Statistik II Übung 2: Multivariate lineare Regression

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik II Übung 2: Multivariate lineare Regression"

Transkript

1 Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden Sie dazu den Datensatz Flugpreise.sav. Die abhängige Variable Preis misst den durchschnittlichen Flugpreis einer bestimmten Strecke in den USA im Jahr 2000, die unabhängigen Variablen Passagiere, Distanz und Konzentration messen das durchschnittliche Passagieraufkommen (2000), die Distanz in Meilen bzw. die Marktkonzentration für eine bestimmte Strecke. Bitte bearbeiten Sie Aufgaben 1-5 in Gruppen von bis zu 4 Studierenden (vergessen Sie nicht die Namen!) und reichen Sie die Lösungen VOR der 2. PC Übung ein. 1. Argumentieren Sie, warum die unabhängigen Variablen einen Einfluss auf den Flugpreis haben könnten. (Hinweis: es gibt hier keine strikt richtigen oder falschen Antworten.) 2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für Preis, Passagiere, Distanz und Konzentration und kommentieren Sie diese kurz. Analysieren> Deskriptive Statistiken> Deskriptive Statistik Deskriptive Statistik N Minimum Maximum Mittelwert Standardabweic hung Distanz Passagiere Preis Konzentration Gültige Werte (Listenweise) Untersuchen Sie den Zusammenhang zwischen Preis und Distanz visuell anhand eines Streudiagramms (mit Preis auf der Y-Achse und Distanz auf der X-Achse). Fügen Sie auch eine lineare Regressionslinie zu Ihrem Streudiagramm hinzu. Welchen Zusammenhang können Sie erkennen? Grafik>Alte Dialogfelder > Streu-/Punktdiagram > Definieren >Y-Achse: Preis > X-Achse: Distanz Doppelklicken mit der linken Maustaste auf das Grafikfeld, um den Diagrammeditor zu öffnen. Wählen Sie das passende Symbol für die Regressionsgerade. Schliessen Sie das Fenster des Diagrammeditors, die Regressionsgerade erscheint in der Grafik. Ein positiver Zusammenhang zwischen der Distanz und dem Preis ist zu erkennen. 1

2 4. Regressieren Sie Preis (linear) auf Distanz und interpretieren Sie die Regressionskoeffizienten. Analysieren > Regression > Linear >Abhängige Variable: Preis > Unabhängige Variable: Distanz a Nicht standardisierte Regressionsko effizientb Standardfehler Beta 1 (Konstante) Distanz Pro geflogene Meile nimmt der Preis um 0,075 Dollar zu. 5. Regressieren Sie Preis (linear) auf Passagiere, Distanz und Konzentration und interpretieren Sie die Regressionskoeffizienten. Interpretieren Sie die p-werte hinsichtlich statistischer Signifikanz und kommentieren Sie das R 2. zusammenfassung R R-Quadrat Korrigiertes R- Quadrat Standardfehler des Schätzers a a. Einflußvariablen : (Konstante), Konzentration, Passagiere, Distanz 2

3 a Nicht standardisierte Regressionskoeffi zientb Standardfehler Beta 1 (Konstante) Distanz Passagiere Konzentration Mit jeder zusätzlichen zurückgelegten Meile steigt der Preis um 0,085 US Dollar. Der Effekt ist statistisch signifikant auf dem 1% Niveau. Wenn das Passagieraufkommen um 1 Passagier steigt, sinkt der Preis um 0,005 US Dollar. Der Koeffizient ist statistisch signifikant auf dem 5% Niveau. Wenn der Marktanteil des grössten Anbieters um 1 Prozentpunkt steigt, nimmt der Flugpreis um ungefähr 0,62 US Dollar zu. Der Effekt ist statistisch signifikant auf dem 1% Niveau. Die erklärenden Variablen erklären 38,3% der Variation in den Flugpreisen. 6. Wie erklären Sie sich die Veränderung im von Distanz zwischen Aufgaben 4 und 5? Durch die partielle Korrelation von Distanz mit den anderen erklärenden Variablen. 7. Diskutieren Sie die Annahmen des multivariaten linearen Regressionsmodells. 1 (lineares ); 2 (zufällige Stichprobe); 3 ( E(u x)=0 - Exogenität); 4 keine perfekte Multikollinearität. Unter diesen Annahmen ist der OLS Schätzer unverzerrt. Annahme 5 (Homoskedastizität) sichert Effizienz des OLS Schätzers 8. Generieren Sie eine neue Variable Distanz 2 ransformieren > Variable berechnen > Zielvariable: Distanz2 > Numerischer Ausdruck: Distanz*Distanz (oder Distanz**2) > OK 9. Regressieren Sie Preis auf Passagiere, Distanz, Distanz 2 und Konzentration. Berechnen Sie den partiellen Effekt von Distanz. Inwiefern unterscheidet sich Ihr von jenem in Aufgabe 5? Nichtlinearer Zusammenhang zwischen Preis und Distanz wird angenommen. Achtung: Koeffizient von Distanz ist nicht mehr der partielle Effekt, sondern letzterer entspricht nun Koeffizient(Distanz)+ 2*Koeffizient(Distanz2)*Distanz 3

4 zusammenfassung R R-Quadrat Korrigiertes R- Quadrat Standardfehler des Schätzers a a Nicht standardisierte Regressionskoe ffizientb Standardfehler Beta 1 (Konstante) Distanz Passagiere Konzentration Distanz E Ist der Koeffizient von Distanz 2 signifikant auf (a) dem 5% Niveau und (b) dem 10% Niveau? Was schliessen Sie daraus hinsichtlich des nichtlinearen Zusammenhangs zwischen Preis und Distanz? Auf dem 5% Niveau kann die Nullhypothese eines nichtlinearen Zusammenhangs nicht verworfen werden, weil der Koeffizient von Distanz2 nicht signifikant auf dem 5% Niveau. Auf dem 10% Niveau kann linearer Zusammenhang verworfen werden. 11. Was besagt das Gauss-Markov-heorem? Unter Annahmen 1 (lineares ); 2 (zufällige Stichprobe); 3 ( E(u x)=0 - Exogenität); 4 keine perfekte Multikollinearität; 5 (Homoskedastizität) ist OLS der beste unverzerrte lineare Schätzer; der beste in dem Sinne, dass er die kleinstmögliche Varianz unter allen unverzerrten Schätzern hat. 12. Warum kann das R 2 nie fallen, wenn in ein bestehendes Regressionsmodell eine zusätzliche Variable aufgenommen wird (z.b. Distanz 2 zusätzlich zu Distanz )? Der Grund ist, dass wenn immer der Koeffizient einer zusätzlichen Variable ungleich Null ist, die Residuen der Minimierung kleiner werden (und ansonsten gleich bleiben wie davor). 13. Erklären Sie die Begriffe Unter- und Überspezifikation. Unterspezifikation: 1 oder mehrere erklärende Variablen wurden im nicht berücksichtigt (vergessen, nicht beobachtet etc.); Überspezifikation: Variablen ohne Erklärungsgehalt werden im inkludiert. 4

5 14. Welche Probleme kann Unterspezifikation hinsichtlich der Unverzerrtheit der erklärenden Variable(n) mit sich bringen? Koeffizient für erklärende Variable ist verzerrt, falls unberücksichtigte Variable mit der erklärenden Variable und der abhängigen Variable korreliert ist. 15. Sie schätzen folgende in einer Regression von Stundenlohn in Dollar (y) auf Bildungsjahre (x1) und Arbeitserfahrung in Jahren (x2): β 0 = 5, β 1 = 2, β 2 = 3. Berechnen Sie den vorhergesagten (also den erwarteten) Stundenlohn für jemanden mit 10 Bildungsjahren und 3 Jahren an Arbeitserfahrung. y = β 0 + β 1x 1 + β 2x 2 = 5 + 2x 1 + 3x 2 = = 34 5

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz.

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz. Statistik II Übung : Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (6-24 Jahre alt) und der Anzahl der unter

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Aufgabe 1: [14,5 Punkte] Sie interessieren sich für die Determinanten

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

Einfache lineare Regressionsanalyse

Einfache lineare Regressionsanalyse Dr. Matthias Rudolf Modul M3: Multivariate Statistik Aufgaben und Lösungshinweise zum Computerseminar ERA: Einfache lineare Regressionsanalyse Dr. Matthias Rudolf: Modul BA-M3 Multivariate Statistik Seite

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Vorlesung 4: Spezifikation der unabhängigen Variablen

Vorlesung 4: Spezifikation der unabhängigen Variablen Vorlesung 4: Spezifikation der unabhängigen Variablen. Fehlspezifikation der unabhängigen Variablen. Auswirkungen einer Fehlspezifikation a. auf die Erwartungstreue der Schätzung b. auf die Effizienz der

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test)

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test) Test von Hyothesen: Signifikanz des Zusammenhangs (F-Test) Die Schätzung der Regressionsfunktion basiert auf Daten einer Stichrobe Inwiefern können die Ergebnisse dieser Schätzung auf die Grundgesamtheit

Mehr

Empirical Banking and Finance

Empirical Banking and Finance Empirical Banking and Finance Vorlesung zur Volkswirtschaftspolitik Prof. Dr. Isabel Schnabel Lehrstuhl für Volkswirtschaftslehre, insb. Financial Economics Johannes Gutenberg-Universität Mainz Wintersemester

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme SPSS bietet die Möglichkeit, verschiedene Arten von Streudiagrammen zu zeichnen. Gehen Sie auf Grafiken Streu-/Punkt-Diagramm und wählen Sie die Option Einfaches

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Bachelorprüfung WS 2012/13

Bachelorprüfung WS 2012/13 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13

Mehr

Datenanalyse mit Excel und Gretl

Datenanalyse mit Excel und Gretl Dozent: Christoph Hindermann christoph.hindermann@uni-erfurt.de Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 1 Teil 2: Gretl Datenanalyse mit Excel und Gretl Teil Titel 2: Gretl 2 Modellannahmen

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Geschlecht + Anfangsgehalt 14000 399 403 7000 12000 335 Anfangsgehalt 10000 8000 6000 4000 2000 N = 28 63 185 291 227 52 215 158 88 284 193

Mehr

Diagnostik von Regressionsmodellen (1)

Diagnostik von Regressionsmodellen (1) Diagnostik von Regressionsmodellen (1) Bei Regressionsanalysen sollte immer geprüft werden, ob das Modell angemessen ist und ob die Voraussetzungen eines Regressionsmodells erfüllt sind. Das Modell einer

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Das Lineare Regressionsmodell

Das Lineare Regressionsmodell Das Lineare Regressionsmodell Bivariates Regressionsmodell Verbrauch eines Pkw hängt vom Gewicht des Fahrzeugs ab Hypothese / Theorie: Je schwerer ein Auto, desto mehr wird es verbrauchen Annahme eines

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Ziel der linearen Regression

Ziel der linearen Regression Regression 1 Ziel der linearen Regression Bei der linearen Regression wird untersucht, in welcher Weise eine abhängige metrische Variable durch eine oder mehrere unabhängige metrische Variablen durch eine

Mehr

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped Aufgabe 1 [14 Punkte] Sie möchten untersuchen, wovon die Abwesenheit der Studierenden in den Vorlesungen an einer Universität abhängt. Sie verfügen über einen Datensatz zu 282 Studierenden mit folgenden

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2013 1. Welche Aussage zur Statistik (in den Sozialwissenschaften) sind richtig? (2 Punkte) ( ) Statistik ist die Lehre von Methoden

Mehr

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Es können von den Antwortmöglichkeiten alle, mehrere, eine oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression II Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression II Bringen Sie zur nächsten Übung und in die Klausur einen (nicht programmierbaren) Taschenrechner mit! # 2 Programm Wiederholung der

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Wiederholungsübungen zu den Kapiteln 7 bis 11

Wiederholungsübungen zu den Kapiteln 7 bis 11 Mittelwert-Tests Übung Wiederholungsübungen zu den Kapiteln 7 bis 11 In dieser Übung wird der Datensatz 4 verwendet. In dem (fiktiven) Datensatz sind für 50 Personen vier Variablen erfasst: das Geschlecht,

Mehr

Die Regressionsanalyse

Die Regressionsanalyse Die Regressionsanalyse Zielsetzung: Untersuchung und Quantifizierung funktionaler Abhängigkeiten zwischen metrisch skalierten Variablen eine unabhängige Variable Einfachregression mehr als eine unabhängige

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 28. August 2009 28. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Korrelation vs. Regression 2. Ziel der Regressionsanalyse 3. Syntax für den

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Aufgabe 1 a) Berechnen Sie einen U-Test für das in Kapitel 8.1 besprochene Beispiel mit verbundenen n. Die entsprechende Testvariable punkte2 finden Sie im Datensatz Rangdaten.sav.

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression Institut für Soziologie Christian Ganser Methoden 2 Regressionsanalyse II: Lineare multiple Regression Inhalt 1. Anwendungsbereich 2. Vorgehensweise bei multipler linearer Regression 3. Beispiel 4. Modellannahmen

Mehr

Probeklausur für die Abschlussklausur Statistik II

Probeklausur für die Abschlussklausur Statistik II Georg-August-Universität Göttingen Methodenzentrum Sozialwissenschaften Probeklausur für die Abschlussklausur Statistik II Nachname: Vorname: Matrikelnummer: Studiengang bitte ankreuzen BA: Diplom: Magister:

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 6.. Herleitung des OLS-Schätzers

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1 SPSS-Ausgabe : Univariate Varianzanalyse [DatenSet] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav Tests der Zwischensubjekteffekte Abhängige Variable: Einkommen Quelle Korrigiertes Modell Konstanter

Mehr

Bachelorprüfung SS MUSTERLÖSUNG

Bachelorprüfung SS MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 2016

Mehr

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. 21. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. 21. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit 2. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle In vielen Untersuchungen soll eine komplexere Beziehungsstruktur untersucht werden.

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho

Übungen (HS-2010): Urteilsfehler. Autor: Siegfried Macho Übungen (HS-2010): Urteilsfehler Autor: Siegfried Macho Inhaltsverzeichnis i Inhaltsverzeichnis 1. Übungen zu Kapitel 2 1 Übungen zu Kontingenz- und Kausalurteile 1 Übung 1-1: 1. Übungen zu Kapitel 2 Gegeben:

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Gliederung. 1. Einführung. Heute schon Musik gehört?

Gliederung. 1. Einführung. Heute schon Musik gehört? Regressionsanalyse Technische Universität Chemnitz Seminar: Forschungsmethodik und Evalua

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS:

Kreuzvalidierung. 1. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: Kreuzvalidierung. Schritt: Aufteilung der Stichprobe in ungefähr gleiche Hälften nach dem Zufall. SPSS: SPSS erzeugt eine neue Variable Filter_$. Die herausgefilterten Fälle werden im Datenfenster angezeigt

Mehr

Kapitel 22 Partielle Korrelationen

Kapitel 22 Partielle Korrelationen Kapitel 22 Partielle Korrelationen Bereits im vorhergehenden Kapitel wurden mit der Prozedur KORRELATION, BIVARIAT Korrelationskoeffizienten berechnet. Korrelationskoeffizienten dienen allgemein dazu,

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Bachelorprüfung SS 2015

Bachelorprüfung SS 2015 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 205

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Das multiple lineare Regressionsmodell

Das multiple lineare Regressionsmodell Das multiple lineare Regressionsmodell Worum geht es in diesem Lernmodul? Das Modell Schätzen der Koeffizienten Interpretation der Koeffizienten Testen der Koeffizienten Worum geht es in diesem Lernmodul?

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Aufgaben Klausur Statistik WiSe 2014/15 1. Termin (gesamt: 40 Punkte)

Aufgaben Klausur Statistik WiSe 2014/15 1. Termin (gesamt: 40 Punkte) Aufgaben Klausur Statistik WiSe 2014/15 1. Termin (gesamt: 40 Punkte) Aufgabe 1 (20 Punkte) Aufgabe 1: varibale/prädiktor 1 = soziale Situation (x). Kodiert in: "Situation1": situation mit den ausprägungen

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr