Approximation im Sinne der Analysis:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Approximation im Sinne der Analysis:"

Transkript

1 1 Approximation im Sinne der Analysis: Satz von Weierstrass: ( ) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische Mathematik: Numerical Recipes in C++

2 Approximationsalgorithmen Ulrich Pferschy 2 Approximation von diskreten, kombinatorischen Problemen: Betrachtung einzelner Objekte, Identitäten oder abstrakter Elemente mit ganzzahligen Daten Motiviert aus praktischen Problemstellungen Klassische Probleme der diskreten Optimierung: Scheduling Graph-Probleme (Überdeckung, Färbung, Partition) Netzwerkprobleme Routen- und Tourenplanung TSP Packungs- und Zuschnittprobleme...

3 Approximationsalgorithmen Einleitung 3 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele Container/bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins

4 Approximationsalgorithmen Einleitung 4 Rucksackproblem / Knapsack Problem (KP): n Objekte, jedes mit Profit p i und Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Profit und Gewicht c. Subset Sum Problem (SSP): Spezialfall des Rucksackproblems n Objekte, jedes mit Gewicht w i, ein Rucksack/Container/bin mit Kapazität c Wähle eine Teilmenge von Objekten mit maximalem Gewicht c.

5 Approximationsalgorithmen Einleitung 5 Maximum Cut Problem (Max Cut): Graph (V, E) mit Kantengewichten w ij für jede Kante (i, j) E. Finde eine Knotenmenge S V mit maximalem i S,j S w ij (Kanten zwischen S und V \ S). Minimal spannender Baum / Minimum Spanning Tree (MST): Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Baum, der alle Knoten enthält mit minimalem Gesamtgewicht.

6 Approximationsalgorithmen Einleitung 6 (Symmetrisches) Rundreiseproblem / Traveling Salesperson Problem (TSP): n Städte mit allen (symmetrischen) Entfernungen. Finde die kürzeste Rundreise, die alle n Städte besucht. Variante: Minimaler Hamiltonscher Kreis: Graph (V, E) mit Kantengewichten d ij = d ji für jede Kante (i, j) E. Finde einen Hamiltonschen Kreis mit minimalem Gesamtgewicht.

7 Approximationsalgorithmen Einleitung 7 Set Covering Problem (SC): Grundmenge M, Familie von Teilmengen {S 1,..., S m }, S i M, Bewertung w i für jede Menge S i. Finde eine Auswahl der Teilmengen mit minimalem Gesamtgewicht, sodaß jedes Element aus M in einer der ausgewählten Teilmengen enthalten ist. Vertex Cover (VC): Graph (V, E) Finde eine minimale Knotenmenge C V, sodaß für jede Kante (i, j) entweder i C oder j C.

8 Approximationsalgorithmen Einleitung 8 Knotenfärbung von Graphen/Graph Colouring: Graph (V, E), beliebig viele Farben. Ordne jedem Knoten eine Farbe zu, sodaß Knoten, die durch eine Kante verbunden sind, verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden. Kantenfärbung von Graphen: Graph (V, E), beliebig viele Farben. Ordne jeder Kante eine Farbe zu, sodaß Kanten mit gemeinsamen Endknoten verschiedene Farben haben und eine minimale Gesamtzahl von Farben verwendet werden.

9 Approximationsalgorithmen Einleitung 9 Erwünscht: Optimale Lösung N P-Vollständigkeit: = Bei fast allen interessanten Problemen gibt es kein effizientes optimales Lösungsverfahren, d.h. keinen Algorithmus mit polynomialer Laufzeit 1. Optimale Lösung durch intelligente Enumeration Branch & Bound IP-Formulierung, Branch & Cut Dynamisches Programmieren Verzicht auf Optimalität = Approximation Bestimmt wird eine zulässige Lösung. Qualität der Lösung ist i.a. unbekannt. Unterscheide: Suchverfahren (local search, Metaheuristiken, etc.) konstruktive Verfahren

10 Approximationsalgorithmen Bewertung 10 Bewertung von Approximationsalgorithmen 1. empirische Tests 2. average-case Analyse 3. worst-case Analyse

11 Approximationsalgorithmen Bewertung 11 Güte eines Algorithmus A für ein Optimierungsproblem: Unterscheide: Problem vs. Problem-Instanz I (Näherungs-)Algorithmus A liefert Lösungswert A(I) (unbekannte) Optimallösung wäre Opt(I) Definition: Algorithmus A ist ein Approximationsalgorithmus wenn A für jede Instanz I eine zulässige Lösung liefert. Definition: Ein Approximationsalgorithmus A hat eine absolute Gütegarantie k, (k > 0), wenn für jede Instanz I gilt: Opt(I) A(I) k Bemerkung: Def. gilt für Maximierungs- und Minimierungsprobleme.

12 Approximationsalgorithmen Bewertung 12 Maximierung: Definition: Ein Approximationsalgorithmus A für ein Maximierungsproblem hat eine relative Gütegarantie k,(0 < k < 1), wenn für jede Instanz I gilt: A(I) k Opt(I) kurz: A ist ein k Approximationsalgorithmus. Betrachte die relative Abweichung: Opt(I) A(I) Opt(I) ε A(I) (1 ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 ε) Approximationsalgorithmus.

13 Approximationsalgorithmen Bewertung 13 Minimierung: Definition: Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine relative Gütegarantie k, (k > 1), wenn für jede Instanz I gilt: A(I) k Opt(I) auch hier: A ist ein k Approximationsalgorithmus. wiederum die relative Abweichung: A(I) Opt(I) Opt(I) ε A(I) (1 + ε)opt(i) Ein Approximationsalgorithmus A mit relativer Abweichung ε ist ein (1 + ε) Approximationsalgorithmus. Zusatz: Eine relative/absolute Gütegarantie eines Algorithmus A ist scharf, wenn es eine Instanz I gibt, sodaß die entsprechende Ungleichung mit Gleichheit erfüllt ist. Oder wenn es eine Folge von Instanzen gibt, sodaß die Gleichheit im Grenzwert gilt.

14 Approximationsalgorithmen Bewertung 14 Definition: (Minimierung) Ein Approximationsalgorithmus A für ein Minimierungsproblem hat eine asymptotische Gütegarantie k, (k > 1), wenn es eine Konstante d gibt, sodaß für jede Instanz I gilt: A(I) k Opt(I) + d oder technischer: k = lim sup Opt(I) I A(I) Opt(I)

15 Approximationsalgorithmen Einfache Algorithmen 15 Multi-Prozessor Scheduling: n jobs/aufträge, jeder mit Bearbeitungszeit p i, m Maschinen Ordne jeden job einer Maschine zu, sodaß der Gesamt-Fertigstellungszeitpunkt minimal ist. Algorithmus List-Scheduling (Graham): l j := 0 Arbeitszeit von Maschine j = 1,.., m for i := 1 to n do j min := arg min{l j } ordne job i auf Maschine j min an. l jmin := l jmin + p i end for Gesamtzeit := max{l j } List-Scheduling hat eine scharfe Gütegarantie von 2 1 m. Verbesserung: (LPT) Longest-Processing Time List-Scheduling Sortiere die jobs in absteigender Reihenfolge. (LPT) hat eine scharfe Gütegarantie von m.

16 Approximationsalgorithmen Einfache Algorithmen 16 Bin Packing Problem (BP): n Objekte, jedes mit Gewicht a i (0, 1], beliebig viele bins mit Kapazität 1 Packe alle Objekte in minimale Anzahl von bins Naive Methode: Algorithmus Next Fit (NF): öffne das erste bin for i := 1 to n do wenn Objekt i in das offene bin paßt packe es dort hinein sonst schließe das offene bin öffne ein neues bin und packe Objekt i ein end for (NF) läuft in O(n) Zeit. (NF) hat eine scharfe asymptotische Gütegarantie von 2.

17 Approximationsalgorithmen Einfache Algorithmen 17 Algorithmus First Fit (FF) (Johnson et al.): öffne das erste bin for i := 1 to n do betrachte die offenen bins der Reihe nach packe Objekt i in das erste bin, wo es paßt wenn es nirgends paßt öffne ein neues bin und packe Objekt i ein end for (FF) läuft in O(n log n) Zeit. (FF) hat eine scharfe asymptotische Gütegarantie von 1.7. Verbesserung: First Fit Decreasing (FFD) (Johnson) Sortiere die Objekte in absteigender Reihenfolge. (FFD) hat eine scharfe asymptotische Gütegarantie von Varianten: Best Fit, Worst Fit, Any Fit,...

18 Approximationsalgorithmen Einfache Algorithmen 18 Euklidsches Rundreiseproblem (TSP): n Punkte im R 2. Finde die kürzeste Tour durch alle n Punkte. Einfüge-Heuristik: Algorithmus Insertion: ( ) repeat wähle einen Punkt k nicht auf der Tour suche Kante (i, j) der Tour mit minimalen Einfügekosten: d(i, k) + d(k, j) d(i, j) füge k zwischen i und j ein until alle Punkte eingefügt Auswahl von Punkt k: nearest insertion farthest insertion cheapest insertion random insertion

19 Approximationsalgorithmen Einfache Algorithmen 19 Approximations-Resultate für Insertion: Für jede Insertion-Regel gilt (Rosenkrantz et al. 77): A(I) (log n + 1) Opt(I) Es gibt Instanzen I und Insertion-Folgen mit A(I) log n log log n Opt(I). Nearest Insertion hat eine scharfe Gütegarantie von 2. Wenn nearest insertion mit der konvexen Hülle beginnt, verschlechtert sich die Gütegarantie auf 3 (Warburton 93). Farthest Insertion: In der Praxis besser, aber Gütegarantie 2.43 (Hurkens, 92), genaue Garantie unbekannt. Random Insertion: (Azar 94) Es gibt Instanzen I mit A(I) log log n log log log n Opt(I).

20 Approximationsalgorithmen Einfache Algorithmen 20 Verbesserungs-Verfahren: Algorithmus 2-Opt: starte mit irgendeiner Tour repeat wähle 2 Kanten der Tour und entferne sie füge die Teilstücke zu neuer Tour zusammen Tour := min{neue Tour, alte Tour} until keine Verbesserung möglich viele Varianten zur systematischen Durchführung Jede 2-optimale Tour ist kreuzungsfrei. Für jede 2-optimale Tour T gilt (Chandra et al. 94): T log n Opt Es gibt 2-optimale Touren T mit T log n log log n Opt.

21 Approximationsalgorithmen Einfache Algorithmen 21 Rucksackproblem/Knapsack Problem (KP): n items, jedes mit Profit p i und Gewicht w i, ein Rucksack/bin mit Kapazität c Wähle eine Teilmenge von items mit maximalem Profit und Gewicht c. Algorithmus einfacher Greedy: Sortiere die items nach Effizienz: p 1 w 1 p 2 w 2... p n w n for i := 1 to n do if item i paßt in den Rucksack pack es ein end for Einfacher Greedy kann unbeschränkt schlecht werden. Verbesserter Algorithmus Greedy: Sei z E... der Wert des Rucksacks nach einfacher Greedy. z G := max{z E, max{p i i = 1,..., n}} Greedy hat eine scharfe Gütegarantie von 1/2.

22 Approximationsalgorithmen Einfache Algorithmen 22 Beachte: ein einziges großes item hat Haupteinfluß. Verbesserung: Rate das item mit größtem Profit in der Optimallösung. = alle items durchprobieren. Algorithmus G 2/3 : for i := 1 to n do packe item i in den leeren Rucksack wende Greedy auf das Restproblem mit Kapazität c w i an end for z A := Maximum der n Rucksack-Lösungen G 2/3 hat eine scharfe Gütegarantie von 2/3. Verallgemeinerung: Rate die 2 items mit größtem Profit in der Optimallösung. = alle Paare von items durchprobieren. = scharfe Gütegarantie von 3/4.

Approximationsalgorithmen. Approximation im Sinne der Analysis:

Approximationsalgorithmen. Approximation im Sinne der Analysis: Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem

Mehr

Approximations-Algorithmen

Approximations-Algorithmen Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Approximationsklassen für Optimierungsprobleme

Approximationsklassen für Optimierungsprobleme Approximationsklassen für Optimierungsprobleme Matthias Erbar 19. September 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Approximationsalgorithmen mit garantierter Güte 2 2.1 Terminologie......................................

Mehr

Der Branching-Operator B

Der Branching-Operator B Branching 1 / 17 Der Branching-Operator B Unser Ziel: Löse das allgemeine Minimierungsproblem minimiere f (x), so dass Lösung(x). B zerlegt eine Menge von Lösungen in disjunkte Teilmengen. Die wiederholte

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

Randomisierte und Approximative Algorithmen. Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn

Randomisierte und Approximative Algorithmen. Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn Randomisierte und Approximative Algorithmen Prof. Dr. Heiko Röglin Institut für Informatik Universität Bonn 22. Januar 2018 Inhaltsverzeichnis 1 Einleitung 4 2 Greedy-Algorithmen 6 2.1 Vertex Cover................................

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Heuristische Verfahren

Heuristische Verfahren Heuristische Verfahren Bei heuristischen Verfahren geht es darum in polynomieller Zeit eine Näherungslösung zu bekommen. Diese kann sehr gut oder sogar optimal sein, jedoch gibt es keine Garantie dafür.

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

Die Theorie der Toleranzen und deren Anwendung auf das Traveling Salesman Problem

Die Theorie der Toleranzen und deren Anwendung auf das Traveling Salesman Problem Die Theorie der Toleranzen und deren Anwendung auf das Traveling Salesman Problem Gerold Jäger 4. Februar 2010 Gerold Jäger Theorie der Toleranzen 4. Februar 2010 1 / 35 Überblick 1 Theorie der Toleranzen

Mehr

Kompaktkurs Diskrete Optimierung

Kompaktkurs Diskrete Optimierung Technische Universität Braunschweig SS 08 Institut für Betriebssysteme und Rechnerverbund Postfach 339 D-3803 Braunschweig Notizen Kompaktkurs Diskrete Optimierung Henrik Peters Bearbeitungsstand: 17.

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Die dynamische Programmierung 1 / 51

Die dynamische Programmierung 1 / 51 Die dynamische Programmierung 1 / 51 Dynamische Programmierung - Das Ausgangsproblem P 0 wird in Teilprobleme P 1,..., P t aufgebrochen. - Die Teilprobleme werden dann, einer Schwierigkeitshierarchie entsprechend,

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Jan Johannsen Vorlesung im Sommersemester 2007 Einordnung Algorithmik und Analyse von Algorithmen Komplexitätstheorie Analyse der Komplexität von Problemen Einteilung in Klassen ähnlicher Komplexität Untersuchung

Mehr

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013

Klausur Algorithmen und Datenstrukturen II 29. Juli 2013 Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele

Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Approximation mit relativer Gütegarantie Überblick und einführende Beispiele Marvin Schiller 4. Oktober 2007. Einführung In diesem Essay geben wir einen Überblick über eine Auswahl von algorithmischen

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 30. November 2011 Wiederholung Baumzerlegung G = (V, E) Eine Baumzerlegung von G ist ein Paar {X i i V T }, T, wobei T Baum mit Knotenmenge

Mehr

2.6 Asymptotische Approximation: Min Binpacking

2.6 Asymptotische Approximation: Min Binpacking 2.6 Asymptotische Approximation: Min Binpacking In diesem Abschnitt geht es die Erscheinung, dass manche Optimierungsprobleme Approximationsalgorithmen haben, die nur für Inputs x mit groÿem Wert m (x)

Mehr

Datenstrukturen, Algorithmen und Programmierung II

Datenstrukturen, Algorithmen und Programmierung II Datenstrukturen, Algorithmen und Programmierung II Prof. Dr. Petra Mutzel Markus Chimani Carsten Gutwenger Karsten Klein Skript zur gleichnamigen Vorlesung von Prof. Dr. Petra Mutzel im Sommersemester

Mehr

NP-vollständig - Was nun?

NP-vollständig - Was nun? Kapitel 4 NP-vollständig - Was nun? Wurde von einem Problem gezeigt, dass es NP-vollständig ist, ist das Problem damit nicht gelöst oder aus der Welt geschafft. In der Praxis muss es trotzdem gelöst werden.

Mehr

1 Matroide. 1.1 Definitionen und Beispiele. Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler

1 Matroide. 1.1 Definitionen und Beispiele. Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler Seminar zur ganzzahligen Optimierung Thema: Durchschnitt von Matroiden - Satz von Edmonds von Dany Sattler 1 Matroide 1.1 Definitionen und Beispiele 1. Definition (Unabhängigkeitssystem): Ein Mengensystem

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Durchschnitt von Matroiden

Durchschnitt von Matroiden Durchschnitt von Matroiden Satz von Edmonds Dany Sattler 18. Januar 2007/ Seminar zur ganzzahligen Optimierung / Wallenfels Definition: Unabhängigkeitssystem Definition: Ein Mengensystem (S, J ) nennt

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 29. Januar 2013 Näherungsalgorithmen, Fernau, Universität Trier, WiSe 2012/13

Mehr

Dynamisches Routing in der Logistik

Dynamisches Routing in der Logistik Informatik, Angewandte Informatik, Technische Informationssysteme Dynamisches Routing in der Logistik Tobias Dimmel Dresden, 24.05.2012 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 005/006 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

Zusammenfassung Approx algorithmen

Zusammenfassung Approx algorithmen Zusammenfassung pprox algorithmen. Einleitung Notation: N := {, 2,... }, N 0 := {0,, 2,... } [n] := {, 2,..., n} [n] 0 := {0,, 2,..., n}.3. Grundbegriffe Kanten}, S(G) = {c V c V Knotenfärbung}, f(c V

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Verbesserungsheuristiken

Verbesserungsheuristiken Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08)

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) 1 Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) Kapitel 5: NP-schwierige Probleme Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 21. Dezember 2007) Rucksack Problem

Mehr

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn

Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage. Ideen der Informatik Kurt Mehlhorn Welche Probleme können Rechner (effizient) lösen? Die P = NP Frage Ideen der Informatik Kurt Mehlhorn Gliederung Ziele von Theorie Gibt es Probleme, die man prinzipiell nicht mit einem Rechner lösen kann?

Mehr

11. Übung zu Algorithmen I 6. Juli 2016

11. Übung zu Algorithmen I 6. Juli 2016 11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl lisa.kohl@kit.edu mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 3: Minimal aufspannende Bäume und Matroide Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 3: Minimal aufspannende Bäume und Matroide Minimal aufspannende

Mehr

Komplexitatstheoretische Zwischenbetrachtungen: Klassen & eine Hierarchic

Komplexitatstheoretische Zwischenbetrachtungen: Klassen & eine Hierarchic Kapitel 5 Komplexitatstheoretische Zwischenbetrachtungen: Klassen & eine Hierarchic In den vorhergehenden Kapiteln sind wir einmal quer durch das Gebiet der Approximationsalgorithmen gelaufen. Wir haben

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 4: Suchverfahren Informierte Suche 1/132 INFORMIERTE SUCHSTRATEGIEN (ISS) Benutzt neben der Definition des Problems auch problemspezifisches Wissen. Findet Lösungen effizienter

Mehr

12.4 Traveling Salesman Problem

12.4 Traveling Salesman Problem 96 KOMBINATORISCHE SUCHE.4 Traveling Salesman Problem Definition.3(TSP, Problem des Handlungsreisenden): Wir betrachten einen gerichteten, gewichteten Graphen G = (V,E) mit K : V R. K({u,v}) sind die Kosten

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

3.6 Branch-and-Bound-Verfahren

3.6 Branch-and-Bound-Verfahren 36 Branch-and-Bound-Verfahren Die Branch-and-Bound -Methode beruht darauf, auf eine intelligente Weise alle zulässigen Lösungen eines kombinatorischen Optimierungsproblems aufzulisten und mit Hilfe von

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Euler und Hamiltonkreise

Euler und Hamiltonkreise Euler und Hamiltonkreise 1. Königsberger Brücken 2. Eulerwege und Kreise Definition, Algorithmus mit Tiefensuche 3. Hamiltonwege und Kreise Definition 4. Problem des Handlungsreisenden Enumeration und

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes

Mehr

Sandro Pirkwieser, (Bin Hu, Jakob Puchinger) SS 2010

Sandro Pirkwieser, (Bin Hu, Jakob Puchinger) SS 2010 Lösungsverfahren für Ganzzahlige Optimierung Sandro Pirkwieser, (Bin Hu, Jakob Puchinger) Fortgeschrittene Algorithmen und Datenstrukturen Arbeitsbereich für Algorithmen und Datenstrukturen Institut für

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Seminar im WS 2006/07 Zerlegen und Clustern von Graphen. Correlation Clustering Minimizing Disagreements on Arbitrary Weighted Graphs

Seminar im WS 2006/07 Zerlegen und Clustern von Graphen. Correlation Clustering Minimizing Disagreements on Arbitrary Weighted Graphs Seminar im WS 006/07 Zerlegen und Clustern von Graphen Correlation Clustering Minimizing Disagreements on Arbitrary Weighted Graphs Myriam Freidinger 18. April 007 1 Einleitung Ziel dieser Ausarbeitung

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/200 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP) Traveling Salesman Problem (TSP) Das Traveling Salesman Problem (TSP) ist ein bekanntes Optimierungsproblem. Ein Handlungsreisender soll in einer Rundreise (auch Tour genannt) n vorgegebene Städte besuchen.

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Hierarchische Zeichnungen 6. Vorlesung Sommersemester 2015 (basierend auf Folien von Marcus Krug, KIT) 2 Beispiel E-Mail-Graph zwischen Einrichtungen der Fak. für Informatik,

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Achte Auflage fyj Springer Inhaltsverzeichnis Vorwort Symbolverzeichnis V XIII Kapitel 1: Einführung 1 1.1 Begriff des Operations Research

Mehr

Seminararbeit: K-Opt und die Lin-Kernighan-Heuristik für das allgemeine TSP

Seminararbeit: K-Opt und die Lin-Kernighan-Heuristik für das allgemeine TSP Seminararbeit: K-Opt und die Lin-Kernighan-Heuristik für das allgemeine TSP Tobias Boelter 28. Mai 2013 bei Prof. Dr. Rainer Schrader, Universität zu Köln Inhaltsverzeichnis 1 Einleitung 2 2 Lokale Suche

Mehr

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound

Mehr

Typischerweise sind randomisierte Algorithmen einfacher zu beschreiben und zu implementieren als deterministische Algorithmen.

Typischerweise sind randomisierte Algorithmen einfacher zu beschreiben und zu implementieren als deterministische Algorithmen. Kapitel Randomisierte Algorithmen Einleitung Definition: Ein Algorithmus, der im Laufe seiner Ausführung gewisse Entscheidungen zufällig trifft, heisst randomisierter Algorithmus. Beispiel: Bei der randomisierten

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

Kap. 5: Graph Coloring

Kap. 5: Graph Coloring Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.06 / 8.1.07 Überblick 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

Überblick Kap. 5: Graph Coloring

Überblick Kap. 5: Graph Coloring Überblick Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.0 / 8.1.07 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 11. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen Safe

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2009 11. Vorlesung Uwe Quasthoff Universität Leipzig Institut für Informatik quasthoff@informatik.uni-leipzig.de Das Rucksack-Problem Ein Dieb, der einen

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr