Steiner Bäume. Dipl.-Math. Maria Kandyba Lehrstuhl für Algorithm Engineering, LS VO 15. Januar 2007

Größe: px
Ab Seite anzeigen:

Download "Steiner Bäume. Dipl.-Math. Maria Kandyba Lehrstuhl für Algorithm Engineering, LS VO 15. Januar 2007"

Transkript

1 Steiner Bäume Dipl.-Math. Maria Kandyba Lehrstuhl für Algorithm Engineering, LS11 12 VO 15. Januar 2007

2 Überblick Einführung Definition und Motivation Komplexität Approximationsalgorithmen Distanznetzwerk Heuristik Primal-Dualer Algorithmus

3 Steinerbaum Ungerichteter G=(V,E), Terminalknoten N V. Kantengewichte c: E R + Ein Steiner Baum T G (N)=(V,E ) von G ist: Baum mit V V, E E N V 2 Gewicht von Steinerbaum: c(t G (N))=Σ e E c(e) 4 1 Steinerbaum Problem: Finde den Steinerbaum T G* (N) vom minimalen Gewicht

4 Geschichte & verschiedene Varianten Pierre de Fermat ( ) Frage: Gegeben 3 Punkte in der Ebene, finde den vierten, so dass die die Summe der Distanzen zu den anderen drei ist minimal. Gelöst von Toricelli vor 1640 (Toricellipunkt) Verallgemeinerung auf n Knoten (unter anderem): Jacob Steiner ( )

5 Varianten & Anwendung Varianten: Geometrisches SBP euklidisch rektilinear SBP in Netzwerken Anwendungen: VLSI-Design Netzwerk Design

6 Komplexität Steinerbaum Problem ist NP-hart auch wenn c(e)=1 für alle e E Polynomielle Spezialfälle N =2 Lösung ist der kürzester Weg zwischen den Kundenknoten (Dijkstra) N=V Lösung ist minimal spannender Baum (Kruskal oder Prim)

7 Algorithmen für Steiner Baum Problem Algorithmen (Auswahl): Approximationsalgorithmen Distanznetzwerk Heuristik Approximation von Zelikovski (1993) Primal-Duale Approximation (Goemann, Williamson 1995) Exakte Verfahren Dynamische Programmierung (Dreyfus & Wagner 1971) Branch & Cut (exponentiell, gut in Praxis)

8 Literatur: J. Cheriyan, R. Ravi: Approximation algorithms for network problems. Lecture Notes, (citeseer.ist.psu.edu/cheriyan98approximation.ht ml) V. Vazirani: Approximation Algorithms. Springer Verlag 2003 D. S. Hochbaum (Hrsg.): Approximation Algorithms for NP-hard Problems. PWS Publishing Company 1997

9 Distanznetzwerk Distanznetzwerk D G (W)=(W, E D, c D ) von G=(V,E): W V E D ={(u,v) u,v W} Kantengewichte c D (u,v)=länge des kürzesten Pfades von u nach v in G Eigenschaften von D G (W): Distanzgraph ist vollständig Für (u,v) E D : (u,v) E c D (u,v) c(u,v) c D erfüllt Dreiecksungleichung

10 Distanznetzwerk Heuristik (DNH) Berechne Distanznetzwerk D G (N) Berechne minimal spannenden Baum (MST) T D (N) in D G (N) Transformiere T D (N) D G (N) in ein G G: ersetze jede (u,v) T D (N) durch einen kürzesten (u,v)-pfad in G. G ist i.a. kein Baum Berechne MST T DNH auf G

11 Beispiel b 2 d 5 g b 5 g e h 2 2 a a c f 2 3 b 2 d 5 g 3 1 e 1 a

12 Theorem: Güte von DNH Für jede Instanz des Steinerbaum Problems (G,N,c) gilt für die Lösung T DNH der Distanzwerkheuristik c(t DNH ) (2-2/ N )c(t G *(N)). z 1 z 2 z 3 Beweisskizze: Betrachte T G *(N): Verdoppele die Kanten Finde eine Eulertour L z 4 Nummeriere v N auf L in der Ablaufreihenfolge: z 1,,z N,z N +1, wobei z N +1 =z 1

13 Beweisskizze: z 1 z 2 z 3 z 4 c(l)=2c(t G (N)) (*) i, s.d. L(z i,z i+1 ) mit c(l(z i,z i+1 )) c(l)/ N (**) o.b.d.a i= N Betrachte L =L \ L(z N,z N +1 ) Wegen (*) und (**) gilt c(l ) (2-2/ N )c(t N (G)) Zeige: c(t DNH ) c(l ): Kanten (z i,z i+1 ) mit c D (z i,z i+1 ) c(l (z i,z i+1 )) für 1 i N -1 formen spannenden Baum T in D G (N) c(t DNH ) c(t) c(l ) (2-2/ N )c(t N (G))

14 Laufzeit von DNH O( N ( E + V log V )) Variante von Mehlhorn (1988) Besitzt denselben Approximationsfaktor Benötigt O( E + V log V ) Siehe: K. Mehlhorn, A faster approximation algorithm for the Steiner problem in Graphs, Information Processin Letters 27(3) (1988), pp

15 Formulierung als Lineares Programm Lösung des Steinerbaum Problems ist eine Kantenmenge F E In einem Steinerbaum T=(V(F),F) muss gelten: N V(F) T zshgd: Für u,v N muss mind. ein Pfad von u nach v existieren. S V, S N N muss also gelten: F δ(s) 1

16 ILP mit Hilfe von Schnittungleichungen Kantenvariablen x e =1, falls e F x e =0, sonst min Σ e E c e x e Σ e δ(s) x e 1 S: S N N x e {0,1} e E Alternative Schreibweise für die Schnittungleichungen: Σ e δ(s) x e f(s) S V wobei hier f(s)= 1 S: S N N und f(s)=0 sonst

17 Primal-Dualer Algorithmus Früher: primal-dualer Algorithmus für das polynonielle Problem MWPM in bipartiten Graphen Eigenschaft des Algorithmus: Primaler und Dualer komplementärer Schlupf erfüllt. Goemann-Williamson (GW)-Algorithmus: primal-dual als Approximation für das NP-harte Steinerbaum Problem. Nur primaler Schlupf wird gefordert.

18 LP-Relaxierung und das Duale Primal: Dual: min Σ e E c e x e Σ e δ(s) x e 1 S: S N N max Σ S V y S Σ S:e δ(s) y S c e e E x e 0 e E y S 0 S V Satz von komplementärem Schlupf: Primal: x e > 0 Σ S:e δ(s) y S = c e Dual: y S > 0 Σ e δ(s) x e =1

19 Idee der Vorgehensweise Starte mit einer zulässigen dualen Lösung Konstruiere daraus eine primale, die primalen komplementären Schlupf erfüllt. Diese primale Lösung nicht unbedingt zulässig Wenn nicht, gibt eine Möglichkeit die duale Lösung zu verbessern. Sobald primale Lösung zulässig STOP

20 Konkreter Lösung x von (P) induziert eine Kantenmenge F E Gesucht: F* E s.d. G =(V(F*), F*) Steinerbaum Zulässige Lösung von (D) liefert: F = { e E Σ S:e δ(s) y S = c e } F unzulässig (ggf. mehrere) S mit δ(s ) F =0 und f(s )=1, also Schnittungleichung verletzt Idee: Solange F unzulässig: Erhöhe gleichzeitig und zulässig alle y S um ε>0, s.d. für eine Kante e E\F die duale Ungleichung mit = erfüllt ist Augmentiere F=F {e}

21 Details Frage: Wie findet man die von aktuellem F verletzte Mengen S? Betrachte: G =(V, F) Zshgskomponenten von G : C 1,,C n C i heißt aktive Menge, falls C i N N (f(c i )=1) C i liefert also einen verletzten Schnitt Bemerkung: Keine echte Teilmenge von C i verletzt die Schnittbedingungen

22 Postprocessing Nach den Iterationen: F zulässig für (P) F kann enhält u.u. redundante Kanten Finde redundante Kanten (Kanten, die den Zusammenhang zersören würden) und entferne sie Beispiel:

23 Zusammenfassung: GW-Algorithmus Start: y S =0 F= Γ={{v}: v V} Für alle v V d(v):=0 While C Γ aktiv Für jede e=(v,w), wobei v C(v), w C(w), C(v) C(w) berechne ε(v,w): ε(v,w) = (c(v,w)-d(v)-d(w))/2, falls C(v) und C(w) aktiv ε(v,w) = (c(v,w)-d(v)-d(w)), falls nur C(v) oder nur C(w) aktiv Wähle e*=(i,j) mit minimalem ε=ε(i,j) Für alle Knoten der aktiven Komponenten d(v):=d(v)+ ε F:=F {e*}, Γ:=Γ\{C(i),C(j)} {C(i) C(j)} Postprocessing

24 Wie gut ist die Lösung? Die endgültige Lösung x (F E) und die zugehörige duale Lösung y erfüllen primale Optimalitätsbedingung. Die entsprechende duale: y S > 0 Σ e δ(s) x e =1 ist nicht erfüllt. Da y aber zulässig, gilt: y S > 0 F δ(s) 1 Kann man F δ(s) nach oben abschätzen und dadurch eine Approximationsgüte ableiten?

25 Lemma: Güte des Algorithmus GW Für jede Instanz des Steinerbaum Problems (G,N,c) gilt für die Lösung T GW =(V(F ),F ) des primal-dualen Algorithmus c(t GW ) 2c(T G *(N)). Beweis: Zeige: Σ e F c e 2 Σ s V y s 2c(T G *(N)) 1) 2Σ s V y s 2c(T G *(N)) gilt wegen der schwachen Dualität. Zulässige duale Lösung ist untere Schranke für das primale Optimum.

26 Beweis der Güte 2) zeige Σ e F c e 2 Σ S V y S Primaler Schlupf ist für alle e F erfüllt Σ e F c e = Σ e F Σ S:e δ(s) y S = Σ S V Σ e δ(s) F y S = Σ S V δ(s) F y S Also z. zg. Σ S V δ(s) F y S 2Σ S V y S Induktion über die Anzahl der Iterationen. Anfang: alle y S =0, also erfüllt.

27 Beweis der Güte Σ S V δ(s) F y S 2Σ S V y S Sei A = # aktiver Mengen Betrachte eine Iteration des Algorithmus Für alle aktiven S erhöhe: y S +ε l.s. erhöht sich um: εσ S aktiv δ(s) F r.s. erhöht sich um: 2εA zeige: εσ S aktiv δ(s) F 2εA zeige: Σ S aktiv δ(s) F 2A

28 Beweis der Güte: Also zu zeigen: die durchschnittliche Anzahl der Lösungskanten im Schnitt einer aktiven Menge ist höchstens 2 Wir konstruieren einen Graphen H aus T GW : Die Knoten, die in dieser Iteration in einer Zusammenhangskomponente liegen, zu einem Knoten verschmelzen. H ist ein Baum Durchschnittlicher Grad aller Knoten ist kleiner als 2.

29 Diverses Laufzeit: O( V 2 log V ) mit Union-Find Beweis in der Übung Spezialfälle (zum Nachdenken ): GW-Algorithmus funktioniert wie N=V: Kruskal N =2: Bidirektionaler Dijkstra-Algorithmus

30 Verwandte Probleme Prize-Collecting Steinerbaum Knoten aus N nur anbinden wenn rentabel genug (Gewichte auch für Knoten) Steinerwald Mehrere Mengen N 1,,N p. Knoten aus derselben Menge müssen verbunden sein. Die anderen dürfen. Diverse Netzwerkdesign Probleme z.b. Knoten aus N zweizusammenhängend anbinden, etc.

Steiner Bäume. Überblick. Geschichte & verschiedene Varianten. Steinerbaum. Varianten & Anwendung. Komplexität

Steiner Bäume. Überblick. Geschichte & verschiedene Varianten. Steinerbaum. Varianten & Anwendung. Komplexität Üerlick Steiner Bäume Dipl.-Mth. Mri Kndy Lehrstuhl für Algorithm Engineering, LS Einführung Definition und Motivtion Komplexität Approximtionslgorithmen Distnznetzwerk Heuristik Priml-Duler Algorithmus

Mehr

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching

Mehr

Steinerbaum & Co: Primal/Duale Approximation (1 von 2) Steiner Baum Problemdefinition Kombinatorischer Approximationsalgorithmus ILP Formulierungen

Steinerbaum & Co: Primal/Duale Approximation (1 von 2) Steiner Baum Problemdefinition Kombinatorischer Approximationsalgorithmus ILP Formulierungen Steinerbaum & Co: Primal/Duale Approximation (1 von 2) Steiner Baum Problemdefinition Kombinatorischer Approximationsalgorithmus ILP Formulierungen VO Graphenalgorithmen WiSe 2009/10 Markus Chimani TU

Mehr

Das Problem des minimalen Steiner-Baumes

Das Problem des minimalen Steiner-Baumes Das Problem des minimalen Steiner-Baumes Ein polynomieller Approximationsalgorithmus Benedikt Wagner 4.05.208 INSTITUT FU R THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK KIT Die Forschungsuniversita t

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Optimierung. Vorlesung 9

Optimierung. Vorlesung 9 Optimierung Vorlesung 9 Heute Facility location problem 1. Komplemetärer Schlupf 2. Das Facility Location Problem 3. Problemstellung LP, Duales, Schlupf Eine Approximationsalgorithmus Analyse und Beweis

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Rundreiseproblem und Stabilität von Approximationsalg.

Rundreiseproblem und Stabilität von Approximationsalg. Das Rundreiseproblem und Stabilität von Approximationsalgorithmen Friedrich Alexander Universität Erlangen-Nürnberg Seminar Perlen der theoretischen Informatik, 2008-01-19 http://verplant.org/uni/perlen/

Mehr

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. : Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO

Mehr

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18./20. VO A&D WS 08/09

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Effiziente Algorithmen (SS2015)

Effiziente Algorithmen (SS2015) Effiziente Algorithmen (SS205) Kapitel 5 Approximation II Walter Unger Lehrstuhl für Informatik 2.06.205 07:59 5 Inhaltsverzeichnis < > Walter Unger 5.7.205 :3 SS205 Z Inhalt I Set Cover Einleitung Approximation

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

Übung 2 Algorithmen II

Übung 2 Algorithmen II Yaroslav Akhremtsev, Demian Hespe yaroslav.akhremtsev@kit.edu, hespe@kit.edu Mit Folien von Michael Axtmann (teilweise) http://algo2.iti.kit.edu/algorithmenii_ws17.php - 0 Akhremtsev, Hespe: KIT Universität

Mehr

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION)

SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) Vorlesung 12 AUSDÜNNUNG VON GRAPHEN SCHNITTERHALTUNG (SPEKTRALE APPROXIMATION) 387 Wiederholung: Approximative Schnitterhaltung Ziel: Approximationsalgorithmus: A(S(G)) Ziele bei Eingabe eines dichten

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V17, 10.12.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick:

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Layout-Synthese - Globale Verdrahtung Peter Marwedel

Layout-Synthese - Globale Verdrahtung Peter Marwedel 12 Layout-Synthese - Globale Verdrahtung Peter Marwedel Universität Dortmund, Informatik 12 2008/07/05 Globale Verdrahtung, Allgemeines zur Verdrahtung 12, 2008-2- Bäume 12, 2008-3- Steiner-Bäume Def.:

Mehr

Seminar. Das Steinerbaumproblem

Seminar. Das Steinerbaumproblem Seminar Das Steinerbaumproblem Philipp Gillitzer Matrikelnr.: 51829 Studiengang Informatik(IT-Sicherheit) Semester 6 Hochschule Aalen Wintersemester 16/17 1 Inhaltsverzeichnis 1 Einleitung 3 2 Grundlagen

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 9 Programm: Übungsblatt

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Mustererkennung: Graphentheorie

Mustererkennung: Graphentheorie Mustererkennung: Graphentheorie D. Schlesinger TUD/INF/KI/IS D. Schlesinger () ME: Graphentheorie 1 / 9 Definitionen Ein Graph ist ein Paar G = (V, E) mit der Menge der Knoten V und der Menge der Kanten:

Mehr

Schnittebenenverfahren für das symmetrische

Schnittebenenverfahren für das symmetrische Schnittebenenverfahren für das symmetrische TSP Sebastian Peetz Mathematisches Institut Universität Bayreuth 19. Januar 2007 / Blockseminar Ganzzahlige Optimierung, Bayreuth Gliederung 1 Das symmetrische

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Graphenalgorithmen Maximaler Fluss Einleitung Flussnetzwerke Ford-Fulkerson Fulkerson Methode Maximales bipartites Matching

Mehr

Kap. 5: Planaritätsbasierte Verfahren

Kap. 5: Planaritätsbasierte Verfahren Kap. 5: Planaritätsbasierte Verfahren Prof. Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering LS11 Universität Dortmund 23. VO WS07/08 21. Januar 2008 Literatur für diese VO M. Kaufmann, D. Wagner (Eds.):

Mehr

2. Das single-source-shortest-path-problem

2. Das single-source-shortest-path-problem . Das single-source-shortest-path-problem Zunächst nehmen wir an, dass d 0 ist. Alle kürzesten Pfade von a nach b sind o.b.d.a. einfache Pfade.. Dijkstra s Algorithmus Gegeben: G = (V, A), (A = V V ),

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 2016 2. Vorlesung Rundreiseprobleme Teil II Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Übersicht I) Eulerkreise III) Handlungsreisende II) Hamiltonkreise

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Marvin Schiller 4. Oktober 2007. Einführung In diesem Essay geben wir einen Überblick über eine Auswahl von algorithmischen

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

NP-vollständig - Was nun?

NP-vollständig - Was nun? Kapitel 4 NP-vollständig - Was nun? Wurde von einem Problem gezeigt, dass es NP-vollständig ist, ist das Problem damit nicht gelöst oder aus der Welt geschafft. In der Praxis muss es trotzdem gelöst werden.

Mehr

1 Einführung in Lineare Programme und Dualität

1 Einführung in Lineare Programme und Dualität Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen

Mehr

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

Die Klasse NP und die polynomielle Reduktion. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 26 Optimierungsprobleme und ihre Entscheidungsvariante Beim Rucksackproblem

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Effiziente Algorithmen Lösen NP-vollständiger Probleme 320 Approximationsalgorithmen In polynomieller Zeit lässen sich nicht exakte Lösungen von NP-harten Problemen berechnen. Approximationsalgorithmen

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Wir betrachten einen einfachen Algorithmus, der den Zusammenhang eines Graphen testen soll.

Wir betrachten einen einfachen Algorithmus, der den Zusammenhang eines Graphen testen soll. Kapitel 2 Zusammenhang 2.1 Zusammenhängende Graphen Wir betrachten einen einfachen Algorithmus, der den Zusammenhang eines Graphen testen soll. (1) Setze E = E, F =. (2) Wähle e E und setze F = F {e},

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II.

Algorithmen II. Peter Sanders, Christian Schulz, Simon Gog. Übungen: Michael Axtmann. Institut für Theoretische Informatik, Algorithmik II. Schulz, Gog, Sanders: Algorithmen II - 13. Februar 2017 Algorithmen II Peter Sanders, Christian Schulz, Simon Gog Übungen: Michael Axtmann Institut für Theoretische Informatik, Algorithmik II Web: http://algo2.iti.kit.edu/algorithmenii_ws16.php

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007

Graphentheorie. Kardinalitätsmatchings. Kardinalitätsmatchings. Kardinalitätsmatchings. Rainer Schrader. 11. Dezember 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 11. Dezember 2007 1 / 47 2 / 47 wir wenden uns jetzt einem weiteren Optimierungsproblem zu Gliederung Matchings in bipartiten Graphen

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr