Komplexe Zahlen (Seite 1)

Größe: px
Ab Seite anzeigen:

Download "Komplexe Zahlen (Seite 1)"

Transkript

1 (Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine Lösung Erweiterung zu C (Menge der kompleen Zahlen) = ±i mit i² := 1 (oder i = 1 ) Imaginäre Einheit: Die Zahl i mit i² = 1 heißt imaginäre Einheit (Euler 1777). Folgerungen: i 0 = 0 i = 0 i + 0 = i i / i = 1 i² = 1 i³ = i² i = i i 4 = i² i² = +1 i 5 = i i 4n+r = (i 4 ) n i r = 1 n i r = i r für r = 0, 1, 2, 3 (3i)² = 9 (2i) 4 = 16 4 / i = 4i 16 = 4i i 234 = i = i² = 1 (ii) Komplee Zahlen: Komplee Zahl: Die Zahl z = a + bi heißt komplee Zahl mit dem Realteil a = Re(z) und dem Imaginärteil b = Im(z). Der Betrag einer kompleen Zahl berechnet sich durch: z = a + bi = a² + b². Die Zahl z = a bi nennt man konjugiert komplee Zahl der Zahl z = a + bi mit z = z. Beispiel: z = 3 + 4i z = 3 4i mit z = 5 z = 4 12i z = i mit z = 4 10 Beachte: a = 0 < rein imaginäre Zahl; b = 0 < reelle Zahl. z 1 = z 2 < a 1 = a 2 und b 1 = b 2! z = z < b = 0! ( z ) =z

2 (Seite 2) (iii) Rechnen mit kompleen Zahlen: (9 + 2i) + (7 + 4i) = i (9 + 2i) (7 + 4i) = i (5 + 12i) (5 12i) = 169 (2 + 3i)² = i ( 3 2i ) ( 4 5i ) 3 2i 12 15i 8i + 10 i² 2 23i 2 23i = = = = 4 + 5i 4 + 5i 4 5i i² Rechenregeln: Addition / Subtraktion: (a + bi) ± (c + di) = (a ± c) + (b ± d) i Multiplikation: (a + bi) (c + di) = (ac bd) + (ad + bc) i, da i² = 1. Division: ( ) ( ) a + bi a + bi c di ac + bd + bc ad i ac + bd bc ad = = = + i. c + di c + di c di c² + d² c² + d² c² + d² Potenzieren: (a + bi)² = (a² b²) + 2ab i (höhere Potenzen: Pascalsches Dreieck!). Folgerungen: u + v = u + v und u v = u v. z z = z², d.h. z = z z 4. Binomische Formel : (a + bi) (a bi) = a² + b² i 1 = i³ = i, denn: ii 1 = 1 = i 4 = ii³ z 1 = 1 / z = z* / z z* = z* / z ² Wurzeln: Die Wurzel aus der kompleen Zahl z² = a + bi ergibt sich aus: a² + b² + a a² + b² a z1,2 = ± + i für b > a² + b² + a a² + b² a z = ± i für b < ; 3,4 (da und y verschiedene Vorzeichen haben müssen bei b<0 wegen 2y = b). Herleitung: Gesucht ist Zahl z = + yi mit ( + yi)² = a + bi, also (² y²) + 2y i = a + bi. 4 4 ( ² y² ) ² = a² ² y² = a 2 ² y² + y = a² < < 2y = b 4 ² y² = b² 4 ² y² = b² ² y² = a ² y² = a ² y² = a < < < ² y² + y = a² + b² ² + y² ² = a² + b² ² + y² = a² + b² ² ² ² ² ² a + b + a ; ² a + y b = = a 2 2 ( )

3 (Seite 3) (iv) Die Gaußsche Zahlenebene (komplee Ebene): Komplee Ebene: Gaußsche Zahlenebene Die 1. Achse entspricht dem Realteil, die 2. Achse dem Imaginärteil, d.h.: = Re(z), y = Im(z). Jeder kompleen Zahl z = a +bi entspricht somit der der Punkt P(a b). Die rein imaginären Zahlen liegen auf der y-achse, die reellen auf der -Achse. Eine komplee Zahl liegt stets - achsensymmetrisch zu ihrer konjugiert kompleen Zahl. Problem: Komplee Zahlen lassen sich nicht der Größe nach ordnen (d.h. z 1 < z 2 ergibt keinen Sinn!). Stattdessen verwendet man oftmals den Betrag einer kompleen Zahl, der ihren Abstand vom Ursprung angibt. Zahlen mit demselben Betrag liegen auf einem Kreis um den Ursprung. (v) Vektoren; Polarkoordinaten: Vektoren: Die Zahl z = a + bi lässt sich auch als Ortsvektor darstellen, d.h. a z = OZ = b. Vorteil: Die Addition/Subtraktion lässt sich durch Vektoren leicht ausführen (man addiert/subtrahiert stets gleichartige Komponenten). Weitere Darstellung eines Punktes: Den im Bild dargestellten Punkt A(3 4) kann man auch beschreiben durch: 1 4 z = 3³ + 4² und ϕ = tan 51,13. 3 D.h. jede komplee Zahl lässt sich nun auch in Polarkoordinaten darstellen, es gilt folglich: A( 3 4) A[ 5 51,13 ] <. Auch die Grundrechenarten lassen sich mit Polarkoordinaten leicht darstellen (Additionstheoreme!!!). Polarkoordinaten: Jede komplee Zahl z = a + bi lässt sich sowohl in kartesischen Koordinaten ( ) a b als auch in Polarkoordinaten z ϕ angeben mit: a b z = a² + b², cosϕ = und sinϕ = z z ( ϕ ϕ ) i z = z cos + i sin = z e ϕ., also:

4 (Seite 4) Ekurs: Taylor-Reihen-Entwicklung Sinusfunktion: Kosinusfunktion: Eponentialfunktion: iϕ e = cosϕ + i sin ϕ sin( ) = ! 3! 5! 7! cos( ) = ! 4! 6! e = ! 2! 3! 4! 5! (vi) Lösen von Gleichungen: Beachte: Ist z Lösung einer Gleichung, so ist auch immer z Lösung derselben Gleichung! (1) Bestimme die Lösungen der Gleichung ² = 0! 1, = ± 8 = 2 ± 4 = 2 ± 4 1 = 2 ± 2i L = {2±2i} 2 2 (2) Bestimme die Nullstellen des Polynoms ! Durch Raten : 1 + i ist Lösung, denn: i 1+ i + 1+ i + 2 = 1+ 4i + 6 i² + 4 i³ + i 1+ 3i + 3 i² + i³ i + i² + 2 = 0 Wenn 1 + i Lösung ist, dann ist auch 1 i eine Lösung. ( (1 + i)) ( (1 i)) = (( 1) i) (( 1) + i) = ( 1)² i² = ² ( ³ ² 2): ( ² 2 2) ² = + + (Polynomdivision) 1, = ± 1 = ± = ± 1 = ± i L = 1 ± i; ± i 2 2 Fundamentalsatz der Algebra: Ein Polynom n-ten Grades hat in C immer genau n Nullstellen.

5 (Seite 5) (vii) Anwendungen: (1) Schwingungen: Bei einem Federpendel wirkt die Kraft F = m a, die von der Rückstellkraft F = D s geliefert wird. Es gilt somit zu jedem Zeitpunkt: m a(t) = D s(t) bzw. a(t) = D / m s(t). Da a(t) = ɺɺ s(t) (Herleitung z.b. über Graph), erhält man: ɺɺ s(t) = D / m s(t) (Differentialgleichung). Lösungen dieser Gleichung sind: = ˆ ( ω + ϕ), s( t) sˆ cos( ωt ϕ ) s( t) s sin t = + bzw. ( ( ω ϕ ) ( ω ϕ )) i t s( t) = sˆ cos t + + i sin t + oder s( t) = sˆ e ω + ϕ. Vorteil von kompleen Zahlen im Vergleich zu Reellen: Bei der Dämpfung lautet die Differentialgleichung: m a(t) = k v(t) D s(t). Durch Verwendung der kompleen Zahlen kann man statt sin und cos die Eponentialfunktion verwenden, was gerade Produkte und deren Ableitungen stark vereinfacht! (2) Mandelbrot-Mengen ( Apfelmännchen ): Mandelbrot-Menge ist die Menge aller kompleen Zahlen c, für welche der Betrag der rekursiv definierten Folge kompleer Zahlen zn + 1 = zn² + c ; z 0 = 0 beschränkt bleibt. Punkte der Folge werden schwarz dargestellt; manchmal gibt die Farbe eines Punktes auch den Grad der Divergenz an. Da die Berechnung sehr aufwendig ist, begnügt man sich oft mit folgendem: Ist das 20. Folgenglied kleiner als 2, so gehört der Punkt zur Menge, ansonsten gehört er nicht dazu. Man beachte die Selbstähnlichkeit der entstehenden Struktur! Anwendung: Computer-Darstellungen von Wolken, Bergen, Küsten,

Komplexe Zahlen. Darstellung

Komplexe Zahlen. Darstellung Komplexe Zahlen Die Zahlenmengen, mit denen wir bis jetzt gearbeitet haben lassen sich zusammenfassen als N Z Q R Die natürlichen Zahlen sind abgeschlossen bezüglich der Operation des Addierens. Das heisst

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z.

02. Komplexe Zahlen. a = Re z ist der Realteil von z, b = Im z der Imaginärteil von z. 0. Komplexe Zahlen Da für alle x R gilt dass x 0, hat die Gleichung x +1 = 0 offenbar keine reellen Lösungen. Rein formal würden wir x = ± 1 erhalten, aber dies sind keine reellen Zahlen. Um das Problem

Mehr

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018

VII Komplexe Zahlen. Propädeutikum Holger Wuschke. 24. September 2018 Propädeutikum 2018 24. September 2018 Darstellung Rechengesetze Erweiterung der reellen Zahlen um eine imaginäre Einheit. Ursprung: Lösung der Gleichung x 2 + 1 = 0 Komplexe Zahlen C := {a + i b a, b R}

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)

Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit) Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.

Mehr

KOMPLEXE ZAHLEN UND FUNKTIONEN

KOMPLEXE ZAHLEN UND FUNKTIONEN Übungen zu Theoretische Physik L2 KOMPLEXE ZAHLEN UND FUNKTIONEN E I N R E F E R A T M I T A N N E T T E Z L A T A R I T S U N D F L O R I A N G R A B N E R. 2 1. 1 0. 2 0 1 3 INHALT Geschichte Definition

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Komplexe Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Grundlagen. Mathematik I für Chemiker. Daniel Gerth

Grundlagen. Mathematik I für Chemiker. Daniel Gerth Grundlagen Mathematik I für Chemiker Daniel Gerth Überblick Komplexe Zahlen Dieses Kapitel erklärt: Was komplexe Zahlen sind Wie man mit ihnen rechnet Daniel Gerth (JKU) Grundlagen 2 / 30 Inhaltsverzeichnis

Mehr

A Die Menge C der komplexen Zahlen

A Die Menge C der komplexen Zahlen A Die Menge C der komplexen Zahlen (Vgl. auch Abschnitt C) A.1 Definition Wir erweitern R um eine Zahl i / R (genannt imaginäre Einheit) mit der Eigenschaft i 2 i i = 1. (653) Unter einer komplexen Zahl

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Komplexe Zahlen. Rainer Hauser. Januar 2015

Komplexe Zahlen. Rainer Hauser. Januar 2015 Komplexe Zahlen Rainer Hauser Januar 015 1 Einleitung 1.1 Zahlen und Operationen auf Zahlen Addiert man mit Eins als erster gegebener Zahl beginnend sukzessive Eins zu einer bereits gefundenen Zahl, so

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mathematischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 40 Kapitel 12 Komplexe Zahlen Kapitel 12 Komplexe Zahlen Mathematischer Vorkurs

Mehr

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen

Inhaltsübersicht. Definition und erste Eigenschaften komplexer Zahlen Inhaltsübersicht Kapitel 4: Die Macht des Imaginären: Komplexe Zahlen Definition und erste Eigenschaften komplexer Zahlen Die Polardarstellung komplexer Zahlen Polynome im Komplexen Exponentialfunktion

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

Brückenkurs Mathematik. Freitag Freitag

Brückenkurs Mathematik. Freitag Freitag Brückenkurs Mathematik Freitag 9.09. - Freitag 13.10.017 Vorlesung 10 Komplexe Zahlen Kai Rothe Technische Universität Hamburg-Harburg Freitag 13.10.017 0 Brückenkurs Mathematik, K.Rothe, Vorlesung 10

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

Fortgeschrittene Mathematik Raum und Funktionen

Fortgeschrittene Mathematik Raum und Funktionen Fortgeschrittene Mathematik Raum und Funktionen Thomas Zehrt Universität Basel WWZ Thomas Zehrt (Universität Basel WWZ) R n und Funktionen 1 / 33 Outline 1 Der n-dimensionale Raum 2 R 2 und die komplexen

Mehr

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg

Komplexe Funktionen. Freitag Vorlesung 1. Kai Rothe. Sommersemester Technische Universität Hamburg-Harburg Komplexe Funktionen Freitag 13.04.018 Vorlesung 1 Kai Rothe Sommersemester 018 Technische Universität Hamburg-Harburg K.Rothe, komplexe Funktionen, Vorlesung 1 Nullstellen quadratischer Gleichungen Beispiel

Mehr

(a) Motivation zur Definition komplexer Zahlen

(a) Motivation zur Definition komplexer Zahlen 1 Anhang B (a) Motivation zur Definition komplexer Zahlen Neue Zahlen wurden stets dann definiert, wenn die Anwendung von Rechenoperationen auf bekannte Zahlen innerhalb der Menge letzterer keine Lösung

Mehr

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen.

Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahlen Einführung Im Bereich der komplexen Zahlen ist es möglich die Wurzel aus negativen Zahlen zu ziehen. Komplexe Zahl Unter dem Zahlenkörper der komplexe Zahlen C versteht man die Elemente

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben.

2. alle Grundrechenarten +,, und / uneingeschränkt durchführbar sind und die Rechenregeln für R erhalten bleiben. 41 3 Komplexe Zahlen Für alle reellen Zahlen x gilt x 2 0. Es gibt also keine reelle Zahl, welche Lösung der Gleichung x 2 +1 = 0 ist. Allgemein hat die quadratische Gleichung ax 2 +bx+c = 0, a,b,c R nur

Mehr

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden

Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

Demo: Mathe-CD KOMPLEXE ZAHLEN

Demo: Mathe-CD KOMPLEXE ZAHLEN KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00

Mehr

Komplexe Zahlen und Allgemeines zu Gruppen

Komplexe Zahlen und Allgemeines zu Gruppen Komplexe Zahlen und Allgemeines zu Gruppen Die komplexen Zahlen sind von der Form z = x + iy mit x, y R, wobei i = 1 als imaginäre Einheit bezeichnet wird. Wir nennen hierbei Re(z = x den Realteil von

Mehr

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a

Menge der natürlichen Zahlen = {1, 2, 3,...} Aber: a + x = b ist nur lösbar, falls b > a Komplexe Zahlen. Bedarfsfrage Menge der natürlichen Zahlen = {,, 3,...} Aber: a + x = b ist nur lösbar, falls b > a (Peano-Axiome). Erweiterung: Menge der ganen Zahlen = {..., -3, -, -, 0,,, 3,...} a +

Mehr

3 Der Körper der komplexen Zahlen

3 Der Körper der komplexen Zahlen 3 Der Körper der kompleen Zahlen Nicht jede quadratische Gleichung hat eine reelle Lösung + p + q = (p, q R) Beispiel: Für alle R ist und daher + 1 Abhilfe: Man erweitert R zu einem größerem Körper C,

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

Musterlösungen. der Warm-Up Hausaufgaben. Komplexe Zahlen

Musterlösungen. der Warm-Up Hausaufgaben. Komplexe Zahlen WS 05/6 Musterlösungen der Hausaufgaben Komplexe Zahlen Hinweis: Allgemein ist wohl zu erwarten, dass in allen drei Zahldarstellungen gerechnet wird. Zur Erinnerung: z C z = Re(z) + i Im(z) = a + ib =

Mehr

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Spezialthema Komplexe Zahlen Fragen

Spezialthema Komplexe Zahlen Fragen Spezialthema Komplexe Zahlen Fragen Lukas Prokop 31. Mai 2009 Dank an Prof. Egger Die ganzen Zahlen hat der liebe Gott gemacht, alles weitere ist Menschenwerk (Leopold Kronecker 1 ) 1 frei zitiert nach

Mehr

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra

11 Komplexe Zahlen. Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra 11 Komplexe Zahlen Themen: Der Körper der komplexen Zahlen Die Mandelbrot-Menge Der Fundamentalsatz der Algebra Addition ebener Vektoren Sei Ê 2 = {(x, y) : x, y Ê}. Ê 2 können wir als Punkte in der Ebene

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Komplexe Zahlen. Inhaltsverzeichnis Version: 1.1. Tobias Brinkert Homepage: <

Komplexe Zahlen. Inhaltsverzeichnis Version: 1.1. Tobias Brinkert   Homepage: < Tobias Brinkert email: Homepage: 2.05.2005 Version:. Inhaltsverzeichnis . Die imaginäre Einheit i Da eine Zahl, mit sich selbst multipliziert, niemals ( ) ergeben

Mehr

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/62 Prof. Dr. Erich Walter Farkas Mathematik I 7. Komplexe Zahlen Definition einer

Mehr

Mathematik für Wirtschaftsingenieure

Mathematik für Wirtschaftsingenieure Mathematik für Wirtschaftsingenieure Lehr- und Übungsbuch Bearbeitet von Christopher Dietmaier 1. Auflage 005. Buch. 600 S. Hardcover ISBN 978 3 446 337 0 Format (B L): 17,6 4,6 cm Gewicht: 1196 g Weitere

Mehr

Lineare Algebra. 1. Übungsstunde. Steven Battilana

Lineare Algebra. 1. Übungsstunde. Steven Battilana Lineare Algebra 1. Übungsstunde Steven Battilana September 3, 016 1 Komplexe Zahlen In R können wir zusätzlich zur Addition eine weitere Verknüpfung einführen, die komplexe Multiplikation : R R (a, b),

Mehr

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen

Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen Mathematik I Herbstsemester 2014 Kapitel 7: Komplexe Zahlen www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1/60

Mehr

1 Grundlagen. 1.1 Elementare Logik

1 Grundlagen. 1.1 Elementare Logik Höhere Mathematik 7 1 Grundlagen 1.1 Elementare Logik Eine (mathematische) Aussage ist ein Satz, der entweder wahr oder falsch ist (keine Aussage ist sowohl wahr als auch falsch). Der Wahrheitswert v(a)

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 9.10.2017 Inhalt des Moduls Einführung in die Mathematik für Informatiker Fachrichtung Mathematik, Institut für Algebra

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2

Zusatzmaterial zur Mathematik I für E-Techniker Übung 2 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock,. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung Wiederholung - Theorie: Komplexe Zahlen (a Wir definieren mit

Mehr

Serie 6: Komplexe Zahlen

Serie 6: Komplexe Zahlen D-ERDW, D-HEST, D-USYS Mathematik I HS 15 Dr. Ana Cannas Serie 6: Komplexe Zahlen Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 26. und 28. Oktober. Es gibt zwei Darstellungsformen

Mehr

Komplexe Zahlen. Wir beginnen mit Beispielen.

Komplexe Zahlen.   Wir beginnen mit Beispielen. Komplexe Zahlen Wir beginnen mit Beispielen. Wenn man nur ganze Zahlen kennen würde, dann hätte die Gleichung 2x = 5 keine Lösung. Wenn die Grundmenge G = R (= reelle Zahlen) ist, dann hat auch die Gleichung

Mehr

Abbildung 14: Winkel im Bogenmaß

Abbildung 14: Winkel im Bogenmaß Mathematik für Naturwissenschaftler I. (7) Trigonometrische Funktionen (in R): Trigonometrische Funktionen wie sin x und cos x stehen üblicherweise in Zusammenhang mit Winkeln. Während im Alltag Winkel

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen

Die Menge der reellen Zahlen vereinigt die Menge der rationalen Zahlen mit der Menge der irrationalen 9 Menge der natürlichen Zahlen Axiome von Peano: 1. 1 ist eine natürliche Zahl. 2. Jede Zahl a hat einen bestimmten Nachfolger a + in der Menge der natürlichen Zahlen.. Stets ist a + 1, d.h. es gibt keine

Mehr

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5

INHALTSVERZEICHNIS: DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 INHALTSVERZEICHNIS: ZAHLENBEREICHSERWEITERUNG 1 DEFINITION UND EIGENSCHAFTEN VON KOMPLEXEN ZAHLEN 2 GESCHICHTE DER KOMPLEXEN ZAHLEN 4 DARSTELLUNG DER KOMPLEXEN ZAHLEN 5 RECHNEN MIT KOMPLEXEN ZAHLEN 7 DIE

Mehr

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen

viele weitere Anwendungen wie zum Beispiel Schwingungsvorgänge. 4.1 Die algebraische Struktur der komplexen Zahlen 4 Komplexe Zahlen In diesem Kapitel wollen wir uns erneut mit dem R 2 beschäftigen, diesmal aber mit einer anderen algebraischen Struktur. Dies erlaubt uns weitere Anwendungen in der Geometrie die Lösung

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahlen Lernziele dieses Abschnitts sind: (1) Analytische und geometrische Darstellung komplexer Zahlen, () Grundrechenarten fur komplexe Zahlen, (3) Konjugation und Betrag komplexer

Mehr

Kapitel 10 Komplexe Zahlen

Kapitel 10 Komplexe Zahlen Komplexe Zahlen Kapitel 10 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite 94 / 112 Komplexe Zahlen Die komplexen Zahlen entstehen aus den reellen Zahlen, indem eine neues Element i (in der Elektrotechnik

Mehr

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013

Einführung Seite 28. Zahlenebene C. Vorlesung bzw. 24. Oktober 2013 Einführung Seite 8 Vorlesung 1 3. bzw. 4. Oktober 013 Komplexe Zahlen Seite 9 Lösung von x + 1 = 0, pq-formel liefert x 1/ = ± 1 ; }{{} verboten Definition Imaginäre Einheit i := 1 Dann x 1/ = ±i; i =

Mehr

2.4 Grenzwerte bei Funktionen

2.4 Grenzwerte bei Funktionen 28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million

Mehr

Mathematik 1 für Naturwissenschaften. Bernoulli

Mathematik 1 für Naturwissenschaften. Bernoulli Hans Walser Mathematik 1 für Naturwissenschaften Bernoulli Nicolaus 1623-1708 Jacob I 1654-1705 Nicolaus 1662-1716 Johann I 1667-1748 Nicolaus I 1687-1759 Nicolaus II 1695-1726 Daniel 1700-1782 Johann

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 8 D-MAVT/D-MATL Analysis I HS 017 Dr. Andreas Steiger Lösung - Serie 8 1. MC-Aufgaben Online-Abgabe) 1. Sei z := exp π 6 i) 5 + b i). Für welches b R ist z eine reelle Zahl? a) 1 b) c) 1 5 d) 5 e) Keines

Mehr

Grundlagen komplexe Zahlen. natürliche Zahlen

Grundlagen komplexe Zahlen. natürliche Zahlen Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.

Mehr

2D-Visualisierung komplexer Funktionen

2D-Visualisierung komplexer Funktionen 2D-Visualisierung komplexer Funktionen 1 Komplexe Zahlen Die komplexen Zahlen C stellen eine Erweiterung der reellen Zahlen dar, in der das Polynom z 2 + 1 eine Nullstelle besitzt. Man kann sie als Paare

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3 SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 3 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Ergänzungen in Mathematik Studierende Nanowissenschaften

Ergänzungen in Mathematik Studierende Nanowissenschaften Hans Walser Ergänzungen in Mathematik Studierende Nanowissenschaften Komplexe Zahlen Hans Walser: Komplexe Zahlen ii Inhalt 1 Die imaginäre Einheit... 1 2 Rechenregeln... 1 3 Quadratische Gleichungen...

Mehr

HS Emden-Leer Ä Fachb. Technik, Abt. Elektrotechnik u. Informatik. 1. e 2. 3.

HS Emden-Leer Ä Fachb. Technik, Abt. Elektrotechnik u. Informatik. 1. e 2. 3. HS Emden-Leer Ä Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe 1. e 2. 3. www.et-inf.fho-emden.de/~wiebe 4. Komplexe Zahlen 4.1 Die ImaginÅre Einheit i und die ImaginÅre Zahl Bei

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

$Id: reell.tex,v /11/18 10:54:24 hk Exp $ $Id: komplex.tex,v /11/19 15:35:32 hk Exp hk $

$Id: reell.tex,v /11/18 10:54:24 hk Exp $ $Id: komplex.tex,v /11/19 15:35:32 hk Exp hk $ $Id: reell.tex,v.0 200//8 0:54:24 hk Exp $ $Id: komplex.tex,v.4 200//9 5:35:32 hk Exp hk $ 4 Die reellen Zahlen 4.4 Potenzen mit rationalen Exponenten In der letzten Sitzung hatten wir reelle Potenzen

Mehr

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen

Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen A Komplexe Zahlen A.1 Definition Die komplexen Zahlen werden definiert als die geordneten Paare z = (x, y) reeller Zahlen x, y R, zusammen mit den Rechenoperationen z 1 +z 2 (x 1,y 1 )+(x 2,y 2 ) := (x

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN N Z Q R C

KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN N Z Q R C KOMPETENZHEFT ZU KOMPLEXEN ZAHLEN 1. Aufgabenstellungen Aufgabe 1.1. Kreuze alle Zahlenbereiche an, in denen die gegebene Zahl bestimmt enthalten ist. 42 5 8,2 2, 5 4 i 5 + 2 i 21/4 9/3 2 16 5,014 = 5,014

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 8. Vorlesung, 08..07 (Stand: 08..07, 4:0 Uhr) Mathematik für Studierende der Biologie und des

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Konvergenzkriterien für Reihen Gegeben: a i Folge, s n = Divergenzkriterium n a i i=1 Ist s n konvergent a i ist Nullfolge Also äquivalent

Mehr

Komplexe Zahlen. Gymnasium Immensee PAM: Basiskurs Mathematik. Bettina Bieri

Komplexe Zahlen. Gymnasium Immensee PAM: Basiskurs Mathematik. Bettina Bieri Komplexe Zahlen Gymnasium Immensee PAM: Basiskurs Mathematik Bettina Bieri 13. Juli 2011 Inhaltsverzeichnis 1 Mathematische Abkürzungen 1 1.1 Mengen.............................. 2 1.1.1 Symbole zu Mengen...................

Mehr

Komplexe Zahlen. z = a + i b

Komplexe Zahlen. z = a + i b Komplexe Zahlen Definition 7. Da keine reelle Zahl existiert, deren Quadrat -1 ist, definieren wir die imaginäre Einheit i durch die Gleichung i 2 = 1. Als die Menge aller komplexen Zahlen C definieren

Mehr

Einiges über komplexe Zahlen

Einiges über komplexe Zahlen Lineare Algebra und Analytische Geometrie I für LB WS 2001/2002 Dr. Bruno Riedmüller Einiges über komplexe Zahlen Es muss davon ausgegangen werden, dass der Leser mit komplexen Zahlen wenig oder nicht

Mehr

4.3 Der Körper der komplexen Zahlen

4.3 Der Körper der komplexen Zahlen $Id: korper.tex,v.20 202/05/22 :02:43 hk Exp $ 4 Körper 4.3 Der Körper der komplexen Zahlen In der letzten Sitzung hatten wir begonnen die komplexen Zahlen C zu besprechen. Wie schon angekündigt beruht

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik I für das MW und VIW. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik I für das MW und VIW Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014

Lineare Algebra 1. 4 Ringe und Körper (Fortsetzung) Der erweiterte Euklidische Algorithmus. Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Fakultät für Mathematik PD Dr. Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 2014 Lineare Algebra 1 Siebte Woche, 21.5.2014 4 Ringe und Körper (Fortsetzung) Satz: Es sei R ein Ring

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Komplexe Zahlen und Geometrie

Komplexe Zahlen und Geometrie Komplexe Zahlen und Geometrie Dr. Axel Schüler, Univ. Leipzig März 1998 Zusammenfassung Ziel dieses Beitrages ist es, die komplexen Zahlen bei einfachen geometrischen Aufgaben einzusetzen. Besonderes Augenmerk

Mehr

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung

4 Komplexe Zahlen. 4.1 Notwendigkeit und Darstellung Einführung Komplexe Zahlen 4 4 Komplexe Zahlen Die komplexen Zahlen sind eine Erweiterung der reellen Zahlen. Die Konstruktion erfolgt durchc=r R. 4.1 Notwendigkeit und Darstellung 4.1.1 Einführung Hat die Gleichung

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr