Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?"

Transkript

1 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist markiert? 6 6/1 Worin besteht der Unterschied zwischen echten und unechten Brüchen? 7 6/1 Wandle in eine gemischte Zahl um. 8 6/1 Wandle in eine gemischte Zahl um. 9 6/1 unechten Bruch um. 10 6/1 unechten Bruch um.

2 2-L 6/1 1-L 6/1 Er gibt an, in wie viele gleich große Teile ein Ganzes zerlegt wurde. Zähler Bruchstrich Nenner 4-L 6/1 3-L 6/1 6-L 6/1 5-L 6/1 Bei einem echten Bruch ist der Zähler immer kleiner als der Nenner, bei einem unechten Bruch ist der Zähler immer größer als der Nenner. 8-L 6/1 7-L 6/1 10-L 6/1 9-L 6/1

3 11 6/1 12 6/1 Was bedeutet einen Bruch erweitern? Was bedeutet einen Bruch kürzen? 13 6/1 Gibt es eine Zahl, mit der man einen Bruch nicht erweitern oder kürzen darf? 14 6/1 Kürze soweit wie möglich. a) b) 15 6/1 Kürze soweit wie möglich. a) 16 6/1 Kürze soweit wie möglich. b) 17 6/1 Erweitere auf den Nenner /1 Erweitere auf den Nenner 54. c) c) 19 6/1 Wie addiert bzw. subtrahiert man zwei gemeine Brüche? 20 6/1 gekürzte gemischte Zahl an.

4 12-L 6/1 Zähler und Nenner eines Bruches werden durch dieselbe Zahl dividiert. Der Wert des Bruches ändert sich dabei nicht! 11-L 6/1 Zähler und Nenner eines Bruches werden mit derselben Zahl multipliziert. Der Wert des Bruches ändert sich dabei nicht! 14-L 6/1 a) b) 13-L 6/1 Ja, die L 6/1 15-L 6/1 a) (Für die Zwischenschritte gibt es mehrere Möglichkeiten.) b) 18-L 6/1 17-L 6/1 c) c) 20-L 6/1 19-L 6/1 1. Schritt: Man bestimmt den Hauptnenner und macht die Brüche gleichnamig. 2. Schritt: Man addiert bzw. subtrahiert die Zähler, aber behält den gemeinsamen Nenner bei.

5 21 6/1 gekürzten Bruch an. 22 6/1 gekürzte gemischte Zahl an. 23 6/1 Berechne im Kopf. gekürzten Bruch an. 24 6/1 Wie lautet die Regel zum Multiplizieren zweier gemeiner Brüche? 25 6/1 gekürzten Bruch an. 26 6/1 gekürzten Bruch an. 27 6/1 28 6/1 Wie multipliziert man zwei gemischte Zahlen? Wie multipliziert man einen gemeinen Bruch mit einer ganzen Zahl? 29 6/1 gekürzte gemischte Zahl an. 30 6/1 gekürzten Bruch an.

6 22-L 6/1 21-L 6/1 24-L 6/1 23-L 6/1 oder 26-L 6/1 25-L 6/1 oder besser oder besser 28-L 6/1 Verwandle die ganze Zahl in einen Bruch mit dem Nenner 1. Rechne danach normal mit der Regel weiter. 27-L 6/1 Man muss die gemischten Zahlen zuerst in unechte Brüche umwandeln, danach rechnet man normal mit der Regel weiter. 30-L 6/1 29-L 6/1

7 31 6/1 gekürzten Bruch an. 32 6/1 Wie dividiert man zwei gemeine Brüche? 33 6/1 gekürzten Bruch an. 34 6/1 gekürzten Bruch an. 35 6/1 Wie dividiert man zwei gemischte Zahlen? 36 6/1 Wie dividiert man einen gemeinen Bruch durch eine ganze Zahl? [Bzw. wie dividiert man eine ganze Zahl durch einen Bruch?] 37 6/1 gekürzten Bruch an. 38 6/1 gekürzten Bruch an. 39 6/1 gekürzten Bruch an. 40 6/1 Was bedeutet das Symbol?

8 32-L 6/1 Man bildet den Kehrwert des zweiten Bruchs und multipliziert anschließend die beiden Brüche. 31-L 6/1 34-L 6/1 33-L 6/1 36-L 6/1 Verwandle die ganze Zahl in einen Bruch mit dem Nenner 1. Rechne danach normal mit der Regel weiter. 35-L 6/1 Man muss die gemischten Zahlen zuerst in unechte Brüche umwandeln, danach rechnet man normal mit der Regel weiter. 38-L 6/1 37-L 6/1 40-L 6/1 39-L 6/1 steht für die Menge aller positiven rationalen Zahlen mit der Zahl 0 (das sind alle natürlichen Zahlen, alle positiven Brüche und die Zahl 0).

9 41 6/1 42 6/1 Welches Rechenzeichen kann man statt eines Bruchstrichs schreiben? Wie wandelt man einen gemeinen Bruch in einen Dezimalbruch um? 43 6/1 Erweitere auf eine Zehnerpotzenz im Nenner und wandle in einen Dezimalbruch um. 44 6/1 Erweitere auf eine Zehnerpotzenz im Nenner und wandle in einen Dezimalbruch um. 45 6/1 Dezimalbruch um. 46 6/1 Dezimalbruch um. 47 6/1 Dezimalbruch um. 48 6/1 Dezimalbruch um. 49 6/1 Dezimalbruch um. 50 6/1 Dezimalbruch um.

10 42-L 6/1 - Zähler durch Nenner dividieren ODER - auf Nenner 10; 100; 1000 erweitern und umwandeln (Die 2. Methode ist nicht immer möglich.) 41-L 6/1 : 44-L 6/1 43-L 6/1 46-L 6/1 45-L 6/1 ODER 48-L 6/1 47-L 6/1 ODER 50-L 6/1 49-L 6/1 ODER ODER

11 51 6/1 Dezimalbruch um. 52 6/1 Dezimalbruch um. 53 6/1 54 6/1 Wie wandelt man einen endlichen Dezimalbruch in einen gemeinen Bruch um? 0, /1 56 6/1 3,41 0, /1 58 6/1 0,125 0, /1 60 6/1 3,58 4,2

12 52-L 6/1 51-L 6/1 54-L 6/1 53-L 6/1 - Zähler: Schreibe die Zahl aus allen Dezimalen in den Zähler. - Nenner: Notiere hier die entsprechende Stufenzahl (10; 100; 1000; ). - Ganze: Schreibe die Ganzen davor. 56-L 6/1 55-L 6/1 58-L 6/1 57-L 6/1 60-L 6/1 59-L 6/1

13 61 6/1 10, /1 Wie wandelt man einen unendlich periodischen Dezimalbruch, bei dem die Periode gleich nach dem Komma beginnt, in einen gemeinen Bruch um? 63 6/1 64 6/1 65 6/1 66 6/1 67 6/1 68 6/1 69 6/1 70 6/1

14 62-L 6/1 - Zähler: Schreibe die Periode in den Zähler. - Nenner: Notiere im Nenner die Zahl, die aus so vielen Ziffern 9 besteht, wie die Länge der Periode vorgibt. - Ganze: Schreibe die Ganzen davor. 61-L 6/1 64-L 6/1 63-L 6/1 66-L 6/1 65-L 6/1 68-L 6/1 67-L 6/1 70-L 6/1 69-L 6/1

15 71 6/1 72 6/1 Erkläre das Abrunden von ganzen Zahlen oder Dezimalbrüchen. Erkläre das Aufrunden von ganzen Zahlen oder Dezimalbrüchen. 73 6/1 74 6/1 Runde wie angegeben. (G = Ganze) 123,8 (G) Runde wie angegeben. (h = Hundertstel) 6,983 (h) 75 6/1 Runde wie angegeben. (z = Zehntel) 12,057 (z) 76 6/1 Runde wie angegeben. a) 67,2345 (h) b) 7,987 (z) 77 6/1 Runde wie angegeben. a) 123,354 (h) b) 2,009 (z) 78 6/1 Wie addiert bzw. subtrahiert man zwei Dezimalbrüche? 79 6/1 Berechne im Kopf. a) 23,4 + 5,38 = b) 70,357 4,12 = 80 6/1 24, ,4 + 18,5673 =

16 72-L 6/1 Die zu rundende Ziffer wird um 1 erhöht, wenn eine der Ziffern 5; 6; 7; 8; 9 folgt. 71-L 6/1 Die zu rundende Ziffer bleibt unverändert, wenn eine der Ziffern 0; 1; 2; 3; 4 folgt. 74-L 6/1 73-L 6/1 6,983 6,98 123, L 6/1 75-L 6/1 a) 67, ,23 b) 7,987 8,0 12,057 12,1 78-L 6/1 1. Schritt: Man bringt die Dezimalbrüche durch Anhängen von Endnullen auf gleich viele Dezimalstellen. 2. Schritt: Man addiert bzw. subtrahiert Ziffern mit gleichem Stellenwert. WICHTIG: Achte beim schriftlichen Addieren und Subtrahieren darauf, dass die Kommas der Dezimalbrüche genau untereinander stehen! 77-L 6/1 a) 123, ,35 b) 2,009 2,0 80-L 6/1 79-L 6/1 a) b)

17 81 6/1 12,98 4, ,2 0,056 = 82 6/1 (45,32 + 4,907) (34,564 6,02) = 83 6/1 Wie multipliziert man zwei Dezimalbrüche? 84 6/1 Berechne im Kopf. a) 2,5 0,3 = b) 0,02 0,03 = c) 1,2 0,5 = 85 6/1 a) 32 0,024 = b) 8,61 6,02 = c) 1, = 86 6/1 Wie dividiert man einen Dezimalbruch durch eine natürliche Zahl? 87 6/1 79,482 : 6 = 88 6/1 625,48 : 4 = 89 6/1 Wie dividiert man einen Dezimalbruch durch einen Dezimalbruch? 90 6/1 4,97 : 3,5 =

18 82-L 6/1 (45,32 + 4,907) (34,564 6,02) = (45, ,907) (34,564 6,020) = 50,227 28,544 = 21, L 6/1 12,98 4, ,2 0,056 = 12,98 + 3,2 4,0082 0,056 = 16,18 4,0642 = 12, L 6/1 a) 0,75 b) 0,0006 c) 0,06 83-L 6/1 1. Schritt: Man multipliziert die beiden Dezimalbrüche zunächst ohne Komma. 2. Schritt: Man setzt das Komma so, dass das Ergebnis so viele Dezimalstellen besitzt, wie die beiden Faktoren zusammen. 86-L 6/1 Man dividiert zunächst nach dem bekannten schriftlichen Verfahren (wie bei zwei natürlichen Zahlen). Überschreitet man jedoch beim Herunterholen der Stellen im Dividenden das Komma, so muss man auch im Ergebnis das Komma an dieser Stelle setzen. 85-L 6/1 a) 0,768 b) 51,8322 c) 1500,0 = L 6/1 87-L 6/1 90-L 6/1 = 49,7 : 35 = 1,42 89-L 6/1 1. Schritt: Man verschiebt das Komma bei Dividend UND Divisor um so viele Stellen nach rechts, bis der Divisor eine natürliche Zahl ist, also kein Komma mehr besitzt. 2. Schritt: Man dividiert wie in. Dabei muss man aber beachten: Man setzt im Ergebnis ein Komma, wenn man im Dividenden das Komma überschreitet.

19 91 6/1 15,606 : 3,06 = 92 6/1 624 : 0,06 = 93 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an. 94 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an. 95 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an. 96 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an. 97 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an. 98 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an. b) b) 99 6/1 Gib für die beiden gemeinen Brüche die entsprechenden Dezimalbrüche an /1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0,5 b) 0,2

20 92-L 6/1 91-L 6/1 = : 6 = = = 1560,6 : 306 = = 5,1 94-L 6/1 93-L 6/1 a) 0,25 b) 0,75 a) 0,5 b) 0,2 96-L 6/1 95-L 6/1 a) 0,625 b) 0,875 a) 0,125 b) 0, L 6/1 97-L 6/1 a) 0,6 b) 0,8 a) 0,4 b) 0, 100-L 6/1 99-L 6/1 a) 0, b) 0,

21 101 6/1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0,25 b) 0, /1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0,125 b) 0, /1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0,625 b) 0, /1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0,4 b) 105 6/1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0,6 b) 0, /1 Gib für die beiden Dezimalbrüche die entsprechenden gemeinen Brüche an. a) 0, b) 0, 107 6/ / / /1

22 102-L 6/1 101-L 6/1 104-L 6/1 103-L 6/1 106-L 6/1 105-L 6/1 108-L 6/1 97-L 6/1 110-L 6/1 109-L 6/1

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist.

Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist. Bruchteile Bruchteile von Ganzen lassen sich mit Hilfe von Brüchen angeben. Der Nenner gibt an, in wie viele gleiche Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele dieser gleichen Teile zu

Mehr

Vorrangregeln der Grundrechnungsarten

Vorrangregeln der Grundrechnungsarten Vorrangregeln der Grundrechnungsarten Wenn verschiedene Rechenzeichen in einer Rechnung vorkommen, so gelten folgende Regeln:. Klammerrechnung. Punktrechnungen von links nach rechts ( ) vor vor +. Strichrechnungen

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

Grundrechnungsarten mit Brüchen

Grundrechnungsarten mit Brüchen ganz klar: Mathematik - Das Ferienheft mit Erfolgsanzeiger Unechte Brüche gemischte Zahlen, 9_,,... unechte Brüche (Zähler > Nenner) _, _,,... gemischte Zahlen Unechte Brüche kann man immer in eine gemischte

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent angegeben. Prozent heißt

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

Regeln zur Bruchrechnung

Regeln zur Bruchrechnung Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,

Mehr

Brüche. Prozentschreibweise

Brüche. Prozentschreibweise M 6. Brüche Brüche beschreiben Bruchteile. 4 00 = 00 = (00 4) = = 7 4 Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil 4 M 6. Prozentschreibweise Anteile werden häufig in

Mehr

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75 M 6.1 Brüche Brüche beschreiben Bruchteile. 3 4 100=1 100 3=100 4 3=5 3=75 4 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil 1 14 M 6. Prozentschreibweise Anteile werden

Mehr

Vorrangregeln der Grundrechnungsarten

Vorrangregeln der Grundrechnungsarten Vorrangregeln der Grundrechnungsarten Wenn verschiedene Rechenzeichen in einer Rechnung vorkommen, so gelten folgende Regeln:. Klammerrechnung. Punktrechnungen von links nach rechts ( ) vor vor +. Strichrechnungen

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra Brüche und zahlen zahlen vergleichen zahlen runden 4 Addieren & subtrahieren Multiplizieren & dividieren mit Zehnerzahlen zahlen multiplizieren 7 8 Periodische zahlen 9 + Addition Z E z h t 4,4 9,9 4,4

Mehr

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6. Brüche Brüche beschreiben Bruchteile bzw. Anteile 3 4 von 00kg = 4 von 00kg 3 = (00kg 4) 3 = kg 3 = 7kg (s. auch 6.0) Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil

Mehr

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile 1. Zahlen 1.1. Brüche und Bruchteile 1.2.Die Menge der rationalen Zahlen => Die Menge aller Brüche, wobei die Zähler eine beliebige ganze Zahl und die Nenner eine ganze Zahl außer Null sein dürfen nennt

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe Fachinhalt Beispiele. Rationale Zahlen.. Bruchteile und Bruchzahlen Ein Bruch besteht aus Zähler, Bruchstrich und Nenner.

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

= Rechne nach - das Ergebnis ist immer 1!

= Rechne nach - das Ergebnis ist immer 1! Was ist ein Bruch? Bisher kennst du genau eine Art der Zahlen, die sogenannten "Natürlichen Zahlen". Unter den Natürlichen Zahlen versteht man die Zahlen 0, 1,,,... bis Unendlich. Mit diesen Zahlen lassen

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf * Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische

Mehr

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [

Mehr

Fachrechnen für die Feuerwehr

Fachrechnen für die Feuerwehr Die Roten Hefte e, Bd. 31 Fachrechnen für die Feuerwehr Bearbeitet von Kurt Klingsohr überarbeitet 2007. Taschenbuch. 145 S. Paperback ISBN 978 3 17 019903 3 Format (B x L): 10,5 x 14,8 cm Gewicht: 100

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl 6.. Schuljahr Natürliche Zahlen 1 Teilbarkeit und Primzahlen Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. Endzifferregel Eine Zahl ist durch 5 teilbar,

Mehr

1. Wiederholung und Vertiefung

1. Wiederholung und Vertiefung . Wiederholung und Vertiefung.. Definition: In der Mathematik bezeichnet man das Ganze mit. Um Teile eines Ganzen angeben zu können verwendet man Brüche. Zerlegt man ein Ganzes in... 0 gleich große Teile

Mehr

Grundwissen JS 6: Allgemeine Bruchrechnung

Grundwissen JS 6: Allgemeine Bruchrechnung GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48 FAX 0924/2564 Grundwissen JS 6: Allgemeine Bruchrechnung Was verstehst du

Mehr

Rationale Zahlen Kurzfragen. 26. Juni 2012

Rationale Zahlen Kurzfragen. 26. Juni 2012 Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK J O H A N N E S - N E P O M U K - G Y M N A S I U M 6 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huer-Gymnasiums

Mehr

Themen: Brüche (Grundbegriffe, Ordnen, Addition/Subtraktion)

Themen: Brüche (Grundbegriffe, Ordnen, Addition/Subtraktion) Klasse d Mathematik Vorbereitung zur Klassenarbeit Nr. am 0..0 Themen: Brüche (Grundbegriffe, Ordnen, Addition/Subtraktion) Checkliste Was ich alles können soll Ich kann Bruchteile in geometrischen Figuren

Mehr

Grundwissen. Flächen- und Rauminhalt

Grundwissen. Flächen- und Rauminhalt Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. Baue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandelt wurde, nimmst du die zugehörigen

Mehr

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel:

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel: 8 Brüche Zä hler Bruchstrich Nenner Wie kann man einen Bruch erkennen / ablesen? Zähle zuerst alle Bruchstücke cke eines Ganzen. Die Anzahl sagt dir, wie der Nenner heißt. Jetzt zählst z du alle gefärbten

Mehr

Inhaltsverzeichnis. Brüche Erweitern und Kürzen Bruchzahlen Rechnen mit Brüchen Dezimalzahlen Abbrechende und periodische Dezimalzahlen

Inhaltsverzeichnis. Brüche Erweitern und Kürzen Bruchzahlen Rechnen mit Brüchen Dezimalzahlen Abbrechende und periodische Dezimalzahlen Inhaltsverzeichnis Große Zahlen und Stellentafel Vergleichen von Zahlen Runden von Zahlen Größen / Einheiten Die natürlichen Zahlen Addition Subtraktion Rechengesetze der Addition Multiplikation Division

Mehr

Skript Bruchrechnung. Erstellt: 2014/15 Von:

Skript Bruchrechnung. Erstellt: 2014/15 Von: Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...

Mehr

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche MEMO Brüche Zähler, Nenner, Stammbruch, einfache und gemischte Brüche )Brüche: Grundbegriffe a) Zähler und Nenner die obere Zahl heisst Zähler die untere Zahl heisst Nenner Der Nenner Der Zähler ist der

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Bruchrechnung 1. Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe Zahl dividieren.

Mehr

Mathematik für Gymnasien Grundwissen - Jahrgangsstufe 6

Mathematik für Gymnasien Grundwissen - Jahrgangsstufe 6 Mathematik für Gymnasien Grundwissen - Jahrgangsstufe 6 I. Brüche 1. Allgemeines 2. Erweitern und Kürzen 3. Dezimalbrüche 4. Vergleichen von Brüchen 5. Addition und Subtraktion i. von Brüchen ii. von gemischten

Mehr

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02 Brüche A6_01 Brüche haben die Form z n mit z I, n IN. z N 0 heißt der Zähler, n der Nenner des Bruches. Zerlegt man ein Ganzes z. B. in vier gleich große Teile und fasst dann drei dieser Teile zusammen,

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

1 Zahlen. 1.1 Bruchteile und Bruchzahlen. Grundwissen Mathematik 6. Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeben. Z.B.

1 Zahlen. 1.1 Bruchteile und Bruchzahlen. Grundwissen Mathematik 6. Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeben. Z.B. Zahlen. Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeen. Z.B. Rot: 5 4 6 2 Blau: 5 5 Kreisdiagramm: Beispiel Klassensprecherwahl Kandidat A B C Ungültig Stimmenzahl

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM Dieses Heft gehört: I. RATIONALE ZAHLEN 1. Brüche, Bruchteile 1.1. Bruchteile von Größen Der Bruchteil z n eines Ganzen bedeutet: Teile das Ganze

Mehr

9 = c) a) = b) = c) = d) =

9 = c) a) = b) = c) = d) = A Grundrechnungsarten. Rechnen mit Brüchen Addieren und Subtrahieren von Brüchen Addiere und subtrahiere die Brüche. a) 0 0 0 b) - 0...... Brüche mit gleichem Nenner werden addiert, indem du die Zähler

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst kann man sagen, dass alles beim Alten bleibt. Es bleiben also sämtliche

Mehr

Vorbereitung auf den Hauptschulabschluss Mathematik

Vorbereitung auf den Hauptschulabschluss Mathematik Katrin Hiemer/Elisabeth Vogt Vorbereitung auf den Hauptschulabschluss Mathematik MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung ARBEITSBLATT DIE RATIONALEN ZAHLEN 1) Einleitung Wie wir schon bei der Erweiterung von der Menge der natürlichen Zahlen auf die Menge der ganzen Zahlen gesehen haben, ist es ein Ziel der Mathematik, innerhalb

Mehr

Thema Bru che addieren und subtrahieren:

Thema Bru che addieren und subtrahieren: Thema Bru che addieren und subtrahieren: Die Frage lautet: Wie addiere und subtrahiere ich Brüche, bzw. wie sieht das Endergebnis aus? Die Antwort lautet: Es kommt darauf an, was wir für Brüche gegeben

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

Rechnen mit Bruchzahlen

Rechnen mit Bruchzahlen Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet

Mehr

Bruchrechnen ohne Variablen Anwendungen 11

Bruchrechnen ohne Variablen Anwendungen 11 Bruchrechnen ohne Variablen Anwendungen Addieren/Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen;

Mehr

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen Gymnasium bei St. Anna, Augsburg Seite Grundwissen 6. Klasse 6. Bruchzahlen 6.. Brüche und die Menge der rationalen Zahlen Def.:. Zeichen der Art,,, 6,..., n z nennt man Brüche. Teilt man eine Größe in

Mehr

Bruchrechnen ohne Variablen Anwendungen 11 - Lösungen

Bruchrechnen ohne Variablen Anwendungen 11 - Lösungen Bruchrechnen ohne Variablen Anwendungen - Addieren/Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen;

Mehr

8.1.1 Real : Arithmetik Zahlenräume

8.1.1 Real : Arithmetik Zahlenräume 8.1.1 Real : Arithmetik Zahlenräume P8: Mathematik 8 A1: komb.büchlein W89: Wahlfach 8/9.Prim Zeitraum Wochen Inhalte Kernstoff Zusatzstoff Erledigt am: Natürliche Zahlen (N) P8: 1, 2,,,, 6, 8, 11 TR,

Mehr

Darstellen, Ordnen und Vergleichen

Darstellen, Ordnen und Vergleichen Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei

Mehr

Bruchrechnen. 3. Teil. Addition und Subtraktion. Schüler-Lese- und Übungstext. Die Aufgaben dieses Textes sind zusätzlich ausgelagert in 10206

Bruchrechnen. 3. Teil. Addition und Subtraktion. Schüler-Lese- und Übungstext. Die Aufgaben dieses Textes sind zusätzlich ausgelagert in 10206 Bruchrechnen 3. Teil Addition und Subtraktion Schüler-Lese- und Übungstext Die Aufgaben dieses Textes sind zusätzlich ausgelagert in 10206 Datei Nr. 1020 Stand 12. April 2012 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

1. Grundlagen der Arithmetik

1. Grundlagen der Arithmetik 1. Grundlagen der Arithmetik Die vier Grundrechenarten THEORIE Addition (plus-rechnen, addieren, zusammenzählen): Summand + Summand = Summe Subtraktion (minus-rechnen, subtrahieren, wegzählen): Minuend

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

6. Klasse. Rechnen und Sachaufgaben. Mathe. Rechnen und Sachaufgaben. in 15 Minuten

6. Klasse. Rechnen und Sachaufgaben. Mathe. Rechnen und Sachaufgaben. in 15 Minuten Rechnen und Sachaufgaben 6. Klasse Mathe Rechnen und Sachaufgaben in Minuten Klasse Mathe Duden in Minuten Rechnen und Sachaufgaben 6. Klasse., aktualisierte Auflage Dudenverlag Mannheim Zürich Inhalt

Mehr

DIE RATIONALEN ZAHLEN

DIE RATIONALEN ZAHLEN Bundesgymnasium für Mathematik 1 -Arbeitsblatt 1-3: Rationale Zahlen 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB DIE RATIONALEN ZAHLEN 1) Einleitung Wie wir schon bei der Erweiterung von der

Mehr

Mathematik im Alltag Größen und ihre Einheiten Größen im Alltag. 16 cm. Ausdrücke wie 2, 9 cm, 69 kg, 12s sind Angaben von Größen.

Mathematik im Alltag Größen und ihre Einheiten Größen im Alltag. 16 cm. Ausdrücke wie 2, 9 cm, 69 kg, 12s sind Angaben von Größen. Mathematik im Alltag 5.4.1 Größen und ihre Einheiten Größen im Alltag Ausdrücke wie 2, 9 cm, 69 kg, 12s sind Angaben von Größen. Maßzahl 16 cm Einheit Geld Euro Cent 100 (--Umrechnungsfaktor) Masse t kg

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Lösungen. j2km9a Lösungen. j2km9a. Name: Klasse: Datum:

Lösungen. j2km9a Lösungen. j2km9a. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Wie heißt die kleinste natürliche Zahl, die größer als die gegebenen ist? Gib jeweils die natürliche Zahl an. 2) Wie viele liegen zwischen einem Siebentel und

Mehr

Fertige Unterrichtsstunde zum Thema rationale Zahlen

Fertige Unterrichtsstunde zum Thema rationale Zahlen Johanna Harnischfeger (Hg.), Heiner Juen (Hg.) Wiederholung Grundrechenarten für Brüche Fertige Unterrichtsstunde zum Thema rationale Zahlen Nach der Lernmethodik von Dr. Heinz Klippert Downloadauszug

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

M2 Übungen zur 1. Schularbeit

M2 Übungen zur 1. Schularbeit M2 Übungen zur 1. Schularbeit 1) Schreib stellenwertrichtig untereinander und subtrahiere! Rechne auch eine Probe! a) 9,1 -, 1, - 1,2 c) -,1 2) Schreib stellenwertrichtig untereinander und berechne! a),2

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte Inhalt A B C D Bruchzahlen Bruchteile 6 Bruchteile von Größen Kürzen und Erweitern von Brüchen 0 Verhältnisse und Maßstäbe Bruchzahlen 6 Brüche und Dezimalbrüche Prozentzahlen Addition und Subtraktion

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise Schuljahr 08/09 3. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Es gilt: Zwei Brüche werden multipliziert, indem man den Zähler des ersten Bruchs mit dem Zähler des zweiten

Mehr

Rationale Zahlen. Umwandlung der verschiedenen Schreibweisen Erweitern auf eine Stufenzahl im Nenner: Relative Häufigkeit

Rationale Zahlen. Umwandlung der verschiedenen Schreibweisen Erweitern auf eine Stufenzahl im Nenner: Relative Häufigkeit Es gibt drei verschiedene Darstellungen: Zähler Nenner Brüche kann man kürzen und erweitern, hne dass sich der Wert ändert. Kürzen: Zähler und Nenner werden durch die selbe Zahl geteilt. Erweitern: Zähler

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Brüche vergleichen. 1. Welche Bruchteile sind schwarz gefärbt? 2. Färbe a) 1 6, b) 2 3, c) 1 2, d) 7 der Fläche. 3. Erweitere die folgenden Brüche mit

Brüche vergleichen. 1. Welche Bruchteile sind schwarz gefärbt? 2. Färbe a) 1 6, b) 2 3, c) 1 2, d) 7 der Fläche. 3. Erweitere die folgenden Brüche mit Brüche vergleichen. Welche teile sind schwarz gefärbt? a) b) c) d). Färbe a), b), c), d) der Fläche. a) b) c) d). Erweitere die folgenden Brüche mit a)... : b)... : c)... :. Mit welchen Zahlen sind die

Mehr

Kapitel 1: ADDITION UND SUBTRAKTION VON BRÜCHEN

Kapitel 1: ADDITION UND SUBTRAKTION VON BRÜCHEN BRUCHRECHNEN 2 Kapitel 1: ADDITION UND SUBTRAKTION VON BRÜCHEN Bei der Addition und Subtraktion von Brüchen müssen Sie unterscheiden, ob die Brüche gleichnamig oder ungleichnamig sind. Kapitel 1.1: Addition

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr