer. Ausarbeitung. Speicherung digitaler Signale Hochschule Emden / Leer Ausarbeitung Thema: Speicherung digitaler Signale eingereicht von: Jens Fresenborg Inhaltsverzeichnis 1 Speicherung Digitaler Signale 1 2 Asynchrone Speicherelemente 1 2.1 RS-Flip-Flop

Mehr

ALU / Adder. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

ALU / Adder. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 ALU / Adder Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 ALU / Adder 1/34 2012-02-29 ALU Die Arithmetic-/Logic-Unit ( ALU

Mehr

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48

Logische Bausteine. Addierwerke. Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Logische Bausteine Addierwerke Grundlagen der Rechnerarchitektur Logik und Arithmetik 48 Addition eines einzigen Bits Eingang Ausgang a b CarryIn CarryOut Sum 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1

Mehr

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008

x x y x y Informatik II Schaltkreise Schaltkreise Schaltkreise Rainer Schrader 3. November 2008 Informatik II Rainer Schrader Zentrum für Angewandte Informatik Köln 3. November 008 1 / 47 / 47 jede Boolesche Funktion lässt mit,, realisieren wir wollen wir uns jetzt in Richtung Elektrotechnik und

Mehr

3-BIT VOLLADDIERER MIT EINZELNEM EINGABE-DATENBUS

3-BIT VOLLADDIERER MIT EINZELNEM EINGABE-DATENBUS Physikalisches Praktikum für Vorgerückte 3-BIT VOLLADDIERER MIT EINZELNEM EINGABE-DATENBUS Simon C. Leemann, Abteilung für Physik Versuch: Digitale Elektronik November 998 Zusammenfassung In diesem Bericht

Mehr

ROBIN Rechnerorganisation und Betriebssysteme im. Nebenfach (Einführung in die Technische Informatik) Dr. Katinka Wolter

ROBIN Rechnerorganisation und Betriebssysteme im. Nebenfach (Einführung in die Technische Informatik) Dr. Katinka Wolter ROBIN Rechnerorganisation und Betriebssysteme im Nebenfach (Einführung in die Technische Informatik) Dr. Katinka Wolter wolter@informatik.hu-berlin.de http://www.informatik.hu-berlin.de/~wolter/teaching/

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

3 Initialisierung. Initialisierung. Addieren clk_mkand= clk_produkt= multiplexer= multiplexer= I0 init/>>1= mon. init/>>1= 0.

3 Initialisierung. Initialisierung. Addieren clk_mkand= clk_produkt= multiplexer= multiplexer= I0 init/>>1= mon. init/>>1= 0. u Arithmetische Schaltungen c) Vervollständigen Sie nachfolgend abgebildeten s-automaten so, dass er den Multiplizierer wie gewünscht steuert Nehmen Sie an, dass Sie zur Detektion des Schleifen-Abbruchs

Mehr

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Kathrin Ender Gruppe 10 28. Oktober 2007 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Vorbemerkung 3 1 Gatter aus diskreten Bauelementen 3 1.1 AND-Gatter.....................................

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling

Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Übungen zur Vorlesung Technische Informatik I, SS 2002 Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 5 Rechenwerke / Scheduling Aufgabe 1: Sie haben in der Vorlesung einen hypothetischen Prozessor kennen

Mehr

Seminararbeit Sommersemester 2017

Seminararbeit Sommersemester 2017 Schaltkreise für die Addition Seminararbeit Sommersemester 2017 Bearbeitet von: Maximilian Breymaier (Matrikelnummer: 57214) Christoph Mantsch (Matrikelnummer: 57266) Betreuer: Prof. Dr. Thomas Thierauf

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Digitale Systeme und Schaltungen

Digitale Systeme und Schaltungen Zusammenfassung meines Vortrages vom 26. Jänner 2017 Digitale Systeme und Schaltungen Andreas Grimmer Pro Scientia Linz Johannes Kepler Universität Linz, Austria andreas.grimmer@jku.at In dieser Zusammenfassung

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L Elektronische Grundlagen Versuch E7, Grundelemente der Digitaltechnik Praktikumsgruppe IngIF, 04. Juni 2003 Stefan Schumacher Sandra Ruske Oliver Liebold

Mehr

3 Arithmetische Schaltungen

3 Arithmetische Schaltungen . Schaltungselemente Arithmetische Schaltungen. Schaltungselemente Logikgatter Treiber; gibt am Ausgang denselben Logikpegel aus, der auch am Eingang anliegt Inverter; gibt am Ausgang den Logikpegel des

Mehr

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen

Rechnerarithmetik. Vorlesung im Sommersemester Eberhard Zehendner. FSU Jena. Thema: Addierschaltungen Rechnerarithmetik Vorlesung im Sommersemester 2008 Eberhard Zehendner FSU Jena Thema: Addierschaltungen Eberhard Zehendner (FSU Jena) Rechnerarithmetik Addierschaltungen 1 / 19 Addierer für UInt 2 (l)

Mehr

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch "inkonsistentem" Verhalten!

Q R. reset (R) set (S) unzulässig! Unkontrollierte Rückkopplung von Gatterausgängen auf Gattereingänge führt zu logisch inkonsistentem Verhalten! Schaltwerke Schaltwerke 22 Prof. Dr. Rainer Manthey Informatik II Schaltwerke: Übersicht generelles Problem grösserer Schaltnetze: Länge der Laufzeiten wird relevant Notwendigkeit der Zwischenspeicherung

Mehr

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Steuerwerk einer CPU. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Steuerwerk einer CPU Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Implementierung des Datenpfads Direkte Implementierung Mikroprogrammierung

Mehr

Lösung Versuch Nr. 4

Lösung Versuch Nr. 4 Digitaltechnik Praktikum 1.Sem. IIIB 1 ETHZ D-ITET Institut für Elektronik Lösung Versuch Nr. 4 1: Latches 1. RS Latch. Legen Sie ein neues Grafik Editor File rs_latch.gdf an (dieses und alle weiteren

Mehr

Outline Schieberegister Multiplexer Zähler Addierer. Rechenschaltungen. Marc Reichenbach und Michael Schmidt

Outline Schieberegister Multiplexer Zähler Addierer. Rechenschaltungen. Marc Reichenbach und Michael Schmidt Rechenschaltungen Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 05/11 1 / 22 Gliederung Schieberegister Multiplexer Zähler Addierer 2 / 22 Schieberegister

Mehr

Eingebettete Systeme

Eingebettete Systeme Einführung in Eingebettete Systeme Vorlesung 7 Bernd Finkbeiner 03/12/2014 finkbeiner@cs.uni-saarland.de Prof. Bernd Finkbeiner, Ph.D. finkbeiner@cs.uni-saarland.de 1 Schaltfunktionen! Schaltfunktion:

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 20. November 2013 1/48 1 Sequenzielle

Mehr

Digitalelektronik. Philipp Fischer. 9. Dezember 2002

Digitalelektronik. Philipp Fischer. 9. Dezember 2002 Digitalelektronik Philipp Fischer 9. Dezember 2002 1 Inhaltsverzeichnis Einfache TTL-Schaltungen 4 EOR-Logik 5 Realisation verschiedener Logiken 5 Addierer 6 Parity-Check 6 Multiplexer 7 Basis Flip-Flop

Mehr

6. Zahlendarstellungen und Rechnerarithmetik

6. Zahlendarstellungen und Rechnerarithmetik 6. Zahlendarstellungen und Rechnerarithmetik... x n y n x n-1 y n-1 x 1 y 1 x 0 y 0 CO Σ Σ... Σ Σ CI z n z n-1 z 1 z 0 Negative Zahlen, Zweierkomplement Rationale Zahlen, Gleitkommazahlen Halbaddierer,

Mehr

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31

Logische Bausteine. Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Logische Bausteine Sequentielle Schaltungen Shlt Grundlagen der Rechnerarchitektur Logik und Arithmetik 31 Sequentielle Schaltungen n Eingänge m Ausgänge n Eingänge m Ausgänge Zustand Ausgänge hängen nur

Mehr

Multiplikationschip. Multiplikation. Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95. Oberwiesenstr.

Multiplikationschip. Multiplikation. Beitrag zu Werkstattunterricht Multiplikation Allgemeine Didaktik - Seminar SS95. Oberwiesenstr. Informationsblatt für die Lehrkraft Multiplikation Multiplikationschip Beitrag zu "Werkstattunterricht Multiplikation" Allgemeine Didaktik - Seminar SS95 Autor: Ernesto Ruggiano Oberwiesenstr. 42 85 Zürich

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch Schaltlogik Armin Burgmeier (1347488) Gruppe 15 6. Januar 2008 1 Gatter aus diskreten Bauelementen Es sollen logische Bausteine (Gatter) aus bekannten, elektrischen Bauteilen aufgebaut

Mehr

Menschliches Addierwerk

Menschliches Addierwerk Menschliches Addierwerk Einleitung In seinem Buch The Three-Body Problem 1 beschreibt der chinesische Autor Liu Cixin die Entwicklung eines Computers, der aus mehreren Millionen Menschen zusammengesetzt

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Multiplexer und Schieberegister

Multiplexer und Schieberegister Hard- und Softwaretechnik Schaltwerke Multiplexer und Schieberegister Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Multiplexer, Demultiplexer 2 2 Schieberegister 6 2.1

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 5. Digitale Speicherbausteine Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik Mikroprogrammierung schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Eine Digitalschaltung, die diese Aufgaben rechnen soll, habe die Eingänge A und B und die Ausgänge S (sum) und C (carry):

Eine Digitalschaltung, die diese Aufgaben rechnen soll, habe die Eingänge A und B und die Ausgänge S (sum) und C (carry): Kapitel 6 Theorie 600 Halbaddierer und Volladdierer Der bürgerliche Algorithmus des schriftlichen Addierens zerlegt die binäre Addition in die folgenden elementaren Additionen: A + B = S, Übertrag C 0

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik dig Datum : 1.06.2009 A) Vorbereitungsaufgaben 1) Was unterscheidet sequentielle und kombinatorische Schaltungen? Kombinatorische ~ Sequentielle ~ Ausgänge sind nur vom Zustand der Eingangsgrößen abhängig

Mehr

Arithmetische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016

Arithmetische Grundschaltungen. Frank Flederer. Wintersemester 2015/2016 Einführung in die Zentralavionik-Hardware Arithmetische Grundschaltungen Frank Flederer Informatik VIII: Informationstechnik für Luft- und Raumfahrt Wintersemester 2015/2016 1 / 39 Multiplexer (MUX) Über

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

12. Tutorium Digitaltechnik und Entwurfsverfahren

12. Tutorium Digitaltechnik und Entwurfsverfahren 12. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Schriftliche Prüfung

Schriftliche Prüfung OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG FAKULTÄT FÜR INFORMATIK Schriftliche Prüfung im Fach: Technische Grundlagen der Informatik Studiengang: Bachelor (CV / CSE / IF / WIF) am: 19. Juli 2008 Bearbeitungszeit:

Mehr

Informatik I Modul 5: Rechnerarithmetik (2)

Informatik I Modul 5: Rechnerarithmetik (2) Herbstsemester 2, Institut für Informatik IFI, UZH, Schweiz Informatik I Modul 5: Rechnerarithmetik (2) 2 Burkhard Stiller M5 Modul 5: Rechnerarithmetik (2) Grundrechenarten Arithmetisch-logische Einheit

Mehr

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010

Das negative Zweierkomplementzahlensystem. Ines Junold 23. Februar 2010 Das negative Zweierkomplementzahlensystem Ines Junold 23. Februar 2010 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das konventionelle Zweierkomplement 4 2.1 Definition.......................................

Mehr

Ein ROM soll aus mehreren ROMs (vgl. Abbildung rechts: Enable-Leitung EN, Adressleitungen ADDR, Datenleitungen DATA) aufgebaut werden.

Ein ROM soll aus mehreren ROMs (vgl. Abbildung rechts: Enable-Leitung EN, Adressleitungen ADDR, Datenleitungen DATA) aufgebaut werden. VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 183.579, 2015W Übungsgruppen: Mo., 23.11. Mi., 25.11.2015 Aufgabe 1: ROM-Erweiterung Ein 256 64 ROM soll aus mehreren 128 16 ROMs (vgl. Abbildung

Mehr

Versuch: D1 Gatter und Flipflops

Versuch: D1 Gatter und Flipflops Versuch: D1 Gatter und Flipflops Vorbemerkung Es ist nicht beabsichtigt, daß Sie einfach eine vorgegebene Versuchsanordnung abarbeiten. Sie sollen die hier angewendeten Zusammenhänge erkennen und verstehen.

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

DIGITALTECHNIK 08 FREQUENZ-ZÄHLER

DIGITALTECHNIK 08 FREQUENZ-ZÄHLER Seite 1 von 15 DIGITALTECHNIK 08 FREQUENZ-ZÄHLER Inhalt Seite 2 von 15 1 FREQUENZ-ZÄHLER... 3 1.1 ÜBERSICHT... 3 1.2 EINLEITUNG... 4 2 ASYNCHRONZÄHLER... 5 2.1 VORWÄRTSZÄHLER... 5 2.2 RÜCKWÄRTSZÄHLER...

Mehr

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer.

Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen. Teilen durch die Basis des Zahlensystems. Der jeweilige Rest ergibt die Ziffer. Digitaltechnik Aufgaben + Lösungen 2: Zahlen und Arithmetik Aufgabe 1 Wandeln Sie die folgenden Zahlen in Binärzahlen und Hexadezimalzahlen a) 4 D b) 13 D c) 118 D d) 67 D Teilen durch die Basis des Zahlensystems.

Mehr

Digitale Elektronik, Schaltlogik

Digitale Elektronik, Schaltlogik Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-64 Digitale Elektronik, Schaltlogik - Vorbereitung - Die Grundlage unserer modernen Welt

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 19. Mai 2014 1/43 1 Sequenzielle

Mehr

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller

Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller SS 2004 VAK 18.004 Musterlösungen Technische Informatik 2 (T2) Prof. Dr.-Ing. D. P. F. Möller Aufgabenblatt 2.5 Lösung 2.5.1 Befehlszähler (Program Counter, PC) enthält Adresse des nächsten auszuführenden

Mehr

Arithmetische und Logische Einheit (ALU)

Arithmetische und Logische Einheit (ALU) Arithmetische und Logische Einheit (ALU) Enthält Blöcke für logische und arithmetische Operationen. n Bit Worte werden mit n hintereinander geschalteten 1 Bit ALUs bearbeitet. Steuerleitungen bestimmen

Mehr

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker

Darstellung eines 1-Bit seriellen Addierwerks mit VHDL. Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Darstellung eines 1-Bit seriellen Addierwerks mit VHDL Tom Nagengast, Mathias Herbst IAV 07/09 Rudolf-Diesel-Fachschule für Techniker Inhalt: 1. Verwendete Tools 1.1 Simili 3.1 1.2 Tina 2. Vorgehensweise

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 13. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik 1 Wiederholung Register Multiplexer Demultiplexer Halbleiterspeicher Statisches

Mehr

Lösungsvorschlag zu 1. Übung

Lösungsvorschlag zu 1. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/10 Lösungsvorschlag zu 1. Übung 1 Präsenzübungen 1.1 Schnelltest a) Welche der Aussagen treffen auf jeden

Mehr

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen

Arithmetik. Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen Computer and Communication Systems (Lehrstuhl für Technische Informatik) Arithmetik Zahlendarstellung, Addition und Subtraktion Multiplikation, Division, Fest- und Gleitkommazahlen [TI] Winter 2013/2014

Mehr

18 Schieberegister. Serieller Serieller Eingang 5 Stufen Ausgang. 1. Takt. 2. Takt

18 Schieberegister. Serieller Serieller Eingang 5 Stufen Ausgang. 1. Takt. 2. Takt 8 Schieberegister In Schieberegistern wird die Eingangsinformation am Schiebeeingang SE in einer Kette von Flipflops bei jeder Taktflanke eingelesen und weiter geschoben. Sie erscheint schließlich nach

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1

Rechnerstrukturen Winter 2015 4. WICHTIGE SCHALTNETZE. (c) Peter Sturm, University of Trier 1 4. WICHTIGE SCHALTNETZE (c) Peter Sturm, University of Trier 1 Wichtige Schaltnetze Häufig verwendete Grundfunktionen Umwandeln (Decoder) Verteilen (Multiplexer) und Zusammenfassen (Demultiplexer) Arithmetisch-

Mehr

Speicherung digitaler Signale

Speicherung digitaler Signale Speicherung digitaler Signale von Fabian K. Grundlagen Flipflops Bisher: Schaltungen ohne Speichermöglichkeit Jetzt: Speichermöglichkeit durch Flipflops Flipflops Grundlagen Flipflops Was sind Flipflops?

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 28. November 2012 Rechnertechnologie III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

Zeitabhängige binäre Schaltungen. Prof. Metzler

Zeitabhängige binäre Schaltungen. Prof. Metzler Zeitabhängige binäre Schaltungen Prof. Metzler 1 Bistabile Kippstufe Flipflop Eine bistabile Kippschaltung hat zwei Eingänge und zumeist zwei Ausgänge. Mit einem Signal am Eingang E1 wird das Flipflop

Mehr

Programmierbare Logik Arithmetic Logic Unit

Programmierbare Logik Arithmetic Logic Unit Eine arithmetisch-logische Einheit (englisch: arithmetic logic unit, daher oft abgekürzt ALU) ist ein elektronisches Rechenwerk, welches in Prozessoren zum Einsatz kommt. Die ALU berechnet arithmetische

Mehr

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel

Prozessorarchitektur. Kapitel 1 - Wiederholung. M. Schölzel Prozessorarchitektur Kapitel - Wiederholung M. Schölzel Wiederholung Kombinatorische Logik: Ausgaben hängen funktional von den Eingaben ab. x x 2 x 3 z z = f (x,,x n ) z 2 z m = f m (x,,x n ) Sequentielle

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Computer Arithmetik. Computer Arithmetik Allgemein

Computer Arithmetik. Computer Arithmetik Allgemein Vortrag von René Grohmann und Mirwais Turjalei, 22.11.2000 Computer Arithmetik Computer Arithmetik Allgemein Die ALU: Die Alu ist die Einheit im Computer, die dazu bestimmt ist arithmetische und logische

Mehr

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler

- Strukturentwurf elementarer Rechenwerke - Grund-Flipflop (RS-Flipflop) - Register, Schieberegister, Zähler 3.Übung: Inhalte: - binäre Logik, boolsche Gleichungen - logische Grundschaltungen - trukturentwurf elementarer echenwerke - Grund-Flipflop (-Flipflop) - egister, chieberegister, Zähler Übung Informatik

Mehr

ALU ALU. ALU-Aufbau. Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus. Addierer. Logischer Einheit. Shifter

ALU ALU. ALU-Aufbau. Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus. Addierer. Logischer Einheit. Shifter ALU ALU-Aufbau Eine ALU (arithmetisch-logische Einheit) besteht in der Regel aus Addierer Logischer Einheit Shifter Eingänge in eine ALU: zwei Operanden, Instruktionscode OP1 OP0 Ausgänge einer ALU: Ergebnis,

Mehr

Von der Aussagenlogik zum Computer

Von der Aussagenlogik zum Computer Von der Aussagenlogik zum Computer Markus Koch Gymnasium in der Glemsaue Ditzingen Januar 2012 Inhaltsverzeichnis Einleitung...3 Der Computer...3 Grundlagen...4 Wahrheitstabellen...4 Aussagenlogik...4

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik Christopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris VHDL VHDL Akronym für Very High-Speed Integrated Circuit Hardware Description Language

Mehr

Arbeitstitel: DV-Infrastruktur

Arbeitstitel: DV-Infrastruktur Arbeitstitel: DV-Infrastruktur Überblick über die Lehrveranstaltung Rechnerarchitektur Betriebssysteme Rechnernetze Einf. in die WI 1 - DV-Infrastruktur WS03/04 1 Rechnerarchitektur Einf. in die Technologie

Mehr

5 Verarbeitungsschaltungen

5 Verarbeitungsschaltungen 5 Verarbeitungsschaltungen Folie 1 5 Verarbeitungsschaltungen Häufig genutzte Funktionen gibt es als fertige Bausteine zu kaufen. 5.1 Addierer logische Schaltungen zur Addition zweier Dualzahlen Alle Grundrechenarten

Mehr

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 4. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 4.1: Zahlensysteme a) Bitte füllen Sie die leeren Zellen

Mehr

Zeitabhängige binäre Schaltungen. Prof. Metzler 1

Zeitabhängige binäre Schaltungen. Prof. Metzler 1 Zeitabhängige binäre Schaltungen 1 Bistabile Kippstufe Flipflop Eine bistabile Kippschaltung hat zwei Eingänge und zumeist zwei Ausgänge. Mit einem Signal am Eingang E1 wird das Flipflop in den gesetzten

Mehr

Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert.

Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert. Blatt:4.1 4. RECHENFUNKTIONEN Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert. 4.1 ADDITION VON DUALZAHLEN Sollen Dualzahlen addiert werden, so gilt folgende Rechenregel: 0

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur [CS3100.010] Wintersemester 2014/15 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 5 Rechnerarithmetik

Mehr

DIGITALE SCHALTWERKE MIT EPROM

DIGITALE SCHALTWERKE MIT EPROM KOMBINATORISCHE LOGIK: DIGITALE SCHALTWERKE MIT EPROM Ohne Takt, Verknüpfung unabhängig vom Vorzustand. Realisierung: Mit Gattern (nach Karnaugh): Aufwendig, unflexibel. Nur für einfache Verknüpfungen

Mehr

Semestralklausur Einführung in Computer Microsystems

Semestralklausur Einführung in Computer Microsystems Semestralklausur Einführung in Computer Microsystems 07. Juli 2008 Dr.-Ing. Wolfgang Heenes Name (Nachname, Vorname) Matrikelnummer Unterschrift Prüfung Bitte ankreuzen Anzahl abgegebene Zusatzblätter:

Mehr

Carry-Lookahead Addierer (CLA)

Carry-Lookahead Addierer (CLA) Carry-Lookahead Addierer (CLA) Idee: Vorausberechnung der Carry-Signale c i für alle n Stellen für i-ten Volladdierer gilt: c i+1 = a i b i + (a i +b i )c i := G i + P i c i G i = a i b i gibt an, ob in

Mehr

Aufgabe 4 Nennen Sie wenigstens 3 Programmierverfahren für programmierbare Logik.

Aufgabe 4 Nennen Sie wenigstens 3 Programmierverfahren für programmierbare Logik. ÜBUNGSAUFGABENSAMMLUNG DIGITALTEHNIK 1 Aufgabe 1 Erklären Sie kurz die Begriffe Wrap-Around-Arithmetik und Sättigungsarithmetik. Berechnen Sie die Ergebnisse der folgenden Rechenoperationen gemäß Wrap-Around-Arithmetik.

Mehr

Assembler Integer-Arithmetik

Assembler Integer-Arithmetik Assembler Integer-Arithmetik Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Integer-Arithmetik 1/23 2008-04-01 Arithmetik

Mehr