ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht"

Transkript

1 . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation Aufgabe 5: Mengenoperationen, kartesisches Produkt Aufgabe 6: Eine weitere Ungleichug Aufgabe 7: ) Der Multinomialsatz Aufgabe 8: ) Ein Beispiel zu Mengen und kombinatorischen Abbildungen Aufgabe 9: Unendlicher Durchschnitt Aufgabe 0: Ein bisschen Populationsdynamik

2 . Übung [zur Übersicht] Aufgabe / Beweisen Sie die Ungleichungen a) [L] x y 2 δ x 2 + δ y 2), δ > 0 b) [L] x y x+y 2, x, y 0 c) [L] x y + x 2 y 2 x 2 + x2 2 y 2 + y2 2 Hinweis zu a) : Bringen Sie alles auf eine Seite. Hinweis zu b), c) : Quadrieren geht über Studieren. a) Die Ungleichung ist äquivalent zu wir setzen δ : ε) : 0 δ x 2 2 xy + δ y 2 ε 2 x 2 2 εx ε y + ε 2 y 2 ε x ε y) 2 b) Die Ungleichung ist äquivalent zu 4 x y x + y) 2 x x y + y 2 0 x 2 2 x y + y 2 x y) 2 b) besagt: Das geometrische Mittel x y geom. Interpretation!) ist nie größer als das arithmetische Mittel x+y 2. c) Die Ungleichung ist äquivalent zu x y + x 2 y 2 ) 2 x 2 + x 2 2) y 2 + y 2 2 ) x 2 y x y x 2 y 2 + x 2 2 y2 2 x 2 y 2 + x 2 y2 2 + x 2 2 y 2 + x 2 2 y2 2 2 x y 2 ) x 2 y ) x 2 y x 2 2 y 2 0 x y 2 x 2 y ) 2 Anmerkung: c) ist ein Spezialfall der Cauchy-Schwarz schen Ungleichung siehe Lineare Algebra).

3 . Übung [zur Übersicht] Aufgabe 2/ ) Beweisen Sie mittels vollständiger Induktion. 4k n n + für alle n N 0 Anmerkung: Der Induktionsschluss erfordert etwas Rechenarbeit. Schauen Sie sich auch einige Summenglieder an, um zu verstehen, wieso die Summe immer positiv ist. n 0 Induktionsanfang): 0 4k n n + Induktionsschluss): n+ 4k 2 4k n + ) 2 IND n + 2 n n + ) 2 n + 2 n + 4 n n + Um dies auf gleichen Nenner zu bringen, faktorisieren wir: 4 n n + 4 n n + 4 ) 4 n ) 2 n + ) 2 n + ) mit nochmaliger Faktorisierung): n + 2 n + 4 n n + n + 2 n + 2 n + ) 2 n + ) n + )2 n + ) 2 n + ) 2 n + ) 2 n2 + 5 n n + ) 2 n + ) 2 n ) + 2 n + ) 2 n + ) 2 n + ) + Die Summe: bleibt immer > 0.

4 . Übung [zur Übersicht] Aufgabe / ) Eine Teleskopsumme ist eine Summe der Gestalt a k+ a k ) a a 0 ) + a 2 a ) a n+ a n ) a n+ a 0 oder ähnlich eine Summe von Differenzen.) a) [L] Fortsetzung von Aufgabe 2): Beweisen Sie 4k n n + in direkter Weise, indem Sie diese als Teleskopsumme identifizieren. D.h., versuchen Sie a k so zu bestimmen dass für alle k die Identität a k+ a k 4k 2 gilt. b) [L] Analog wie a), für die geometrische Summe q k q ). Anmerkung: Die Bestimmung der a k ist nicht ganz straightforward man muss ein wenig herumprobieren. Wissen Sie, was eine Partialbruchzerlegung ist? In VO: später.) Das hilft für a); ansonsten ist das etwa mühsam. a) Mit der Identität Partialbruchzerlegung!) 4k 2 2 2k + ) 2 2k ) 4 k + 2 ) 4 k 2 ) 4 k + ) }{{ 2 } ) 4 k }{{ 2 } ) a k+ a k folgt 4k 2 a n+ a 0 4 n + ) 2 ) ) 4 n + 2 ) + 2 n + 2 n +

5 . Übung [zur Übersicht] Aufgabe /2 b) Mit der Identität q ; kleiner Trick!) q k qk q ) q qk+ q k q qk+ q k } q {{ }} q {{ } a k+ a k folgt q k a n+ a 0 qn+ q q0 q qn+ q Man sieht, dass die Aufgabenstellung, eine Summe als Teleskopsumme zu identifizieren und damit elementar berechenbar zu machen was nicht immer möglich ist) tatsächlich nicht unmittelbar straightforward ist. Diese Problematik ist verwandt zum Aufsuchen einer Stammfunktion in der Integralrechnung.)

6 . Übung [zur Übersicht] Aufgabe 4/ Zeigen Sie: + + N für alle n N Anmerkung: Dies funktioniert am besten mittels direkter Vereinfachung ohne Induktion). Wie wird man wohl mit ± umgehen? Verwende Binomi : + n k k k n k ) k k + + Hier ist + ) k weil k/2 N für k gerade. k/2 k ) k k/2 k + ) k ) k/2 k { 0, k ungerade 2, k gerade... n k gerade k/2 N k Beispiel: n 2 + ) 2 + ) ) ) 8 Anmerkung: Der Beweis zeigt, dass die Aussage offenbar allgemeiner gilt: + m + m N für alle n N für beliebige m N. Notation für Summe: Hier sollte klar sein, wie es gemeint ist.

7 . Übung [zur Übersicht] Aufgabe 5/ a) [L] Sei A eine nichtleere Menge. Wie sieht A { } aus? b) [L] Seien A und B beliebige Mengen. Zeigen Sie A B) 2 A 2 A B) B A) B 2 c) [L] Unter welcher Bedingung an A und B gilt A B B A? d) [L] Falls A und B disjunkte Mengen sind, d.h. falls sie kein gemeinsames Element haben A B { }), schreibt man für die Vereinigungsmenge manchmal auch A B : A + B. Zeigen Sie für diesen Fall A B) 2 A 2 + A B) + B A) + B 2 als Spezialfall von b), d.h., zu zeigen ist dass tatsächlich alle vier rechts auftretenden kartesischen Produkte paarweise disjunkt sind. Visualisieren Sie dies in geeigneter Weise anhand zweier einfacher Mengen. a) A { } { a, b): a A b { } } { } b) A B) 2 A B) A B) {x, y): x A B y A B} {x, y): x A x B) y A y B)} {x, y): x A y A} {x, y): x A y B} {x, y): x B y A} {x, y): x B y B} A 2 A B) B A) B 2 c) 2 Fälle: A B A B A 2 B A A B x A mit x B oder umgekehrt) Für b B gilt x, b) A B, jedoch b, x) A B. A B B A

8 . Übung [zur Übersicht] Aufgabe 5/2 d) Vgl. b)) Für A B { } sind die Mengen A 2, A B, B A, B 2 paarweise disjunkt: sie können paarweise betrachtet) keine gemeinsamen Elemente enthalten. Einfaches Beispiel, visualisiert in Form einer Tabelle: A {, 2}, B {} A 2 A B A + B) 2 B A B 2, ), 2), ) 2, ) 2, 2) 2, ), ), 2), )

9 . Übung [zur Übersicht] Aufgabe 6/ a) [L] Sei q > eine reelle Zahl. Beweisen Sie mittels vollständiger Induktion: q n + n q ) für alle n N 0 b) [L] Beweisen Sie die Aussage aus a) direkt mit Hilfe eines aus der Vorlesung bekannten Satzes. Hinweis: Setzen Sie q + δ mit δ > 0). a) Mit q + δ δ > 0) ist zu zeigen: + δ + n δ für alle n N 0 Diese Ungleichung wird als Bernoulli-Ungleichung bezeichnet. Induktionsanfang: n 0 Induktionsschluss: n n + : + δ) δ + δ+ + δ + δ) IND + n δ) + δ) + n + ) δ + n δ 2 + n + ) δ b) Verwende Binomi : + δ + n δ + + n δ n k δ k k nn ) δ } 2 {{} 0

10 . Übung [zur Übersicht] Aufgabe 7/ ) Eine Verallgemeinerung des Binomischen Lehrsatzes ist der Multinomialsatz:. Für alle m, n N gilt a + + a m n ) k,..., k m k + +k m n a k ak 2 2 ak m m, mit ) n : k,..., k }{{ m } Multinomialkoeffizient n! k! k m! Dabei ist die Summe k + +k m n... so zu verstehen, dass alle möglichen geordneten Tupel Multi-Indizes) k,..., k m ) mit k l {0,,..., n} berücksichtigt werden, deren Summe k + + k m gleich n ist. a) [L] Zeigen Sie, dass sich für m 2 genau der Binomische Lehrsatz ergibt. b) [L] Tabellieren Sie für den Fall m die Multinomialkoeffizienten zu n, 2,. a) Für m 2 : a + a 2 k, k 2 k +k 2 n k 0 mit k 2 n k ) ) a k ak 2 n 2, mit k, k 2 n! k! n k )! } {{ ) } n k a k an k 2 n! k! k 2!

11 . Übung [zur Übersicht] Aufgabe 7/2 b) m : n k k2 k ) Multinomialkoeffizient ) 0 0 ) 0 0 ) a + a 2 + a ) a + a 2 + a n 2 k k2 k ) Multinomialkoeffizient ) ) ) 0 ) 2 0 ) 2 0 ) 2 a + a 2 + a ) 2 ) ) a 2 + a a a a 2 + a 2 a + a a n k k2 k ) Multinomialkoeffizient ) 0 0 ) 0 0 ) 2 0 ) 0 2 ) 0 2 ) 2 0 ) 0 2 ) 2 0 ) ) 6 a + a 2 + a ) ) a + a 2 + a + ) a 2 a 2 + a 2 2 a + a 2 a + a a a 2 a 2 + a a a a 2 a

12 . Übung [zur Übersicht] Aufgabe 8/ ) Seien M, N Mengen bestehend aus m bzw. n Elementen, wobei n > m. Weiters sei f : N M eine Abbildung. a) [L] Zeigen Sie: Für jede derartige Abbildung f gibt es zwei verschiedene n, n 2 N mit fn ) fn 2 ). Wie haben wir eine derartige Eigenschaft einer Abbildung bezeichnet? b) [L] Die Eigenschaft a) ist elementar und sehr einfach und kann trotzdem sehr nützlich sein. Beispiel: Beweisen Sie: In einem Seminar mit n 2 Teilnehmern gibt es zwei Teilnehmer, die mit einer gleichen Anzahl von Teilnehmern befreundet sind. Hinweis: Identifizieren Sie N, M und f. Jeder kann zwischen 0 und n Freunde haben. Wichtig ist hier: Befreundet ist eine symmetrische Relation, d.h. A ist mit B befreundet genau dann wenn B mit A befreundet ist.) a) Die Behauptung besagt genau, dass f nicht injektiv sein kann. Beweis indirekt): Angenommen, f ist injektiv. Dann besteht ihr Bild fn) {fx): x N} aus n Elementen, was jedoch wegen fn) M mit M m < n nicht möglich ist. Die Aussage wird oft als Schubfachprinzip bezeichnet: Wenn n > m Objekte in m Schubfächern unterzubringen sind, ist es unmöglich, dass in jedem Schubfach nur ein einziges Objekt zu liegen kommt. b) In Anwendungen besteht die Hauptproblematik darin, Objekte die Menge N) und Schubfächer die Menge M) geeignet zu identifizieren. Lösung des Beispiels: Die Objekte sind die n Personen Menge N; nennen wir sie lieber P ), und Schubfächer sind die möglichen Anzahlen von Freunden 0 bis n ) Menge M; nennen wir sie lieber F ). Also: f : P F, fp) : Anzahl von Freunden der Person p.

13 . Übung [zur Übersicht] Aufgabe 8/2 Dann gibt es aber genau so viele Schubfächer wie Teilnehmer, m n, und das Schubfachprinzip ist nicht direkt anwendbar. Jedoch ist es wegen der Symmetrie der Freundschaftsrelation!icht möglich, dass zugleich jemand teilnimmt, der mit jedem anderen befreundet ist also n Freunde) und jemand, der gar keine 0) Freunde hat. Die Schubfächer 0 und n können also nicht beide belegt sein, und damit können wir m n setzen, d.h. BildP ) F besteht aus maximal m n Elementen. Also ist das Schubfachprinzip auf die Abbildung f : P BildP ) anwendbar und die Aussage somit bewiesen.

14 . Übung [zur Übersicht] Aufgabe 9/ Beweisen Sie in formal sauberer Weise: 0, ) n n N { } Notation: a, b) : {x R: a < x < b}.) Beweis indirekt: Angenommen es gilt 0, ) { } n Es gibt ein x > 0 mit n N x < n für alle n N. Letzteres ist ein Widerspruch zu x > 0. Beachte: Für ein beliebiges x > 0 gilt x > /n für hinreichend großes n N.)

15 . Übung [zur Übersicht] Aufgabe 0/ a) [L] Für eine Population p n, n 0,, 2,... gelte p n+ w p n, n 0,, 2,... wobei der Anfangswert p 0 > 0 vorgegeben ist. Dabei sei w > eine gegebene Wachstumsrate; die n 0,, 2,... entsprechen diskreten Zeitpunkten. Geben Sie für p n in Abhängigkeit von n einen expliziten Formelausdruck an. Eigentlich ist das ein Induktionsargument, allerdings ein sehr einfaches.) b) [L] Sei ˆp n eine weitere Population, charakterisiert durch ˆp n+ ŵ ˆp n mit ŵ > w und gegebenem ˆp 0 > 0. Zeigen Sie: Egal wie klein ˆp 0 auch im Vergleich zu p 0 ist, für hinreichend große n wird gelten ˆp n > p n. Wie verhält sich ˆp n /p n konkret für n? c) [L] Sei w 2. Zeigen Sie: n p k < p n für alle n N d) [L] Ist die Aussage aus c) auch richtig für < w < 2? Begründung!) Hinweis: Leiten Sie eine Ungleichung der Gestalt w n... her, die für alle n gelten muss, damit die Aussage richtig ist. a) Offensichtlich ist p n eine geometrische Progression: p n w n p 0, n 0,, 2,... b) Mit ˆp n ŵ n ˆp 0, n 0,, 2,... gilt ˆp n ŵn ˆp ŵ ) 0 ˆp 0 n : q n ˆp 0 p n w n p 0 w p 0 p 0 wobei laut Annahme q ŵ w > qn + n q ) für n. Hier wurde die Bernoulli-Ungleichung verwendet.)

16 . Übung [zur Übersicht] Aufgabe 0/2 c) Geometrische Summe für w 2 p n 2 n p 0 ) : n p k n p 0 2 k p 0 2 n 2 < p 0 2 n p n d) Für allgemeines w : n p k n p 0 w k p 0 w n w? <? p n p 0 w n Also: Zu klären ist, ob für < w < 2 folgende Ungleichung für alle n besteht: w n w wn w n w ) w n 2 w w w w n 2 w w Dies ist nicht möglich für alle n, da w n für n.

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q. Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15 Mengen Übersicht.1 Definitionen................................................. 11. Sätze und Beweise............................................ 14.3 Erklärungen zu den Definitionen...............................

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht ANALYSIS I FÜR TPH WS 206/7 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Untersuchung von Reihen mittels Konvergenzkriterien Aufgabe 2: Konvergenz und Berechnung von Reihen I Aufgabe 3: ( )

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Topologische Räume und stetige Abbildungen

Topologische Räume und stetige Abbildungen TU Dortmund Mathematik Fakultät Proseminar Lineare Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Julia Schmidt Dozent: Prof. Dr. L. Schwachhöfer Datum: 29.11.2013 Inhaltsverzeichnis

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Das Schubfachprinzip

Das Schubfachprinzip Das Schubfachprinzip Norbert Koksch, Dresden Literatur: Beutelspacher/Zschiegner: Diskrete Mathematik für Einsteiger. Vieweg-Verlag. 1. Was ist das Schubfachprinzip? Die folgenden Aussagen sind offenbar

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

Mengenoperationen, Abbildungen

Mengenoperationen, Abbildungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012 Lösungen zur Klausur zur Vorlesung Mathematik für Informatiker I (Dr. Frank Hoffmann) Wintersemester 2011/2012 22. Februar 2012 Aufgabe 1 Logisches und Grundsätzliches /4+4+2 (a) Testen Sie mit dem Resolutionskalkül,

Mehr

Kombinatorische Beweisprinzipien

Kombinatorische Beweisprinzipien Kombinatorische Beweisprinzipien Satz Binomischer Lehrsatz Beweis (a + b) n = n k=0 ( ) n a k b n k k Multipliziere (a + b) n aus: (a + b) (a + b)... (a + b). Aus jedem der n Faktoren wird entweder a oder

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Vollständige Induktion

Vollständige Induktion Kantonsschule Olten Hardwald 4600 Olten Vollständige Induktion Andreas Stoll Andreas Pulfer Erfänzungsfach Anwendungen der Mathematik (2017/18) 1 Beweisen 1.1 Axiome und Prämissen Bei einem Beweis wird

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr