Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Größe: px
Ab Seite anzeigen:

Download "Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)"

Transkript

1 Vorlesung Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches Erfassen unserer Wirklichkeit gerichtet ist. Unsere Wirklichkeit umfasst neben deterministischen auch nicht deterministische, dh. zufällige Phänomene. Die Schule sollte auch Grundkenntnisse zum Verständnis zufälliger Erscheinungen vermitteln. Wenn eine der Grundaufgaben allgemeinbildender Schulen darin besteht, menschliches Verhalten bewusst zu machen, dann kann man an dem Aspekt des Zufalls im Leben nicht vorbeigehen. (WINTER, H. Gedanken zur Modernisierung des Sachrechnens,1972) Ziel der Stochastik: Den Zufall mathematisch erfassbar machen (KÜTTING) Stochastik Wahrscheinlichkeitsrechnung Untersucht Gesetzmäßigkeiten zufälliger Erscheinungen Statistik Deskriptive (beschreibende) Entwickelt Methoden zum Erfassen, Ordnen und Zusammenstellen von Daten Induktive (beurteilende) Liefert Methoden zur Analyse von Daten Teilweise wird die Kombinatorik als extra Bereich der Stochastik eingestuft, sie untersucht Möglichkeiten der Anordnung von Objekten.

2 Im täglichen Leben treten oft mehr oder weniger zufällige Erscheinungen auf. Z.B. bei Würfelspielen, Verkehrsbeobachtungen, Wetter, Krankenstand in einer Schulklasse, etc. 10mal würfeln, notieren wie oft die 6 fällt, (z.b. 2mal) Verkehrsbeobachtung, von 40 Fahrzeugen waren 15 Lkw Geburten: von 10 Neugeborenen waren 6 Jungen Def 1: Ein Vorgang heißt zufällig, wenn er mehrere Ergebnisse haben kann und nicht vorausgesagt werden kann, welches dieser Ergebnisse eintritt. Man spricht von einem Zufallsexperiment, wenn folgende Eigenschaften gelten: es läuft unter bestimmten Bedingungen ab es kann beliebig oft wiederholt werden jede Realisierung führt zu einem zufälligen Ergebnis. Die Vorgänge in Bsp1 bis 3 sind Zufallsexperimente (bei Bsp3 könnte man evtl. diskutieren) Def 2: Die absolute Häufigkeit H n (E) eines Ergebnisses E gibt an, wie oft E bei n Realisierungen auftritt. H 10 (6) = 2 H 40 (LKW) = 15 H 10 (J) = 6 Oft sind die absoluten Werte nicht so aussagekräftig (z.b. ist es schon ein Unterschied, ob bei einem Krankenstand von 5 Schülern die Klasse aus 15 oder aus 30 Schülern besteht). Günstiger ist hier die Verwendung relativer Werte (5 von 15 bzw. 1 von 3 = 1/3 gegenüber 5 von 30 bzw. 1 von 6 = 1/6) Def 3: Die relative Häufigkeit h n (E) eines Ergebnisses E ist der Quotient aus absoluter Häufigkeit und Anzahl der Realisierungen. H E h n (E) = n ( ) n h 10 (6) = 2/10 = 0,2 h 40 (Lkw) = 15/40 =0,375 h 10 (J) = 6/10 = 0,6 Für sehr hohe Realisierungszahlen n kann man beobachten, dass sich die relative Häufigkeit h n (E) bei einem festen Wert stabilisiert. (Sie strebt gegen diesen Wert.) Dies wurde auch in der Entwicklung der Stochastik schon früh festgestellt und man hat versucht, die Wahrscheinlichkeit P(E) als Grenzwert der relativen Häufigkeit für unendlich wachsendes n zu definieren ( P(E) = ( E ) ). Allerdings kam es lim hierbei zu Schwierigkeiten mit dem Grenzwertbegriff, so dass andere Wege zur Definition von P(E) nötig waren. Allerdings bietet sich damit ein möglicher Zugang zur Wahrscheinlichkeitsrechnung, der auch im Unterricht nutzbar ist. n h n

3 Satz1: Bem: (Empirisches Gesetz der großen Zahl) Ist A ein Ergebnis bei einem Zufallsexperiment, dann stabilisiert sich die relative Häufigkeit h n (A) bei wachsender Anzahl n von Realisierungen gegen einen festen Wert. (Dieser Wert kann als Schätzwert für die Wahrscheinlichkeit P(A) gelten.) Dies ist kein mathematischer Satz im herkömmlichen Sinn, sondern ein empirisches Gesetz (also aus der Erfahrung gewonnen und nicht von Axiomen abgeleitet), er kann deshalb mathematisch nicht bewiesen werden. Def4: h n (6) sollte sich bei einem idealen Würfel bei 1/6 einpegeln hier kann kein fester Wert angegeben werden h n (J) liegt nach Geburtsstatistik bei 0,512 (ist aber unter anderem von der Region abhängig) Die Menge aller möglichen Ergebnisse eines Zufallsexperiments heißt Ergebnismenge Ω. Ω 1 = {1, 2, 3, 4, 5, 6} oder Ω 2 = {Primzahl PZ, keine PZ} oder Ω 3 = {6; keine 6} oder Ω 1 = {Pkw, Lkw, Motorrad, Fahrrad} oder Ω 2 = {Lkw, kein Lkw} oder Ω = {Junge J, Mädchen M} Es gibt also oft verschiedene Möglichkeiten Ω festzulegen! Eine geschickte Wahl von Ω ist oft wichtig für die Berechnung von Wahrscheinlichkeiten. Def5: Jede Teilmenge A der Ergebnismenge Ω heißt Ereignis A. Satz2: Bew: Hat Ω n Elemente (d.h. Ω = n), dann gibt es 2 n unterschiedliche Ereignisse. Die Menge aller Teilmengen von Ω ist die Potenzmenge (Ω). Hat Ω n Elemente, so besitzt (Ω) 2 n Elemente, vgl. Vorlesung zur Mengenlehre, d.h. es gibt 2 n verschiedene Teilmengen von Ω, also 2 n verschiedene Ereignisse. Def6: 2 6 = 64 verschiedene Ereignisse hängt davon ab welche Fahrzeuge man zählt ist Ω = {Pkw, Lkw, sonstiges Fahrzeug}, so gibt es 2 3 = 8 verschiedene Ereignisse 2² = 4 verschiedene Ereignisse Die Menge aller Teilmengen von Ω heißt Ereignisraum (Ω) oder 2 Ω Übung für zu Hause Sei z. B. Ω = {Pkw, Lkw, sonstiges Fahrzeug},

4 Def7: Def8: (Ω) = {, {Pkw}, {Lkw}, {Sonst.}, {Pkw, Lkw}, {Pkw, Sonst.}, {Lkw, Sonst.}, {Pkw, Lkw, Sonst}} Ω = {J, M}; (Ω) = {, {J}, {M}, {J, M}} Das Ereignis A ist eingetreten, wenn bei einem Zufallsexperiment als Ergebnis a erscheint, mit a A. Z.B. das Ereignis {3, 4, 5} ist eingetreten, wenn eine 3 oder eine 4 oder eine 5 gewürfelt wird. Sei z. B. Ω = {Pkw, Lkw, sonstiges Fahrzeug}, wenn ein Lkw vorbeikommt, wäre das Ereignis {Lkw} oder {Pkw, Lkw} oder {Lkw, Sonst.} oder {Pkw, Lkw, Sonst.} eingetreten. Ω = {J, M}, das Ereignis {J} ist eingetreten, wenn ein Junge geboren wird Die einelementigen Teilmengen der Ergebnismenge heißen Elementarereignisse (atomare Ereignisse). Ω = {1, 2, 3, 4, 5, 6}, Elementarereignisse sind {1}, {2}, {3}, {4}, {5} und {6} Ω = {Pkw, Lkw, sonstiges Fahrzeug}, Elementarereignisse sind {Pkw}, {Lkw} und {Sonst.} Ω = {J, M}, Elementarereignisse sind {J} und {M} Def9: A = nennt man unmögliches Ereignis und A = Ω nennt man sicheres Ereignis. unmöglich ist es z.b. eine 7 zu würfeln und sicher ist, dass eine Zahl von 1 bis 6 gewürfelt wird unmöglich ist, dass ein Raumschiff Enterprise vorbeigefahren kommt, sicher ist, dass irgendein Fahrzeug vorbeikommt (wenn man an einer nichtgesperrten, öffentlichen Straße lange genug wartet) unmöglich ist, dass ein Saurier geboren wird, sicher ist es ein Junge oder Mädchen Nach einigen Schwierigkeiten in der Entwicklung der Wahrscheinlichkeitsrechnung forderte David Hilbert ( ) ( Wir müssen wissen, und wir werden wissen! ) im Jahr 1900 eine Axiomatisierung der Physik, wobei es ihm ursprünglich allerdings um die Wahrscheinlichkeitstheorie ging (das 6. von Hilberts 23 offenen Problemen der Mathematik). Diese Axiomatisierung der Wahrscheinlichkeitstheorie leistete 1933 Andrei Kolmogorow ( ).

5 Def10: (Kolmogorows Axiome eingeschränkt auf endliche Mengen) Eine Funktion P, die jeder Teilmenge A einer Menge Ω eine reelle Zahl P(A) zuordnet heißt Wahrscheinlichkeitsverteilung, wenn sie folgende Bedingungen erfüllt: P(A) 0 (Nichtnegativität) P(Ω) = 1 (Normiertheit) P(A B) = P(A) + P(B), wenn A B = (Additivität) D.h. es wird jedem Ereignis ein Wert (eine Wahrscheinlichkeit) von 0 bis 1 zugewiesen und die Wahrscheinlichkeit, dass A oder B eintritt (P(A B)) ergibt sich als Summe der Wahrscheinlichkeiten für A und B (wenn A und B disjunkt sind (A B = )). Das sichere Ereignis erhält die Wahrscheinlichkeit 1, das unmögliche Ereignis die Wahrscheinlichkeit 0. P(7) = 0, P(1 oder 2 oder oder 6) = P(es fällt eine Zahl von 1 bis 6) = 1 P(1 oder 2) = 1/6+1/6 = 1/3, wenn P(1) = 1/6 und P(2) = 1/6 P(Enterprise) = 0, P(irgendein Fahrzeug) = 1 P(Saurier) = 0, P(J oder M) = 1, P(J) = 0,512, P(M) = 0,488 Es werden also etwas mehr Jungen als Mädchen geboren! In seinem Buch Théorie Analytique des Probabilités, gab Pierre-Simon (Marquis de) Laplace ( ) eine Definition von Wahrscheinlichkeit und untersuchte abhängige und unabhängige Ereignisse. Interessant ist, das er andererseits Anhänger des Determinismus war und den Laplacschen Dämon entwarf: Wir müssen also den gegenwärtigen Zustand des Universums als Folge eines früheren Zustandes ansehen und als Ursache des Zustandes, der danach kommt. Eine Intelligenz, die in einem gegebenen Augenblick alle Kräfte kennte, mit denen die Welt begabt ist, und die gegenwärtige Lage der Gebilde, die sie zusammensetzen, und die überdies umfassend genug wäre, diese Kenntnisse der Analyse zu unterwerfen, würde in der gleichen Formel die Bewegungen der größten Himmelskörper und die des leichtesten Atoms einbegreifen. Nichts wäre für sie ungewiss, Zukunft und Vergangenheit lägen klar vor ihren Augen. Diese Intelligenz ist als Laplacscher Dämon bekannt. Def11: (Laplace-Verteilung) Sind bei einem Zufallsexperiment alle Elementarereignisse gleichwahrscheinlich, so nennt man diese Laplace-verteilt oder gleichverteilt. Solche Zufallsexperimente heißen auch Laplace- Experimente. (D.h. die Elementarereignisse sind unabhängig voneinander) Beim idealen Würfel sind die Ereignisse gleichverteilt, P(1) = P(2) = P(3) = =P(6) = 1/6 In der Regel sind die verschiedenen Fahrzeuge nicht gleichverteilt. Die Geburtenraten von Jungen und Mädchen unterscheiden sich auch, sind also nicht gleichverteilt.

6 Satz3: Für Laplace-Experimente gilt: Hat Ω = {e 1, e 2, e 3,, e n } Elementarereignisse, so ergibt sich für jedes Ereignis e k (k = 1, 2,, n) 1 1 die Wahrscheinlichkeit P(e k ) = = n Ω. Bew: Für die Elementarereignisse gilt: {e 1 } {e 2 } {e 3 } {e n } = Ω, sie sind paarweise disjunkt, also gilt nach Def10: P({e 1 } {e 2 } {e n }) = P({e 1 }) + P({e 2 }) + + P({e n }) = P(Ω) = 1 Da nach Def11 jedes Elementarereignis die gleiche Wahrscheinlichkeit hat, muss gelten: P({e 1 }) = P({e 2 }) = = P({e n }) = 1/n P(1) = P(2) = P(3) = =P(6) = 1/6 kein Laplace-Experiment kein Laplace-Experiment Satz4: Für jedes Ereignis A (Ω) gilt: A Anzahl der für A günstigen Ergebnisse P(A) = = Ω Anzahl aller möglichen Ergebnise Auf den Beweis wird an dieser stelle verzichtet. A = {1, 6} es soll also eine 1 oder eine 6 gewürfelt werden. 2 Ergebnisse günstig (1 oder 6) 2 1 P(A) = = = 6 mögliche Ergebnisse gibt es 6 3 B es soll eine Primzahl gewürfelt werden 3 Ergebnisse günstig (2 oder 3 oder 5) P(B) = 6 mögliche Ergebnisse gibt es = 6 3 = 2 1 Schlussbemerkung: In der Praxis werden Wahrscheinlichkeiten unterschiedlich angegeben, als Wert von 0 bis 1, als Prozentzahl oder als Verhältnis ½ = 0,5 oder 50% oder 5 von 10 (1 von 2) oder 5 zu 5 (5:5 auch 1:1) (50:50 fifty-fifty ) 1/5 = 0,2 oder 20% oder 2 von 10 (1 von 5) oder 2 zu 8 (2:8 auch 1:4) 1/3 = 0,3 oder 33,33% oder 1 von 3 oder 1 zu 2 (1:2)

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde. 10.1 Über den Begriff Stochastik Die Wahrscheinlichkeitsrechnung ist eine Teildisziplin von Stochastik. Dabei kommt das Wort Stochastik aus dem Griechischen : die Kunst des Vermutens (von Vermutung, Ahnung,

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Wirtschaftsstatistik I [E1]

Wirtschaftsstatistik I [E1] 040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 harald.schwab@univie.ac.at http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Einführung 2 Deskriptive Statistik

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Stochastik. Kombinatorik. 1 n n! Man muss die Anzahl möglicher Anordnungen durch die Anzahl möglicher Anordnungen von (n-k) Objekte dividieren.

Stochastik. Kombinatorik. 1 n n! Man muss die Anzahl möglicher Anordnungen durch die Anzahl möglicher Anordnungen von (n-k) Objekte dividieren. Stochastik Kombinatorik Bei der Kombinatorik geht es um das Zählen von Möglichkeiten. Es handelt sich um Abzählverfahren. Wichtig dabei ist stets die Auswahl und die Anordnung. alle Objekte Reihenfolge

Mehr

DIE SPRACHE DER WAHRSCHEINLICHKEITEN

DIE SPRACHE DER WAHRSCHEINLICHKEITEN KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage

Mehr

Mathematik IV (Stochastik) für Informatiker

Mathematik IV (Stochastik) für Informatiker Bausteine zur Vorlesung von Prof. Dr. Bernd Hofmann Mathematik IV (Stochastik) für Informatiker Fakultät für Mathematik der Technischen Universität Chemnitz Sommersemester 2016 Dieser Text soll die Nacharbeit

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Statistik I für Betriebswirte Vorlesung 1

Statistik I für Betriebswirte Vorlesung 1 Statistik I für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Grundwissen Stochastik Grundkurs 23. Januar 2008

Grundwissen Stochastik Grundkurs 23. Januar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Grundkurs 23. Januar 2008 1.

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen mit ungewissem

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

3.6 Wahrscheinlichkeitsrechnung I

3.6 Wahrscheinlichkeitsrechnung I 3.6 Wahrscheinlichkeitsrechnung I Inhaltsverzeichnis 1 Einführung 2 2 Zufallsversuche 2 3 Der Wahrscheinlichkeitsbegriff 5 4 Der Laplace-Zufallsversuch (oder Laplace-Experiment) 8 5 Die Komplementärregel

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

2. Zufallsvorgänge und Wahrscheinlichkeiten

2. Zufallsvorgänge und Wahrscheinlichkeiten 2. Zufallsvorgänge und Wahrscheinlichkeiten Ziel des Kapitels: Einführung elementarer Begriffe der Wahrscheinlichkeitsrechnung (definitorisch) Ziel der Wahrscheinlichkeitsrechnung: Modellierung von zufälligen

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Sachrechnen/Größen WS 14/ Kombinatorik und Wahrscheinlichkeit in der Schule

Sachrechnen/Größen WS 14/ Kombinatorik und Wahrscheinlichkeit in der Schule 3.2 Kombinatorik und Wahrscheinlichkeit in der Schule Stochastik in der Schule? am Ende von Sekundarstufe I und in Sekundarstufe II oft bei Schülern wie Lehrern unbeliebt zu geringes inhaltliches Verständnis

Mehr

Didaktik der Stochastik

Didaktik der Stochastik Didaktik der Stochastik. Didaktik der Stochastik Didaktik der Stochastik. Inhaltsverzeichnis Didaktik der Stochastik Ziele und Inhalte Beschreibende Statistik Wahrscheinlichkeitsrechnung 4 Beurteilende

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer 07621 203 7612 E-Mail:

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/174

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/174 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/174 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: srechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung 2/174

Mehr

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis 1 6.1 Grundlagen der Wahrscheinlichkeitsrechnung 6.1.1 Definitionen und Beispiele Spiele aus dem Alltagsleben: Würfel, Münzen, Karten,... u.s.w. sind gut geeignet die Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1

Daten und Zufall. eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule. SINUS September 2012 Benedikt Rocksien 1 Daten und Zufall eine gar nicht sooo neue Leitidee im Bildungsplan Mathematik Grundschule SINUS September 2012 Benedikt Rocksien 1 Mathematikunterricht in der Grundschule Allgemeine mathematische Kompetenzen

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

STOCHASTIK. II. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski

STOCHASTIK. II. Wahrscheinlichkeitstheorie und mathematische Statistik. Prof. Dr. Barbara Grabowski STOCHASTIK II. Wahrscheinlichkeitstheorie und mathematische Statistik Prof. Dr. Barbara Grabowski Hochschule für Technik und Wirtschaft des Saarlandes /202 Inhaltsverzeichnis - I - Einleitung Diese Kurseinheit

Mehr

3 Relative Häufigkeit

3 Relative Häufigkeit 3 Relative Häufigkeit RelativeTally@liste_D := Module@8h, n, m

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

Alles kein Zufall? DI Dr. techn. Robert Pucher. Beeinflussung des Zufalls? Untersuchungen zur willentlichen Beeinflussung von zufälligen Ereignissen

Alles kein Zufall? DI Dr. techn. Robert Pucher. Beeinflussung des Zufalls? Untersuchungen zur willentlichen Beeinflussung von zufälligen Ereignissen Alles kein Zufall? DI Dr. techn. Robert Pucher Beeinflussung des Zufalls? Untersuchungen zur willentlichen Beeinflussung von zufälligen Ereignissen - PEAR-Experimente in Princeton, - aktuelle Versuchsplanung

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

(2) Allgemeines zur Wahrscheinlichkeitsrechnung, die wichtigsten Beispiele

(2) Allgemeines zur Wahrscheinlichkeitsrechnung, die wichtigsten Beispiele () Allgemeines zur Wahrscheinlichkeitsrechnung, die wichtigsten Beispiele (.0) Einleitung In der Vorlesung geht es ab jetzt um Stochastik, die Kunst des "guten" Vermutens, das Gebiet der Mathematik, in

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

1. Funktionale Zusammenhänge

1. Funktionale Zusammenhänge 1. Funktionale Zusammenhänge Proportionalität Grundwissen 8 Eigenschaften direkt proportionaler Größen x und y: zum n-fachen Wert von x gehört der n-fache Wert von y die Wertepaare (x ; y) sind quotientengleich,

Mehr

Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Bedingte Wahrscheinlichkeiten und Unabhängigkeit Kapitel 5 Bedingte Wahrscheinlichkeiten und Unabhängigkeit Mitunter erhält man über das Ergebnis eines zufälligen Versuches Vorinformationen. Dann entsteht die Frage, wie sich für den Betrachter, den man

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr