2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)"

Transkript

1 2.4. GAUSSSCHER SATZ Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan r haben zu: A = 4 π r 2. Deshalb ist as Proukt aus E = E (auf er Kugeloberfläche, also bei konstantem r) un A: E A = = ( ) 1 Q (4 π r 2) 4 π ε 0 r 2 = Q ε 0 (2.24) eine Konstante. Nun ist E ein Vektor. Ebenso kann man einen Flächenvektor A efinieren, er senkrecht auf einer Oberfläche eines Objektes (Volumens) steht un von innen nach außen zeigt, z.b. würe man ie Oberfläche eines Deckel eines Kubus mit Kantenlänge a, er entlang er kartesischen Koorinaten ausgerichtet ist, mit A Deckel = a 2 e z bezeichnen. Die Oberfläche es Boens wäre ann A Boen = a 2 e z. Für gekrümmte Oberflächen, wie ie einer Kugel, kann man nur kleine Oberflächensegmente betrachten, ie man (meist) lokal als nicht gekrümmt annähren kann. Als Beispiel iene ie Oberfläche er Ere, ie lokal flach erscheint. Bei einer Kugel ist as Oberflächensegment parallel zu r, wenn er Schwerpunkt er Kugel im Koorinatenzentrum liegt. Also ist A parallel zu r. Wir können also Gleichung 2.24 auch schreiben, inem wir kleine Oberflächensegmente betrachten un ann jeweils eren Beiträge A E über ie gesamte Kugeloberfläche summieren. Das

2 24 KAPITEL 2. ELEKTROSTATIK resultierene Integral schreibt man formal wiefolgt: E A = 1 ε 0 Q eingeschlossen. (2.25) Dabei beeutet as Symbol A... eine Summation bzw. Integration über eine geschlossene Oberfläche, also über ie Hülle eines Volumens. A r = A r cos α, wobei α er Winkel zwischen A un r ist. Auf er Kugeloberfläche, eren Schwerpunkt im Ursprung es Koorinatensystems liege, ist cos α = 1. Man kann en Ausruck A E auch als Fluss es Vektorfeles E urch ie Oberfläche bezeichnen. Betrachten wir als Beispiel wieer unseren Kubus un nehmen ein konstantes E- Fel er Form E 0 e z an, also eins as parallel zur z-achse ist. Die Fellinien treten ann urch en Boen ein, wo A E negativ ist un sie treten urch en Deckel wieer aus, wo A E positiv wäre. Insgesamt treten also gleich viele Fellinien ein wie aus. Durch ie Seiten geht kein Fluss, weil in iesem Beispiel E e x = 0 bzw. E e y = 0. In iesem Beispiel würe A E = 0 gelten, sprich es gibt keinen resultierenen Fluss in en Kubus, enn es fließt urch en Boen soviel hinein, wie urch en Deckel wieer hinausfließt. Der Begriff Fluss stammt im Übrigen aus er Strömungslehre, in er man en Begriff ann urchaus wörtlich nehmen arf. Betrachten wir wieer en allgemeinen Fall. Dazu gibt es einige Anmerkungen: Anmerkungen: Gleichung 2.25 gilt auch, wenn ie Laung nicht im Zentrum er Kugel sitzt (ohne Beweis). Gleichung 2.25 gilt auch, wenn ie Oberfläche eine beliebige Form hat (wieer ohne Beweis). Gleichung ist isomorph (mathematisch ientisch) zum Coulomb-Gesetz. Eine raialsymmetrische Verteilung ρ (R) = ρ ( R ) kann so behanelt weren, als sei ie

3 2.4. GAUSSSCHER SATZ 25 gesamte Laung im Schwerpunkt er Laungsverteilung vorhanen. Es sei angemerkt, ass alles, was wir hier gesagt haben, ebenso für as Gravitationsgesetzt gilt, as abgesehen von Konstanten mit em Coulomb-Gesetz ientisch ist. Insbesonere er letzte Punkt unserer Anmerkungen spielt im Gravitationsgesetz eine wichtige Rolle: Die Gravitationswirkung eines Planeten, en man in aller Regel als kugelsymmetrisch annehmen kann, entspricht er Wirkung einer Punktmasse, sprich er Gesamtmasse es Planeten, ie im Schwerpunkt es Planeten vereinigt ist. Dies gilt auch, wenn ie Objekte sich sehr nahe an Planeten befinen, wie z.b. Satelliten. Würe as Coulomb-Gesetz von 1/r 2 abweichen, könnte man as Konzept von Punktmassen, oer analog Punktlaungen, nicht vornehmen. So ist ie Anziehungskraft zwischen zwei homogenen, nichtgelaenen Kugeln auf er Ere nicht einfach eine Funktion es Abstanes ihrer Schwerpunkte, weil ie ominierene van-er-waals Kraft mit 1/R 6 statt mit 1/R 2 abfällt. Aus Gleichung 2.25 folgt, ass er Gesamtfluß von elektrischen Fellinien urch eine geschlossene Oberfläche gleich null ist, wenn sie keine Laung umschließt. Ist A E positiv bzw. negativ muss ie von er Oberfläche eingeschlossene Laung in ihrer Summe jeweils positiv bzw. negativ sein. Deshalb haben wir vorher avon gesprochen, ass positive Laungen ie Quellen es elektrischen Feles sin un negative Laungen ihre Senken. Ebenso bekommt er Satz, ass elektrische Feler Start- un Enpunkte nur in Laungen haben, eine tiefere Beeutung. Betrachte en links gezeichneten (infinitesimal) ünnen Diskus. Für ihn gilt: E A = 0 ag replacements Jeer Fluss es Feles, er in ein Volumen geht (E A), geht auch wieer unveränert heraus, a keine Laung im (Diskus-) Volumen enthalten ist.

4 26 KAPITEL 2. ELEKTROSTATIK E A = positiv negativ lacements + Wenn wir über einen Dipol integrieren, soass beie Laungen von unserer Oberfläche eingeschlossen sin, gilt: Q eing. = +e + ( e) = 0 E A = 0 Weitere Konsequenzen es Gauss schen Satzes sin: Eine Kugel mit homogener Oberflächenlaung hat kein inneres E-Fel. Das Konzept es Massenpunktes bzw. Laungspunkt bezieht sich also nur auf ie Massen/Laungen, ie einen kleineren Abstan vom Ursprung haben als man selbst. Inuzierte Laungen in Metallen sitzen auf Oberflächen. Ansonsten hätte man elektrische Fellinien innerhalb eines Metalls, was aber nicht erlaubt ist, weil ann Laungen anfangen zu fließen, ie as E-Fel kleiner machen. Anwenungen: Berechnung elektrischer Feler von hochsymmetrischen Strukturen 1. Beispiel: Fel einer homogen gelaenen Kugel. Die Kugel habe en Raius R un ie konstante Laungsichte ρ = Q V. Berechne as innere E-Fel einer homogen gelaenen Kugel mit er Laungsichte Aus Symmetriegrünen: E r (Kugel im Zentrum) E A = E A = E 4 π r 2

5 2.4. GAUSSSCHER SATZ 27 Berechnung er eingeschlossenen Laung für r R: Eingesetzt in en Gaußschen Satz: Q eing. = ρ V ( ) 4 π = ρ 3 r3 E 4 π r 2 = 1 ε 0 ρ E = ρ ε 0 r ( ) 4 π 3 r3 Innerhalb er Kugel steigt as Fel linear an. Außerhalb muss es gemäß es Coulombgesetzes abfallen. Daher ergibt sich folgenes Bil: E PSfrag replacements R Kugel Interessant: Im Ursprung ist E = 0, was aber aus Symmetriegrünen sowieso unvermeibar war. Eine Einheitenanalyse hätte uns schon ahnen lassen müssen, ass E ρr sein muss, a as innere Fel gemäß Gauß nicht vom äußeren Raius abhängen kann. ([ρ] = C/m 3 ) 2. Beispiel: Homogen gelaener Draht Der als unenlich ünne genäherte Draht habe eine homogene (Linien-) Laungsichte λ = Q Z = const.

6 28 KAPITEL 2. ELEKTROSTATIK z replacements r Wenn er Draht urch en Ursprung (0, 0, 0) geht un auf er z-achse liegt mit R = (x, y, z) E (R) = E ( ) x2 + y 2 (x, y, 0) }{{}}{{} Abstan von z-achse raialer Vektor z replacements A Deckel = π r 2 e z Da E e x A Deckel = A Boen kein Fluss urch en Deckel A Seite = (2 π r) }{{}}{{} z Umfang Höhe A Seite E E A Seite = A Seite E(r) = (2 π r z) E(r) Q eing. = λ z

7 2.4. GAUSSSCHER SATZ 29 Gleichsetzen liefert: (2 π r z) E(r) = λ z E(r) = λ 2 π r Siehe hier Gleichung 2.5, in er wir en Abstan vom Draht mit a statt mit r bezeichnet haben. Die numerische Konstante N, ie wir in Gleichung 2.5 haben, ist also N = 2. Die Berechnung es E-Feles hat sich urch en Gauß schen Satz stark vereinfacht - un kann nun mit etwas Übung in zwei Zeilen geschehen, statt über ie Berechnung eines (komplizierten) Integrals. Allering mussten wir azu etwas Mathematik lernen. 3. Beispiel: Fel einer homogen gelaene Platte Die als unenlich ünn genäherte Platte liege in er xy Ebene un habe eine konstante Flächenlaungsichte σ = Q A placements E e z : z > 0 E e z : z < 0 E A Deckel = E A Deckel E A Boen = E A Boen Es finet kein Fluss urch ie Seiten statt E A Seite = 0 E A = E A Deckel + E A Boen eingeschlossene Laung: A = A Boen = A Deckel Q eing. = σ A 2 A E = 1 ε 0 σ A oer E = σ 2 ε 0 Dies ist auch ein Ergebnis, as wir vorher nur mit sehr viel mehr Aufwan erzielen konnten.

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Physik LK 12, Klausur 04 Induktion - Lösung

Physik LK 12, Klausur 04 Induktion - Lösung Physik LK 12, Klausur 4 Inuktion - Lösung 2.5.211 Die echnungen bitte vollstänig angeben un ie Einheiten mitrechnen. ntwortsätze schreiben, wenn Zahlenwerte zu berechnen sin. Die eibung ist bei allen ufgaben

Mehr

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist:

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist: Das Elektrische Fel Jeer Körper un jee Materie besteht aus Atomen. Das haben schon ie Griechen vor etwa 2500 Jahren vermutet. Demokrit, etwa 460-371 v.chr., ist erjenige, auf en ie Iee vom atomaren Aufbau

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

Trainingsblatt 04a (freiwillig)

Trainingsblatt 04a (freiwillig) Trainingsblatt 04a (freiwillig) Elektrizitätslehre un Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 5.05.2008 Aufgaben. Ein Konensator, zwischen essen Platten sich Eis befinet,

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

2.6 Elektrische Felder und Ladungen in Materie

2.6 Elektrische Felder und Ladungen in Materie 2.6. ELEKTRISCHE FELDER UND LADUNGEN IN MATERIE 37 2.6 Elektrische Feler un Laungen in Materie Aus Erfahrung wissen wir, ass unterschieliche Materialien unterschielich auf externe Feler reagieren. Klassifizierung

Mehr

4 Elektrodynamik. 4.1 Maxwell-Gleichungen

4 Elektrodynamik. 4.1 Maxwell-Gleichungen 202 4. Elektroynamik 4 Elektroynamik Die Kapitel 2 un 3 haben gezeigt, ass sich elektrostatische un magnetostatische Probleme völlig unabhängig voneinaner behaneln lassen. Gewisse formale Analogien erlauben

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien

Mehr

623 Wärmeleitung. Arbeitsauftrag. Anwendung

623 Wärmeleitung. Arbeitsauftrag. Anwendung 63 Wärmeleitung Die Zusammenhänge bei er Wärmeämmung eines Hauses sin im üblichen gymnasialen Physikunterricht ein relatives Stiefkin. Wenn man ie Literatur zu ieser Thematik liest, muss man en Einruck

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 216/17 Potentielle Energie un Arbeit im elektrischen

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Technisches Lemma aus der Linearen Algebra

Technisches Lemma aus der Linearen Algebra echnisches Lemma aus er Linearen Algebra Lemma. Sei t A(t) Mat(n, n) eine glatte, matrixwertige Funktion auf em Intervall ( ε,ε), welche A(t) = I erfülle. Dann gilt: t et(a(t)) t=0 = trace(ȧ(0)). Beispiel.

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n .6 chaltung von Konensatoren. Parallelschaltung von Konensatoren Bei er Parallelschaltung ist ie an en Konensatoren anliegene pannung konstant. s gilt: Die Konensatorgleichung Q C liefert ie sich auf en

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

10. Lagrange-Formalismus

10. Lagrange-Formalismus Übungen zur T1: Theoretische Mechanik, SoSe013 Prof Dr Dieter Lüst Theresienstr 37, Zi 45 10 Lagrange-Formalismus Dr James Gray JamesGray@physikuni-muenchene Übung 101: Penel an Feern Eine Punktmasse m

Mehr

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

5 Harmonische Funktionen

5 Harmonische Funktionen 5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Experimentalphysik I (EP I): Mathematische Ergänzungen

Experimentalphysik I (EP I): Mathematische Ergänzungen Experimentalphysik I (EP I): Mathematische Ergänzungen Prof. Dr. Niels e Jonge INM - Leibniz Institut für neue Materialien Experimentalphysik, Universität es Saarlanes Email: niels.ejonge@mx.uni-saarlan.e

Mehr

Übungsblatt 5 ( )

Übungsblatt 5 ( ) Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 20 Übungsblatt 5 (08.07.20) ) Magnetische Fellinien Welche er folgenen Fellinienbiler sin richtig un welche nicht? a) richtig

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Lineare Differentialgleichungen erster Ordnung

Lineare Differentialgleichungen erster Ordnung HTBLA Neufelen Lineare Differentialgleichungen erster Ornung Seite 1 von 7 Peter Fischer pe.fischer@atn.nu Lineare Differentialgleichungen erster Ornung Mathematische / Fachliche Inhalte in Stichworten:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na.

Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na. ufgabe 1: Elektrische Laung un elektrischer Strom 1.1. uf eine Metallkugel weren immer mehr Laungen aufgebracht. Die Menge er Laungen auf er Kugel folgt er Funktion Q(t )=(0,1t 2 s 2 + 2t s 1 )nc. Wir

Mehr

Übungsaufgaben. Physik II. Elektrisches Feld und Potential

Übungsaufgaben. Physik II. Elektrisches Feld und Potential Institut fü mathematisch - natuwissenschaftliche Gunlagen http://www.hs-heilbonn.e/ifg Übungsaufgaben Phsik II Elektisches Fel un Potential Auto: Pof. D. G. Buche Beabeitet: Dipl. Phs. A. Szasz August

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 217/18 Potentielle Energie un rbeit im elektrischen

Mehr

d(m v) dt = m v beinhaltet einen Kraftterm aufgrund der angelegten Felder (Lorentzkraft) F = e E + v B

d(m v) dt = m v beinhaltet einen Kraftterm aufgrund der angelegten Felder (Lorentzkraft) F = e E + v B Festkörperphysik I Prof Klaus Ensslin HS 216 Verteilung: 23 November 216 Nachbesprechung: 3 November / 1 Dezember 216 1 Übungsblatt: Lösungen Aufgabe 1: Der Hall-Effekt im Drue-Moell a) Die Gleichung für

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Beispiellösungen zu Blatt 6

Beispiellösungen zu Blatt 6 µathematischer κorresponenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 6 Gibt es eine Quaratzahl, eren Quersumme 6 ist? Hinweis: Die Quersumme

Mehr

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 0 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 4.04.008 Aufgaben. Berechnen Sie, ausgehend vom Coulomb-Gesetz, das elektrische Feld um einen

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

Das Steiner-Dreieck von vier Punkten. Eckart Schmidt

Das Steiner-Dreieck von vier Punkten. Eckart Schmidt Das Steiner-Dreieck von vier Punkten Eckart Schmit Zu vier Punkten lassen sich rei Vierecke betrachten Das Dreieck er Diagonalenschnitte sei als Diagonalreieck angesprochen un as Dreieck er Steiner-Punkte

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen 8 Methoen zur Lösung er Lapace-Geichung Gesucht: Lösung er Lapace-Geichung für gegebene Ranbeingungen. Strategie: φ = 0. Ermitte ie Symmetrien er Ranbeingungen. Diese bestimmen as geeignete Koorinatensystem.

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

2 Koordinatentransformationen

2 Koordinatentransformationen Mathematik für Ingenieure III, WS 9/ Mittwoch 8. $Id: transform.tex,v.8 //4 :9: hk Exp $ Koordinatentransformationen. Lineare Koordinatentransformationen Wir überlegen uns dies zunächst im Spezialfall

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen Prof. Dr. Frank Heinemann Technische Universität Berlin Wintersemester 2010/11 Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wieerholung mathematischer Grunlagen Dieses Übungsblatt enthält keine abzugebenen

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Michael Gieing ph-heielberg.e/wp/gieing Einführung in ie Geometrie Skript zur gleichnamigen Vorlesung im Wintersemester 006/007 Kapitel 1: Axiomatik Vo r l e s u n g 8 : S t r e c k e n m e s s u n

Mehr

Berechnung der Länge einer Quadratseite a:

Berechnung der Länge einer Quadratseite a: 2006 Pflichtbereich erechnung der Länge einer Quadratseite a: Zur erechnung der Quadratseite a benötigt man die ilfslinie ür die Quadratseite a gilt dann: a = + 57 erechnung der Strecke : Im reieck kann

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr