Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Größe: px
Ab Seite anzeigen:

Download "Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering"

Transkript

1 Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme 3. VO

2 Literatur für diese VO M. Grötschel and M. Jünger and G. Reinelt: A cutting plane algorithm for the linear ordering problem. Operations Research 32, , 1984 Nachschlagewerk bei Interesse: M. Jünger und D. Naddef (Eds.): Computational Combinatorial Optimization, Optimal or Provably Near-Optimal Solutions, LNCS 2241, Springer, 2001, i.e

3 Überblick Kombinatorische Optimierung mittels GLP Kombinatorische Optimierungsprobleme Lineare Programmierung (Kurzeinführung) Polyedertheorie (Kurzeinführung) Kombinatorische Optimierungsprobleme vs. GLPs Bsp: Linear Ordering Problem Exakte Lösungsmethoden für GLPs Schnittebenenverfahren

4 Kombinatorische Optimierungsprobleme Definition Kombinatorisches Optimierungsproblem Gegeben sind: endliche Menge E (Grundmenge) Teilmenge I der Potenzmenge 2 E von E (zul. Mengen) Kostenfunktion c: E K

5 Beispiele Kombinatorische Optimierungsprobleme Handlungsreisendenproblem (TSP) Minimaler Spannender Baum (MST) Minimum der Funktion: f(x)=3x 2 +2, x R

6 Lineare Optimierungsprobleme Definition Lineares Optimierungsproblem Das Problem, einen Vektor zu finden, der unter allen Vektoren, die die Bedingungen Ax<=b erfüllen, derjenige ist, mit größtem (kleinstem) Zielfunktionswert.

7 Beispiel Ölraffinerie 2 Crackverfahren für Rohöl mit folgender Ausbeute und Kosten: Crackprozeß 1: 2S, 2M, 1L, Kosten 3 EUR Crackprozeß 2: 1S, 2M, 4L, Kosten 5 EUR Ziele: mindestens 3S, 5M, 4L herstellen (Lieferbedingungen) möglichst billig herstellen

8 Beispiel Ölraffinerie Zielfunktion subject to Restriktionen definieren den Lösungsraum Matrixschreibweise: (Tafel)

9 y (0,6) Geometrische Interpretation Zielfunktion = 0.9* *0.706 =13.1 Mio NB1 Zielfunktion = 0.9 x y = 40 Mio Zielfunktion = 30 Mio Maximiere 0.90 x y subject To NB1: 0.42 x y <= NB2: 0.13 x y <= NB3: 0.35 x y <= NB4: x >= 0 NB5: y >= 0 NB3 (0,1.5) (0,1) (0.882,0.706) (0,0) Zulässige Lösungen (1,0) NB2 (2,0) (3,0) x

10 Simplex-Algorithmus Lineares Programm Max 3x 1 + 2x 2 + 2x 3 Subject to x 1 + x 3 8 x 1 + x 2 7 x 1 + 2x 2 12 x 1, x 2, x 3 0

11 Simplex-Algorithmus Max z = 3x 1 + 2x 2 + 2x 3 x 3 (0,0,8) (0,6,8) Optimal! (2,5,6) z = 28 z = 0 (0,6,0) x 2 (7,0,1) z = 23 (2,5,0) x 1 (7,0,0) z = 21

12 Lineare Optimierungsprobleme Lineare Optimierungsprobleme tauchen in verschiedenen Formulierungen auf und können alle ineinander übergeführt werden: max oder min c T x: Ax b min c T x: Ax b und x 0 min c T x: Ax=b und x 0

13 Lineare Optimierungsprobleme LP in seiner allgemeinsten Form:

14 Ganzzahlige Lineare Optimierungsprobleme Lineare Optimierungsprobleme mit Ganzzahligkeitsforderungen: GLP (ILP, IP) Lineare Optimierungsprobleme mit teilweise Ganzzahligkeitsforderungen: GGLP (MIP) Lineare Optimierungsprobleme mit 0/1- Bedingungen: 0/1-IP, Binäres LP, BLP

15 Polyedertheorie (Kurzeinführung)

16 Polyedertheorie (Kurzeinführung)

17 Polyedertheorie (Kurzeinführung)

18 y (0,6) Geometrische Interpretation NB1 Maximiere 0.90 x y subject To NB1: 0.42 x y <= NB2: 0.13 x y <= NB3: 0.35 x y <= NB4: x >= 0 NB5: y >= 0 NB3 (0,1.5) (0,1) (0.882,0.706) (0,0) Zulässige Lösungen (1,0) NB2 (2,0) (3,0) x

19 Polyedertheorie (Kurzeinführung)

20 Polyedertheorie (Kurzeinführung)

21 Polyedertheorie (Kurzeinführung)

22 Zusammenhang zu Kombinatorischer Optimierung Jedes kom. OP kann als BLP formuliert werden und umgekehrt: Ist E eine endliche Menge und F E, dann ist der charakteristische Vektor χ F R E für F definiert als Beispiel: MST Wir assoziieren zu jedem Element e E eine Komponente des Vektors χ F. Umgekehrt, ist jeder 0/1-Vektor x {0,1} E charakteristischer Vektor einer Teilmenge F x von E, und zwar gilt: F x ={e E x e =1}.

23 Kombinatorische Optimierung vs. 0/1-IP Gegeben ist 0/1-IP: Assoziiertes Kombinatorisches OP: Wir setzen:

24 Kombinatorische Optimierung vs. 0/1-IP Gegeben ist kombinatorisches OP: (E,I,c) Assoziiertes 0/1-IP: Jedes Polyeder hat Beschreibung durch Ungleichungen Wir können also jedes komb. OP als LP formulieren Probleme: Berechnung der LP-Darstellung nicht in pol.- Zeit möglich i.a. exponentiell viele Ungleichungen Ungleichungen besitzen Koeffizienten exponentieller Größe

25 Lineares Ordnungsproblem (LOP) Gegeben: ein vollständiger gerichteter Graph G=(V,A) mit Kantengewichten c uv für alle Bögen (u,v) in A Gesucht: eine lineare Ordnung der Knoten, so dass die Summe der Gewichte aller Bögen, die dieser Ordnung entsprechen, maximiert wird. Anwendungen: Triangulation von Input-Output Matrizen, Rangbestimmung in Turniersportarten, Graph Layout

26 Graphen-Theoretische Formulierung Gegeben: ein vollständiger gerichteter Graph G=(V,A) mit Bogengewichten c uv für alle Bögen (u,v) in A Gesucht: ein spannendes, azyklisches Turnier in G mit größtem Gewicht Turnier: T A: entweder (i,j) T oder (j,i) T aber nicht beide

27 Spannendes Azyklisches Turnier Verbotene Strukturen in T: u v v v u w u w

28 ILP für LOP Gleichungen Triviale Ungleichungen 3-Kreis Ungleichungen Ausschluss der 3-er Kreise genügt

29 Spannendes Azyklisches Turnier Verbotene Strukturen in T: u v v v u w u w

30 ILP für LOP Projektion: x vu =1-x uv Triviale Ungl. 3-Kreis Ungl.

31 Geometrische Interpretation LOP Beispiel n=3: x 12 x 13 x 23 Permutation <1,2,3> <2,1,3> <2,3,1> <1,3,2> <3,1,2> <3,2,1> charakt. Vektor (1,1,1) (0,1,1) (0,0,1) (1,1,0) (1,0,0) (0,0,0) x 12 +x 23 -x 13 = x 13 <2,3,1> <2,1,3> x 23 <1,3,2> <3,2,1> <3,1,2> <1,2,3> x 12 +x 23 -x 13 =1 x 12

32 LP-Relaxierung des IPs n<6: Entfernung der Ganzzahligkeitsbedingungen macht keinen Unterschied D.h. die Ecken des relaxierten LOP-Polytops sind alle ganzzahlig n>=6: zusätzliche Ungleichungen notwendig

33 Beispiel: Moebius-Leiter Ungleichungen: Allgemein: k Kreise, k ungerade k Es ist notwendig, mindestens (k+1)/2 Bögen zu entfernen, um G azyklisch zu machen 1 2k-1 Möbius-Ungleichungen beschreiben Facetten des LOP-Polytops Foschungsgebiet: Polyedrische Kombinatorik

34 Polyedrische Kombinatorik: LOP Konvexe Hülle aller charakteristischer Vektoren, die Permutationen von l Elementen beschreiben. l n ,472 >488,602,996 Anzahl der Facetten, d.h. die Anzahl der theoretisch notwendigen Linearen Ungleichungen For l=60 ist LOP exakt lösbar innerhalb 1 Sekunde mittels Schnittebenenverfahren.

35 Schnittebenenverfahren y Addiere Ungleichungen nur bei Bedarf Zulässige Lösungen x Zielfunktion

36 Separationsproblem Zulässige Lösungen y Gegeben ist ein Punkt x und OP. Gesucht ist eine Ungleichung, die diesen Punkt --- aber keine zulässige Lösung --- abschneidet......oder Beweis, dass keine solche Ungleichung existiert. x Zielfunktion

37 Idee von Schnittebenenverfahren (1) Starte mit einer Teilmenge der Restriktionen (2) Löse LP, sei x* die gefundene Optimallösung (3) Entscheide, ob es weggelassene Restriktionen a T x<=b 0 gibt, so dass a T x>b 0? (3.1) Falls NEIN: STOP (Relaxierung gelöst) (3.2) Falls JA: Bestimme solche, füge sie zu lp hinzu und gehe zu (1) Separationsproblem

38 Satz von Grötschel, Lovasz, Schrijver Das Optimierungsproblem ist in polynomieller Zeit lösbar genau dann wenn das zugehörige Separationsproblem in polynomieller Zeit lösbar ist. Definition Separationsproblem: Frage: Können wir Separationsproblem für LOP lösen? durch Aufzählen und Ausprobieren aller Ungleichungen

39

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

How To Solve The Linear Ordering Problem (Lop)

How To Solve The Linear Ordering Problem (Lop) Kap. 3: Hierarchische Zeichenverfahren 3.4 Kreuzungsminimierung ffff Exakte Verfahren Prof. Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering LS11 Universität Dortmund 11./12. VO WS07/08 19./20. November

Mehr

Das Travelling Salesman Problem Exakte Lösungsverfahren für NP-schwierige kombinatorische Optimierungsprobleme 5. VO

Das Travelling Salesman Problem Exakte Lösungsverfahren für NP-schwierige kombinatorische Optimierungsprobleme 5. VO Das Travelling Salesman Problem Exakte Lösungsverfahren für NP-schwierige kombinatorische Optimierungsprobleme 5. VO 31.10.2005 Überblick Kurz-Wiederholung vom letzten Mal Kombinatorische Optimierungsprobleme

Mehr

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Kap. 8: Travelling Salesman Problem

Kap. 8: Travelling Salesman Problem Kap. 8: Travelling Salesman Problem Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 15. VO 5.2.07 Überblick 8.1 Einführung Einführung in TSP 8.2 ILP-Formulierung für TSP 8.3 Branch-and-Cut

Mehr

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18./20. VO A&D WS 08/09

Mehr

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme

Literatur für diese VO. Überblick. Kap. 5: Approximationsalgorithmen für kombinatorische Optimierungsprobleme Kap. : Approximationsalgorithmen für kombinatorische Optimierungsprobleme Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO

Mehr

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung 32KAPITEL 3. NP-SCHWIERIGE KOMBINATORISCHE OPTIMIERUNGSPROBLEME n Anzahl der Ungleichungen 3 8 4 20 5 40 6 910 7 87.472 8 >488.602.996 Tabelle 3.1: Anzahl der Ungleichungen des LOP-Polytops für n 8 3.4

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

NP-schwierige kombinatorische Optimierungsprobleme

NP-schwierige kombinatorische Optimierungsprobleme Kapitel 3 NP-schwierige kombinatorische Optimierungsprobleme Optimierungsprobleme sind Probleme, die im Allgemeinen viele zulässige Lösungen besitzen. Jeder Lösung ist ein bestimmter Wert (Zielfunktionswert,

Mehr

Kap. 4: Das Handlungsreisendenproblem (TSP)

Kap. 4: Das Handlungsreisendenproblem (TSP) Kap. 4: Das Handlungsreisendenproblem (TSP) VO Algorithm Engineering Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 7./8. VO 24./26. April 2007 Literatur Mutzel: Skript zu Branch

Mehr

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Schnittebenenverfahren für das symmetrische

Schnittebenenverfahren für das symmetrische Schnittebenenverfahren für das symmetrische TSP Sebastian Peetz Mathematisches Institut Universität Bayreuth 19. Januar 2007 / Blockseminar Ganzzahlige Optimierung, Bayreuth Gliederung 1 Das symmetrische

Mehr

Ganzzahlige lineare Programme

Ganzzahlige lineare Programme KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien.

Mehr

Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut

Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut VO Graphenalgorithmen WiSe 2009/10 Markus Chimani TU Dortmund NP-schwere Probleme 2

Mehr

Schnittebenenverfahren und Heuristiken

Schnittebenenverfahren und Heuristiken KAPITEL 6 Schnittebenenverfahren und Heuristiken Wir betrachten nun Optimierungsprobleme vom Typ (68) minc T x s.d. Ax b,x 0,x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n,b R m gegeben

Mehr

Optimierungsalgorithmen

Optimierungsalgorithmen Optimierungsalgorithmen Jakob Puchinger Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Übersicht

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 22 1 Das Travelling Salesperson Problem

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Das Travelling Salesperson Problem 2 Das Travelling Salesperson Problem Zentrales Problem der Routenplanung Unzählige wissenschaftliche Artikel theoretischer sowie

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Überblick Kap. 5: Graph Coloring

Überblick Kap. 5: Graph Coloring Überblick Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.0 / 8.1.07 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

Kap. 5: Graph Coloring

Kap. 5: Graph Coloring Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.06 / 8.1.07 Überblick 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

Kap. 7 Optimierung. Überblick. Optimierung: Einführung. Motivation. Beispiele für Optimierungsprobleme. Rundreiseprobleme (TSP)

Kap. 7 Optimierung. Überblick. Optimierung: Einführung. Motivation. Beispiele für Optimierungsprobleme. Rundreiseprobleme (TSP) Kap. 7 Optimierung Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 22. VO 2. TEIL DAP2 SS 2009 9. Juli 2009 Überblick Einführung Einige klassische Optimierungsprobleme,

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg

Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg Lineare Optimierung Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg VL 1: Einführung 10. April 2007 Überblick Optimierung unter Nebenbedingungen

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2007)

Vorlesung Lineare Optimierung (Sommersemester 2007) 1 Vorlesung Lineare Optimierung (Sommersemester 007) Kapitel 9: Ganzzahlige Polyeder und Kombinatorische Dualität Volker Kaibel Otto-von-Guericke Universität Magdeburg Montag, 9. Juli 007 Gliederung Ganzzahlige

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie 1 Algorithmische Graphentheorie Sommersemester 2014 5. Vorlesung Matchings / Paarungen II Kombinatorischer Algorithmus, Anwendung für Handlungsreisende, LP-Runden Dr. Joachim Spoerhase Prof. Dr. Alexander

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Optimierung Optimization. Vorlesung 01

Optimierung Optimization. Vorlesung 01 Optimierung Optimization Vorlesung 01 Organisatorisches skopalik@mail.upb.de Büro: F1.209 (Sprechstunde nach Vereinbarung) Vorlesung: Freitags, 11:15 12:45, F0 053 Übungen: Dienstags, 13:15 14:00, F0 053

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

1 Einführung in Lineare Programme und Dualität

1 Einführung in Lineare Programme und Dualität Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Algorithm Engineering

Algorithm Engineering Skriptausschnitt zur Vorlesung Algorithm Engineering Prof. Dr. Petra Mutzel Carsten Gutwenger Markus Chimani Karsten Klein SOMMERSEMESTER 2007 LEHRSTUHL FÜR ALGORITHM ENGINEERING UNIVERSITÄT DORTMUND c

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN

KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2008/09 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung / Motivation

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Hamiltonsche Graphen

Hamiltonsche Graphen Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

4.4 Quadratische Optimierungsprobleme

4.4 Quadratische Optimierungsprobleme 4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Gültige Ungleichungen für das Pfadweite- Problem

Gültige Ungleichungen für das Pfadweite- Problem Gültige Ungleichungen für das Pfadweite- Problem von Tom Rihm Masterarbeit in Mathematik vorgelegt der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen

Mehr

Effiziente Algorithmen II

Effiziente Algorithmen II 10. Präsenzaufgabenblatt, WiSe 2014/15 Übungstunde am 19.01.2015 Aufgabe Q Betrachten Sie das Knapsackpolytop P = conv(v ) mit V = {x n i=1 a ix i α} {0, 1} n für gegebenes α und a i 0 (insbesondere ist

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wiederholung TSP: Kurz:

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 1: Facetten des Knapsack-Polytops Diskutieren Sie folgende Fragen

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i )

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i ) Prof. Dr. U. Faigle J. Voss SS 2011 12. Übung zur Einführung in die Mathematik des Operations Research Dieses Übungsblatt wird nicht mehr gewertet. Aufgabe 1: Sei G = (V, E) ein gerichteter Graph und x

Mehr

Das Matching Polytop

Das Matching Polytop Das Matching Polytop Manuel Schneider Institut für Mathematik, TU Berlin Seminar: Algorithmische Diskrete Mathematik 27. Mai 2008 Überblick 1 Beschreibungen durch Ungleichungen Das Perfekte Matching Polytop

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Lagrange-Relaxierung und Subgradientenverfahren

Lagrange-Relaxierung und Subgradientenverfahren Lagrange-Relaxierung und Subgradientenverfahren Wir wollen nun eine Methode vorstellen, mit der man gegebene Relaxierungen verbessern kann. Wir werden die Idee zunächst an der 1-Baum-Relaxierung des symmetrischen

Mehr

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 12 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 12 Aufgabe 37 Auf einem Güterumschlagplatz werden

Mehr

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +).

Rechenzeit für A. Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit für A Sei t B die Rechenzeit eines Algo für B. Seien p,q,r monotone Polynome ( +). Rechenzeit des resultierenden Algo für A: t A (n) p(n) + q(n) t B (r(n)). Ist polynomiell, falls t B Polynom.

Mehr

Wie schreibe ich einen Kürzester Kruzester

Wie schreibe ich einen Kürzester Kruzester Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Algorithmentechnik im WS 8/9 Ausgabe 16. Dezember 8 Abgabe 13. Januar 9, 15:3 Uhr (im Kasten vor Zimmer 319, Informatik-Hauptgebäude,

Mehr

PG 534 Vehicle Routing Einführung. Markus Chimani & Karsten Klein LS11, TU Dortmund

PG 534 Vehicle Routing Einführung. Markus Chimani & Karsten Klein LS11, TU Dortmund PG 534 Vehicle Routing Einführung Markus Chimani & Karsten Klein LS11, TU Dortmund PG Ziele Framework Branch & Cut, Branch & Price, Auswählbare Zielfunktionen, Nebenbedingungen, Heuristiken, Ungleichungen,

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n Operations Research Rainer Schrader Polyeder und Zentrum für Angewandte Informatik Köln. Mai 27 / 83 2 / 83 Gliederung Polyeder Optimierung linearer Funktionen Rezessionskegel und polyedrische Kegel rationale

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

Kap. 5: Planaritätsbasierte Verfahren

Kap. 5: Planaritätsbasierte Verfahren Kap. 5: Planaritätsbasierte Verfahren Prof. Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering LS11 Universität Dortmund 23. VO WS07/08 21. Januar 2008 Literatur für diese VO M. Kaufmann, D. Wagner (Eds.):

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 17.01.013 Parametrisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Lineare und kombinatorische Optimierung

Lineare und kombinatorische Optimierung Lineare und kombinatorische Optimierung Theorie, Algorithmen und Anwendungen Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2017/18 Peter Becker (H-BRS) Lineare

Mehr

Ganzzahlige Optimierung

Ganzzahlige Optimierung Outlines Ganzzahlige Optimierung Minikurs im Cluster Intelligent Systems for Decision Support Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 16. Juni 2009 Outlines Outline

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie c NASA (earthasart.gsfc.nasa.gov/ganges.html) 1 Algorithmische Graphentheorie Sommersemester 2015 2. Vorlesung Flüsse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Gewinnmaximierung Sie sind Chef

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr