Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Größe: px
Ab Seite anzeigen:

Download "Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen"

Transkript

1 . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter Graph 58

2 Gerichteter Graph Definition: gerichteter Graph G = (V, E) mit: V = {,..., v n } Knotenmenge E V V Kantenmenge (im folgenden: m = E ) Graphen werden meist graphisch dargestellt Beispiel: G = ({, v, v, v }, {(, v ), (v, v ), (v, v ), (v, v )}) v v v 59

3 Ungerichteter Graph Definition: ungerichteter Graph G = (V, E) mit: V = {,..., v n } E {{v, v } v, v V } Knotenmenge Kantenmenge Beispiel: G = ({, v, v, v }, {{, v }, {v, v }, {v, v }}) v v v im folgenden werden gerichtete Graphen betrachtet, sofern nicht explizit anders hervorgehoben 0

4 Gewichteter Graph Definition: gewichteter Graph G = (V, E, β) mit: Knotenmenge V Kantenmenge E β : E IR (Kanten-)Gewichtsfunktion Beispiel: G = ({, v, v, v }, {(, v ), (v, v ), (v, v ), (v, v )}, β) mit β(, v ) =, β(v, v ) = 5, β(v, v ) =, β(v, v ) = v 5 v v

5 .. Adjazenzmatrix sei G = (V, E) ein Graph. Datenstrukturen für Graphen Definition: Adjazenzmatrix A G ist n n-matrix mit, falls (v i, v j ) E und 0 i, j < n (bzw. {v i, v j } E) a i,j = 0, sonst Beispiel: G : v v v A G = Platzbedarf: O(n )

6 .. Adjazenzlisten Array (oder sonstige Kollektion) von Knoten für jeden Knoten: Liste mit Verweisen auf Nachfolgeknoten Beispiel: v G : v v Kantengewichte leicht ergänzbar Platzbedarf: O(n + m) -

7 .. Distanzmatrix sei G = (V, E, β) ein gewichteter Graph Definition: Distanzmatrix D G ist n n-matrix mit β(v i, v j ), falls (v i, v j ) E und 0 i, j < n (bzw. {v i, v j } E) d i,j =, sonst Beispiel: G : v 5 v v D G = 5 Platzbedarf: O(n ) 4

8 . Transitive Hülle gegeben: G = (V, E) gesucht: (reflexive,) transitive Hülle G = (V, E ) mit: (v, v) E v V (v, v ) E, (v, v ) E (v, v ) E v, v, v V sonst keine Kanten in E Beispiel: G = G = v v (V, E): v v (V, E ): v v 5

9 Transitive Hülle (Warshall-Algorithmus) gegeben: Adjazenzmatrix A G von G = (V, E) public static void huelle(byte[][] A){ int n = A.length; for(int i=0; i<n; i++) A[i][i] = ; for(int j=0; j<n; j++) for(int i=0; i<n; i++) if (A[i][j] == ) for(int k=0; k<n; k++) if (A[j][k] == ) A[i][k] = ;} // Schleifenreihenfolge // wichtig! Iteration j berücksichtigt alle Verbindungen mit Zwischenstationen j Aufwand: t rth W (n, m) O(n + E n))

10 .4 Traversierung von Graphen.4. Tiefensuche an jedem Knoten: zuerst die Nachfolger rekursiv betrachten dann die Geschwister Beispiel: G 4 : v v 4 v v v 5 Durchlaufreihenfolge:, v, v, v 4, v, v 5 Aufwand: t dfs W (n, m) O(n + m) (bei Adjazenzlisten) 7

11 .4. Breitensuche alle Knoten mit Abstand i vom Ausgangsknoten werden vor denen mit Abstand i + besucht (i = 0,,,...) hierzu: Knotenqueue (FIFO) Beispiel: G 4 : v v 4 v v v 5 Durchlaufreihenfolge:, v, v, v, v 4, v 5 Aufwand: tw bfs(n, (bei Adjazenzlisten) 8

12 .5 Kürzeste Wege.5. Kürzeste Wege von einem Ausgangsknoten sei G = (V, E, β) mit β : E IR + Algorithmus von Dijkstra (grober Pseudocode) drei Knotenmengen: F (fertig), R (Rand), U (unerreicht) anfangs: F = { }; R = Nachbarn( ); U = V F R bis F == V (*) bestimme v R mit d(, v) d(, v ) v R F = F {v} R = R (Nachbarn(v) F ) {v} U = U R 9

13 Aufwand des Algorithmus von Dijkstra abhängig von der Implementierung der Knotenauswahl (*): ) durchlaufe alle Knoten: Aufwand O(n ) (Original) ) mit Knoten-Heap: Aufwand O(m log n) ) mit Knoten-Fibonacci-Heap (s. Ottmann/Widmayer): Aufwand O(m + n log n) 70

14 Beispiel: Algorithmus von Dijkstra 0 v 0 v 5 5 v 4 5 v 4 v v v v 4 0 v 5 0 v 5 5 v 4 5 v 4 v v 4 7 v v 4 0 v 5 5 v 4 v v 4 7

15 .5. Alle Paare kürzester Wege Ansatz : n-mal Dijkstra-Algorithmus Aufwand: O(n ) bzw. O(n m log n) (mit Heap) Ansatz : Floyd-Algorithmus Variante des Warshall-Algorithmus basierend auf Distanzmatrix... A[i][k] = min(a[i][k], A[i][j]+A[j][k])... Aufwand: O(n + E n) 7

16 Ansatz : (+,min)-multiplikationen geg.: Distanzmatrix D M = D; for(int i=0; i <= log n; i++) M = M M; wobei : (+,min)-matrixmultiplikation, d.h. min statt +, + statt Aufwand: O(n log n) verbesserbar auf: O(n.8 log n) mit Strassen-Verfahren 7

17 . Minimaler Spannender Baum gegeben: ungerichteter, gewichteter Graph G = (V, E, β) gesucht: Baum B = (V, E, β ) mit E E, β = β E und β(e) minimal e E Algorithmus von Kruskal (Pseudocode) E = while B noch kein Baum do wähle e E E mit kleinstem β(e) und so dass B = (V, E {e}) kreisfrei E = E {e} Aufwand: O(m log n) mit union-find-struktur (s. z.b. Ottmann/Widmayer) 74

18 Beispiel: Algorithmus von Kruskal v v v 4 v 4 v v v v v v v 4 v 4 v v v v 75

19 Algorithmus von Jarník/Prim/Dijkstra analog zu Dijkstra-Algorithmus (s.o) jedoch wird für jeden Randknoten der Abstand zum fertigen Baum vermerkt (nicht zum Anfangsknoten) Beispiel: v v v v 4 v 4 v 4 v v v v v v v v v 4 v v v v v 4 Aufwand: O(m + n log n) (mit Fibonacci-Heap) 7

20 .7 Maximaler Fluss gegeben: gewichteter Graph G = (V, E, β) mit β : E IR + q V Kantenkapazität Quelle s V Senke gesucht: maximaler Fluss f : E IR + von q nach s d.h. max ( f :E IR + f (q, v) f (v, q)) mit: (q,v) E (v,q) E * f (e) β(e) e E Kapazitätsrestriktion * f (v, v) f (v, v ) = 0 v V {q, s} Flusserhaltung (v,v) E (v,v ) E 77

21 Beispiel: Fluss 4/ 4 / v / q / 0 / / s 4/ / v v / 5/ 4 Definition: ein zunehmender Weg w von q nach s mit Kapazität k ist eine ) E Kantenfolge (, v }{{}, v ),..., (v r, v r ) mit }{{} (für i = 0,... r ) =q =s f (v i, i+ i, i+ ), falls (v i, v i+ oder f (v i+ i ) k 0, falls (v i+, v i 78

22 Beispiel: Flusserhöhung 4/ 4 / v / 4/ 4 / v / q / 0 / / s q / 0 / / s 4/ / v v / 5/ 4 4/ 4 / v v / 5/ 5 Fluss f nach Addition des zunehmenden Weges w: (für i = 0,... r ) f (v i, v i+ ) := f (v i, v i+ ) + k, falls (v i, v i+ ) E und f (v i, v i+ ) + k β(v i, v i+ ) f (v i+, v i ) := f (v i+, v i ) k, sonst 79

23 Algorithmus von Ford/Fulkerson für alle e E: f (e) = 0; while zunehmenden Weg w von q nach s do sei k die (max.) Kapazität von w erhöhe f entlang w um k zur Implementierung: speichere f (e) für jede Kante e bei naiver Wahl von w ist weder die Termination noch die Korrektheit garantiert Aufwand im schlechtesten Fall: abhängig vom Vorgehen bei der Bestimmung des zunehmenden Weges ) wenn w mit maximaler Kapazität: O(m log β max ) ) wenn w mit minimaler Kantenanzahl: O(n m ) (Algorithmus von Edmonds/Karp (Breitensuche)) 80

24 Andere Maximal-Fluss-Algorithmen Algorithmus von Dinic: O(n m) verbessert Alg. v. Edmonds/Karp; alle kürzesten Wege werden gleichzeitig berücksichtigt Algorithmus von Karsanow/Tarjan: O(n ) Algorithmus von Sleator/Tarjan: O(n m log n) Details siehe Ottmann/Widmayer Bemerkungen: maximaler Fluss entspricht minimalem Schnitt ein Fluss f ist maximal, wenn es keinen zunehmenden Weg gibt 8

25 5.8 Zuordnungen Definition: (Zuordnung) sei G = (V, E) ein Graph; E E heißt Zuordnung (Matching), wenn (v, v ) E v V {v, v } {(v, v), (v, v ), (v, v ), (v, v )} E 8

26 Definition: (bipartiter Graph) Bipartite Graphen sei G = (V, E) ein Graph mit V = V V und V V = G heißt bipartit, wenn E V V V V Bestimmung einer maximalen Zuordnung die Bestimmung einer (bzgl. E ) maximalen Zuordnung in einem bipartiten Graphen lässt sich auf das Maximal-Fluss-Problem zurückführen hierzu werden Knoten q und s ergänzt und q mit allen Knoten von V und s mit allen Knoten von V verbunden das Gewicht jeder Kante ist 8

27 Beispiel: Bestimmung einer maximalen Zuordnung zunehmende Wege: ) q A A s ) q B C s ) q D D s Adam Anna Bernd Birgit q s Christian Chantal Dieter Doris 4) q C C B A A B q 84

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil II Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 07.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS 2: Algorithmen und Datenstrukturen Teil 2 Prof. Peter F. Stadler & Sebastian Will Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität Leipzig 16. April

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 20 (23.7.2014) All Pairs Shortest Paths, String Matching (Textsuche) Algorithmen und Komplexität Vorlesungsevaluation Sie sollten alle eine

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

4. Kreis- und Wegeprobleme Abstände in Graphen

4. Kreis- und Wegeprobleme Abstände in Graphen 4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls

Mehr

12. AuD Tafelübung T-C3

12. AuD Tafelübung T-C3 12. AuD Tafelübung T-C3 Simon Ruderich 2. Februar 2011 Kollisionen (Primär)Kollision Stelle mit normal eingefügtem Element schon belegt (gleicher Hashwert) tritt bei verketteten Listen und Sondierung auf

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Martin Hofmann und Jan Johannsen Institut für Informatik LMU München Sommersemester 2002 Graphalgorithmen Grundlegendes Repräsentation von Graphen Breiten- und Tiefensuche Minimale

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS : Algorithmen und Datenstrukturen Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 16 (2.7.2014) Graphtraversierung II, Minimale Spannbäume I Algorithmen und Komplexität Tiefensuche: Pseusocode DFS Traversal: for all u in

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap.

12. Graphen. Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap ,Cormen et al, Kap. 254 12. Graphen Notation, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9.1-9.4,Cormen et al, Kap. 22 Königsberg 1736 255 Königsberg 1736 255 Königsberg 1736 255

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

12. Graphen. Königsberg Zyklen. [Multi]Graph

12. Graphen. Königsberg Zyklen. [Multi]Graph Königsberg 76. Graphen, Repräsentation, Traversieren (DFS, BFS), Topologisches Sortieren, Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. [Multi]Graph Zyklen C Kante Gibt es einen Rundweg durch die Stadt

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Minimal aufspannende Bäume Problemstellung Algorithmus von Prim

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I 9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk

Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 3 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS Kap. 5: Graphen Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 17. VO DAP2 SS 2009 23. Juni 2008 1 Motivation Warum soll ich heute hier bleiben? Graphen sind wichtig und

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS : Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Abgabe: (vor der Vorlesung)

Abgabe: (vor der Vorlesung) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 0 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14. Mai

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS : Algorithmen und Datenstrukturen Teil Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 09. Mai 08 [Letzte Aktualisierung: 06/07/08, 08:4]

Mehr

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1

Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern

Mehr

Rückblick: Starke Zusammenhangskomponenten

Rückblick: Starke Zusammenhangskomponenten Rückblick: Starke Zusammenhangskomponenten Der Algorithmus von Kosaraju bestimmt die starken Zusammenhangskomponenten eines gerichteten Graphen wie folgt: Schritt 1: Bestimme den transponierten Graphen

Mehr

Kapitel IV Minimale Spannbäume

Kapitel IV Minimale Spannbäume Kapitel IV Minimale Spannbäume 1. Grundlagen Ein Graph G = (V, E) besteht aus einer Menge V von Knoten und einer Menge E von Kanten. Wir werden nur endliche Knoten- (und damit auch Kanten-) Mengen betrachten.

Mehr

Kürzeste Wege in einem gewichteten Graphen. Anwendungen

Kürzeste Wege in einem gewichteten Graphen. Anwendungen Kürzeste Wege in einem gewichteten Graphen Dazu werden die Gewichte als Weglängen interpretiert. Der kürzeste Weg zwischen zwei Knoten in einem zusammenhängenden Graphen ist derjenige, bei dem die Summe

Mehr

2.4 Starke Zusammenhangskomponenten in Digraphen

2.4 Starke Zusammenhangskomponenten in Digraphen Starke Zusammenhangskomponenten Einleitung 2.4 Starke Zusammenhangskomponenten in Digraphen Definition 2.4.1 Zwei Knoten v und w in einem Digraphen G heißen äquivalent, wenn v w und w v gilt. Notation:

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Graphalgorithmen. 9. November / 54

Graphalgorithmen. 9. November / 54 Graphalgorithmen 9. November 2017 1 / 54 Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

Lösungsvorschläge zur Hauptklausur Datenstrukturen

Lösungsvorschläge zur Hauptklausur Datenstrukturen Lösungsvorschläge zur Hauptklausur 9 9 166211663 Datenstrukturen 9. August 2003 Seite 2 Lösungsvorschlage zur Klausur vom 9.08.2003 Kurs 166211663,,Datenstrukturen" Aufgabe 1 Bei jedem rekursiven Aufruf

Mehr

Statistik und Graphentheorie

Statistik und Graphentheorie Statistik und Graphentheorie Sommersemester 2014 24. März 2015 Teil Graphentheorie Matrikelnummer: 1 (12) 2 (12) 3 (12) 4 (12) 5 (12) (60) Aufgabe 1 (12 Punkte) Gegeben sei das folgende Netzwerk: (a) Berechnen

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra Datenstrukturen und Algorithmen Vorlesung 17: (K) Joost-Pieter Katoen Lehrstuhl für Informat Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 1. Juni 15 1 Joost-Pieter

Mehr

23. Graphen. Königsberg Zyklen. [Multi]Graph

23. Graphen. Königsberg Zyklen. [Multi]Graph Königsberg 76. Graphen, Repräsentation, Reflexive transitive Hülle, Traversieren (DFS, BFS), Zusammenhangskomponenten, Topologisches Sortieren Ottman/Widmayer, Kap. 9. - 9.,Cormen et al, Kap. 60 60 [Multi]Graph

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Problemlösen in grafischen Strukturen

Problemlösen in grafischen Strukturen Problemlösen in grafischen Strukturen Modul 31801 - Zusammenfassung Version vom 01.04.2019 Fernstudium Guide - Problemlösen in graphischen Strukturen - Seite 1 Impressum Herausgeber: FSGU AKADEMIE - Ein

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Graphen und Bäume 2. Binäre Suchbäume 3. AVL-Bäume 4. Algorithmen und Datenstrukturen 2 Agenda

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 12 (4.6.2018) Graphenalgorithmen I Yannic Maus Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester / Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen Such-Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei

Mehr

Algorithmische Mathematik I

Algorithmische Mathematik I Algorithmische Mathematik I Wintersemester 2011 / 2012 Prof. Dr. Sven Beuchler Peter Zaspel Übungsblatt zur Wiederholung Teil 1. Abgabe am -. Aufgabe 1. a) Was ist eine B-adische Darstellung mit fixer

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 13 (8.6.2016) Graphenalgorithmen I Algorithmen und Komplexität Graphen Knotenmenge V, typischerweise n V Kantenmenge E, typischerweise

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 5: Suchalgorithmen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 20. März 2018 1/91 WIEDERHOLUNG - BÄUME / bin etc home

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Kodieren Von Graphen

Kodieren Von Graphen Kodieren Von Graphen Allgemeine Anwendungen: Routenplaner Netzpläne Elektrische Schaltungen Gebäudeerkennung aus Luftaufnahmen Definitionen:? Graph Ein Graph G besteht aus einem geordneten Paar G = (V,E)

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr