Fachwerke. 1 Definition & Annahmen. 2 Statische Bestimmtheit VII III

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Fachwerke. 1 Definition & Annahmen. 2 Statische Bestimmtheit VII III"

Transkript

1 Fachwerke Definition & nnahmen Ein Fachwerk oder auch Stabwerk soll aus geraden Stäben bestehen, die miteinander nur durch Knoten (vorstellbar als ideale Kugelgelenke) miteinander verbunden sind. Äußere Kräfte sollen stets nur an den Knoten angreifen. Dadurch ist sichergestellt dass alle Stäbe nur durch Zug- oder Druckkräfte belastet werden. eim ufstellen der Gleichgewichtsbedingungen in den Knoten zeichnet man die Stabkräfte stets vom Knoten weg ein, dadurch haben beim systematischen erstellen der Kräftegleichungen Zugkräfte stets positive orzeichen und Druckkräfte stets negative orzeichen. Statische estimmtheit n einem ebenen Fachwerk ist k=s r die notwendige edingung für statische estimmtheit. Für räumliche Fachwerke ist k=s r die notwendige edingung um alle Stab- und agerkräfte aus den Gleichgewichtsbedingungen zu berechnen. K : nzahl der Knoten s : nzahl der Stäbe r : nzahl der agerreaktionen eispiel: k = s = 9 r = =9 = 9 Seite

2 Knotenpunktverfahren Um die Stabkräfte zu bestimmen erstellt man für jeden Knoten Kräftegleichungen nach den Gleichgewichtsbedingungen und erhält so ein Gleichungssystem mit k Gleichungen. us den GGs lassen sich für eine schnelle nalyse des Fachwerks direkt drei Regeln ableiten, mit denen man u.u. schnell unbelastete Stäbe (Nullstäbe) identifizieren kann und so die zu berechnenden Gleichungen zum Teil erheblich reduziert oder vereinfacht.. Wenn zwei Stäbe winkelig aufeinandertreffen und in dem erbindungsknoten keine Kraft angreift sind beide Stäbe Nullstäbe. (KR ) Fs Fs FS=0, FS=0. Wenn zwei Stäbe winkelig aufeinandertreffen und wenn im erbindungsknoten eine Kraft kolinear zu einem der beiden Stäbe angreift, so ist dieser Stab mit der angreifenden Kraft belastet und der andere Stab ist ein Nullstab. (KR ) Fs F Fs FS=F, FS=0. Wenn drei Stäbe in einem Knoten miteinander verbunden sind, im Knoten keine Kräfte angreifen und zwei Stäbe gleich ausgerichtet sind (0 ) so ist der dritte Stab ein Nullstab. (KR ) Fs Fs Fs FS=FS, FS=0 Seite

3 eispielaufgabe F=00 N F=0 N = 0=0 K : F S =0, =F S KR Kräftegleichungen : FS K : =0= cos F S =0= F S cos F S K : =0=F S (Knotenregel) =0= F S K : =0=F S cos F S =0= F S cos F S FS FS F=0 N K : =0= F S F S cos F S F =0=cos F S cos F S F S FS K : =0= cos F S cos F S F =0= cos F S cos F S F=00 N FS FS Seite

4 Momentengleichungen Um z.. die agerreaktionen eines Fachwerks nicht mühselig über das ufstellen der Kräftegleichungen in jedem Punkt zu berechnen kann man oft auch über das ufstellen einer Momentengleichung Ergebnisse erziehlen. Dabei stellen nur äußere Kräfte und die agerreaktionen (stets positiv einzeichnen) eine Rolle. eispielaufgabe F 9 =9 = K : K : F S =0, F S =0 KR F S =0, F S9 = KR Momentengleichungen : K : M Z =0= F = F K : M Z =0= F = F Kräftegleichungen : K : K : =0= F S cos F S =0= cos F S =0= F S cos F S =0=F S cos F S FS FS FS FS=0 K : K : =0=F S cos F S =0= cos F S F S F =0=F S cos F S =0= cos F S F S9 Seite

5 Ritterschnitt eim Ritterschnittverfahren schneidet man einen Teil des Fachwerks heraus und stellt eine Momentengleichung um einen Knoten dieses Teils auf. Für die Momentengleichung sind sowohl äußere Kräfte als auch Schnittkräfte (Stabkräfte) relevant. Durch einen sinnvoll gewählten Schnitt kann man so einfach zu lösende Momentengleichungen erhalten. eispielaufgabe C = = F=0 N F=0 N K : K : F S =0, F S =0 KR F S =0, F S =0 KR C Momentengleichungen : K : M Z =0= F F C K : M Z =0= F F C K : M Z =0= F F F=0 N Ritterschnitt : Ritterschnitt K : M Z =0= F cos F S FS F=0 N Kräftegeleichungen : FS K : =0= F S cos F S =0= cos F S usw... Seite

4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM

4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM 4. Ebene Fachwerke Prof. Dr. Wandinger 3. Tragwerksanalyse TM 1 3.4-1 4. Ebene Fachwerke Ein Fachwerk ist ein Tragwerk, bei dem die folgenden vereinfachenden Annahmen zulässig sind: Das Tragwerk besteht

Mehr

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk

Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Fachwerkträger. (Skript zur Online-Version)

Fachwerkträger. (Skript zur Online-Version) Fachwerkträger (Skript zur Online-Version) Name: Czapalla Vorname: Oliver E-Mail: czapalla@web.de Online-Version: http://www.biw.fhd.edu/partsch/diplomarbeiten/fachwerktraeger Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

Fragen aus dem Repetitorium II

Fragen aus dem Repetitorium II Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen

Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische echanik I Lösungen Wintersemester 16/17 Lösungen zu Übungen Technische echanik I Inhalt Inhaltserzeichnis Lösungen zu Übungen

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip

2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip 56 2 Statik des starren Körpers 2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip isher haben wir uns lediglich mit dem leichgewicht einzelner starrer Körper befaßt; in diesem Kapitel behandeln

Mehr

Stabwerkslehre - WS 11/12 Prof. Dr. Colling

Stabwerkslehre - WS 11/12 Prof. Dr. Colling Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

Statik von Fachwerken

Statik von Fachwerken 41 Harald Löwe Statik von Fachwerken Statische Berechnungen auch kleinerer so genannter Fachwerke führen bereits auf größere lineare Gleichungsssteme, die den Nutzen des Gaußalgorithmus belegen können

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe Erstarrungsmethode Axiome der Statik... 21 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3

Inhaltsverzeichnis. 0 Einleitung 1. 1 Grundbegriffe 3 Inhaltsverzeichnis 0 Einleitung 1 1 Grundbegriffe 3 1.1 Begriffserklärung Statik starrer Körper... 3 1.2 Kräfte und Kräftearten... 3 1.3 Streckenlasten... 4 1.4 Was ist ein mechanisches System... 5 1.5

Mehr

Vorlesung L Leichtbau, HS Fachwerke. Paolo Ermanni 7. Oktober 2015

Vorlesung L Leichtbau, HS Fachwerke. Paolo Ermanni 7. Oktober 2015 Vorlesung 151-3207-00L Leichtbau, HS 2015 Fachwerke Paolo Ermanni 7. Oktober 2015 PAOLO ERMANNI - 151-3207-K3-FACHWERKE 01.10.2015 1 Leitfaden Allgemeines Ebene statisch bestimmte Fachwerke Aufgabe 1 und

Mehr

1 Fragestellungen der Statik... 1

1 Fragestellungen der Statik... 1 VII 1 Fragestellungen der Statik... 1 2 Kräfte und ihre Wirkungen... 5 2.1 Äußere Kräfte, wirkende Lasten... 5 2.2 Reaktionskräfte und innere Kräfte... 8 2.3 Kräfte am starren Körper... 10 2.3.1 Linienflüchtigkeitsaxiom...

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Abschätzung zweckmäßiger Abmessungen

Abschätzung zweckmäßiger Abmessungen Abschätzung zweckmäßiger Abmessungen 1 2 3 4 5 6 7 8 9 10 11 12 Biegeträger g Stahlbetonträger Stahlträger Leimholzträger 13 Fachwerkträger An einem Pfostenfachwerk als Einfeldsystem der Länge l mit der

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Stereostatik Statik starrer Körper Grundlagen der Vektorrechnung

Stereostatik Statik starrer Körper Grundlagen der Vektorrechnung S Stereostatik Statik starrer Körper Grundlagen der Vektorrechnung Definition des Vektors und Koordinatendarstellung Ein Vektor beschreibt unabhängig vom Koordinatensstem eine gerichtete Strecke im Raum.

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung

Mehr

TWL Klausur WS 2016/ Termin / Bearbeitet von

TWL Klausur WS 2016/ Termin / Bearbeitet von TWL Klausur WS 2016/2017 1.Termin / 03.02.2017 Bearbeitet von Name Matr.-Nr. WICHTIGE HINWEISE Die Bearbeitungszeit beträgt 180 Minuten. Sie können die Aufgabenblätter und eigenes Papier verwenden. Jedes

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

2. Sätze von Castigliano und Menabrea

2. Sätze von Castigliano und Menabrea 2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.

Mehr

- 1 - A H A V M A. Bild 5.17 Einfach statisch unbestimmtes System; a) Systemskizze; b) Schnittbild F 1 F 3 B C F 2 2 F 3

- 1 - A H A V M A. Bild 5.17 Einfach statisch unbestimmtes System; a) Systemskizze; b) Schnittbild F 1 F 3 B C F 2 2 F 3 - - Lgerrektionen können nur mit Hilfe der Elstizitätstheorie bestimmt werden. Technische Mechnik II Elstosttik werden ein- und mehrfch "sttisch unbestimmt" gelgerte Trgwerke vorgestellt. ) b) M H V ild

Mehr

K5_15-07_L.Docx Seite 1 von 16

K5_15-07_L.Docx Seite 1 von 16 K5 Technische Mechanik Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Elektronische Geräte sowie nicht zugelassene Unterlagen bitte vom Tisch räumen. Mit Annahme der Klausur

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

F1 Lageplan - Subsystem - Kräfteplan Übung 2. F2 Resultierende von parallelen Kräften Übung 3. F3 Resultierende von beliebigen Kräften Übung 3

F1 Lageplan - Subsystem - Kräfteplan Übung 2. F2 Resultierende von parallelen Kräften Übung 3. F3 Resultierende von beliebigen Kräften Übung 3 / II Innhaltsübersicht igur -6 Lageplan - Subsystem - Kräfteplan Übung Resultierende von parallelen Kräften Übung Resultierende von beliebigen Kräften Übung 4 elastungsarten Übung 5 Parabelkonstruktion

Mehr

Technische Mechanik / Statik

Technische Mechanik / Statik Technische Mechanik / Statik von Peter Hagedorn 5., korr. ufl. Harri Deutsch 2008 Verlag C.H. eck im nternet: www.beck.de SN 978 3 8171 1833 5 Zu nhaltsverzeichnis schnell und portofrei erhältlich bei

Mehr

2. Eulersche Knickfälle

2. Eulersche Knickfälle Das Stabilitätsversagen von Balken unter Druckbelastung wird als Knicken bezeichnet. Linear-elastisches Knicken wurde bereits von Euler untersucht. Je nach Randbedingungen lassen sich verschiedene so genannte

Mehr

11) EBENE FACHWERKE und DREIGELENKBOGEN

11) EBENE FACHWERKE und DREIGELENKBOGEN BAULEITER HOCHBAU S T A T I K / E S T I G K E I T S L E H R E 11) EBENE ACHWERKE und DREIGELENKBOGEN 1) Ebene achwerke a) Allgemeines b) achwerkformen c) Berechnungsverfahren d) Beispiele Stabkräfte im

Mehr

2. Statisch bestimmte Systeme

2. Statisch bestimmte Systeme 1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix

Mehr

Übungsaufgaben Statik zentrales Kräftesystem

Übungsaufgaben Statik zentrales Kräftesystem I zentralen Kräftesyste liegen alle Kräfte in derselben Ebene und wirken auf einen geeinsaen Punkt. Lösen Sie alle Aufgaben zeichnerisch und rechnerisch. Kräfte zusaensetzen c) Eierziehen Bei Eierziehen

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Die Mathematik des Käse-Kästchen-Spiels

Die Mathematik des Käse-Kästchen-Spiels Die Mathematik des Käse-Kästchen-Spiels Ilse Fischer Universität Wien 1 Spielregeln Zwei Spieler beginnen mit einer rechteckigen nordnung von Punkten. Ein Zug besteht darin, zwei horizontal oder vertikal

Mehr

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F

1 Statik. 1.1 Kraft. Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F 1 Statik 1.1 Kraft Folgende Eigenschaften bestimmen eine Kraft: Der Kraftvektor ist damit ein gebundener Vektor: symbolisch F Einheit der Kraft: 1 Newton = 1 N = 1 kg m/s 2 Darstellung: Kraft F mit einem

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

2. Die Steifigkeitsmatrix

2. Die Steifigkeitsmatrix . Die Steifigkeitsmatrix Freiheitsgrade der Gesamtstruktur: Bei einem ebenen Fachwerk hat jeder Knoten zwei Freiheitsgrade, nämlich die Verschiebungen u x und u y, zu denen die Kräfte F x und F y gehören.

Mehr

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN:

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN: Inhaltsverzeichnis Raimond Dallmann Baustatik 1 Berechnung statisch bestimmter Tragwerke ISBN: 978-3-446-42319-0 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42319-0 sowie

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

TWL Klausur SOS Termin / Bearbeitet von

TWL Klausur SOS Termin / Bearbeitet von TWL Klausur SOS 2014 2.Termin / 19.09.2014 Bearbeitet von Name Matr.-Nr. WICHTIGE HINWEISE Die Bearbeitungszeit beträgt 180 Minuten. Sie können die Aufgabenblätter und eigenes Papier verwenden. Jedes Arbeitsblatt

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung:

Durch Eliminieren der Wurzel erhalten wir die bekannte Kreisgleichung: Fixieren wir ein Seil der Länge r an einem Punkt M, nehmen das lose Ende in die Hand und bewegen uns so um den Punkt M herum, dass das Seil stets gespannt bleibt, erhalten wir, wie in nebenstehender Abbildung

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

18. Räumliche Tragsysteme

18. Räumliche Tragsysteme 8. Räumliche Trgssteme isher wurden nur Trgssteme betrchtet, die durch Lsten in einer Ebene bensprucht wurden. In der Pris treten ber häufig räumliche Strukturen uf mit Lsten in beliebiger Rumrichtung.

Mehr

in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat

in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat Kapitel Gleichgewicht von Stabwerken Durch die Festlegung auf die grundlegenden Elementtypen und die knotenzentrierten Koordinatensysteme ist der Weg zur Formulierung der Gleichgewichtsbedingungen vorgezeichnet.

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Übung 9: Ebene Schubfeldträger II

Übung 9: Ebene Schubfeldträger II Ausgabe: 25..25 Übung 9: Ebene Schubfeldträger II Einleitung und Lernziele Schubfeldträger sind zentrale Strukturelemente im Leichtbau. Sie bieten gegenüber den einfacheren achwerkkonstruktionen einige

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

1.6 Nichtzentrale Kräftesysteme

1.6 Nichtzentrale Kräftesysteme 1.6 Nichtzentrale Kräftesysteme 1.6.1 Zusammensetzen von ebenen Kräften mit verschiedenen ngriffspunkten Je zwei Kräfte bilden ein zentrales Kräftesystem, wenn sie nicht gerade zueinander parallel verlaufen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS CPYRIGHT LIEGT BEIM JEWEILIGEN AUTR. α 0 30 45 60 90 sin 0 1/2 2 /2 3/2 1 cos 1 3/2

Mehr

( und ) Sommer Samstag, 22. August 2015, Uhr, HIL G 15. Name, Vorname: Studenten-Nr.:

( und ) Sommer Samstag, 22. August 2015, Uhr, HIL G 15. Name, Vorname: Studenten-Nr.: Baustatik I+II Sessionsprüfung (101-0113-00 und 101-0114-00) Sommer 2015 Samstag, 22. August 2015, 09.00 12.00 Uhr, HIL G 15 Name, Vorname: Studenten-Nr.: Bemerkungen 1. Die Aufgaben dürfen in beliebiger

Mehr

Studiensemester. 1. Sem. Kontaktzeit a) 2 SWS / 22,50 h. b) 2 SWS / 22,50 h. c) 2 SWS / 22,50 h

Studiensemester. 1. Sem. Kontaktzeit a) 2 SWS / 22,50 h. b) 2 SWS / 22,50 h. c) 2 SWS / 22,50 h Technische Mechanik und Darstellung Kennnummer a) SSB 20059 b) SSB 10027 Workload 180 h Credits 6 Studiensemester 1. Sem. Häufigkeit des Angebots jedes Semester Dauer 1 Semester 1 Lehrveranstaltungen a)

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Musterlösungen (ohne Gewähr) knm

Musterlösungen (ohne Gewähr) knm rühjhr 2009 Seite 1/17 rge 1 ( 1 Punkt) Gegeben ist eine Krft, die n einem Punkt P mit dem Ortsvektor r ngreift. Berechnen Sie den Momentenvektor M bezogen uf den Koordintenursprung des krtesischen Koordintensystems.

Mehr

2.1 Spannung und Verformung bei Längsbeanspruchung, Hookesches Gesetz. Bild F 1

2.1 Spannung und Verformung bei Längsbeanspruchung, Hookesches Gesetz. Bild F 1 estigkeitslehre. Spannung und Verformung bei Längsbeanspruchung, Hookesches Gesetz ederkräfte E E c l c ild In einem Rahmen ist oben eine eder mit der edersteifigkeit c und unten eine eder mit der edersteifigkeit

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (12 Punkte) Fall i Fall ii Fall iii. Prüfungsklausur Technische Mechanik I. Begründung: Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 23. September 2016 Aufgabe 1 (12 Punkte) Ein Wanderer (Gewicht G ) benutzt in unebenem Gelände einen Wanderstab

Mehr

In den folgenden Erklärungen und Beispielen gelten folgende Begriffe: F A *l = F 1 *l 1 + F 2 + l 2 M r = M l

In den folgenden Erklärungen und Beispielen gelten folgende Begriffe: F A *l = F 1 *l 1 + F 2 + l 2 M r = M l Belasteter Träger In den folgenden Erklärungen und Beispielen gelten folgende Begriffe: M R M L F o F u l l x Summenzeichen rechtsdrehendes Drehmoment, in Uhrzeigerrichtung linksdrehendes Drehmoment, gegen

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Lageplan 4: Parallelverschiebung der Resultierenden so, dass Versatzmoment M Pres das sich mit M Pres aufhebt.

Lageplan 4: Parallelverschiebung der Resultierenden so, dass Versatzmoment M Pres das sich mit M Pres aufhebt. 1.7.4 Zusammenfassen von Momenten von Einzelkräften Die Summe der Momente von Einzelkräften um einen beliebigen ezugspunkt ist gleich dem Moment der Resultierenden um diesen unkt. Dies ist der Satz vom

Mehr

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5

Inhaltsverzeichnis. I Starrkörperstatik 17. Vorwort 5 Inhaltsverzeichnis Vorwort 5 1 Allgemeine Einführung 13 1.1 Aufgabe und Einteilung der Mechanik.............. 13 1.2 Vorgehen in der Mechanik..................... 14 1.3 Physikalische Größen und Einheiten................

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Grundfachklausur Teil 1 / Statik I

Grundfachklausur Teil 1 / Statik I Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 1 / Statik I im Wintersemester 2013/2014, am 21.03.2014

Mehr

Innere Beanspruchungen - Schnittgrößen

Innere Beanspruchungen - Schnittgrößen Innere Beanspruchungen - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur Q () M () M () Q () N () N () L - KIT Universität des Landes Baden-Württemberg und nationales orschungszentrum in

Mehr

Einführung in die Statik und räumliche Kraftsysteme

Einführung in die Statik und räumliche Kraftsysteme Leseprobe Kirbs Einführung in die Statik und räumliche Kraftsysteme TECHNISCHE MECHANIK Studienbrief 2-050-0904 3. Auflage 2008 HOCHSCHULVERBUND DISTANCE LEARNING Impressum Verfasser: Prof. Dr.-Ing. Jörg

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

Analyse logischer Schaltnetze

Analyse logischer Schaltnetze 2003, Thomas armetler Kippstufen und ähler nalyse logischer Schaltnetze nalyse logischer Schaltnetze eim usammenwirken von mindestens zwei logischen Grundschaltungen spricht man auch von einem logischen

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Vektorgeometrie. Schattenspiele. Anwendungen. Friedrich Buckel. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Stand 24.

Vektorgeometrie. Schattenspiele. Anwendungen. Friedrich Buckel. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Stand 24. Vektorgeometrie Anwendungen Schattenspiele Datei Nr. 6340 Stand 4. September 0 Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de Vorwort Es gibt eine Reihe von Aufgaben, die einen

Mehr

Fachwerkmodelle berechnen mit Fachwerk und Fachwerk3D

Fachwerkmodelle berechnen mit Fachwerk und Fachwerk3D Fachwerkmodelle berechnen mit Fachwerk und Fachwerk3D Programmdokumentation Adrian Vontobel 20. Mai 2016 4. Ausgabe seit 2008 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Das Programm Fachwerk 3 1.1 Zweck.......................................

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 sind ebene flächenförmige Konstruktionen, die in ihrer Ebene belastet werden und deren Bauhöhe im Verhältnis zur Stützweite groß ist. Es können ein- und mehrfeldrige Systeme ausgeführt werden;

Mehr

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK.

Technische Universität Berlin. Wolfgang Raack MECHANIK. 13. verbesserte Auflage. ULB Darmstadt. nwuiui i utr IVIOWI IClI'lIK. Technische Universität Berlin Wolfgang Raack MECHANIK 13. verbesserte Auflage ULB Darmstadt 16015482 nwuiui i utr IVIOWI IClI'lIK Berlin 2004 Inhaltsverzeichnis 1 Einführung 1 1.1 Definition der Mechanik

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Skript zur Vorlesung Baustatik II

Skript zur Vorlesung Baustatik II BS III Skript zur Vorlesung Baustatik II an der Hochschule Augsburg Hochschule für angewandte Wissenschaften University of Applied Sciences Prof. Dr.-Ing. Gerhard Zirwas BS III Inhalt I. Wiederholungen

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung

CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung CES-Softwareentwicklungspraktikum Projekt: Elastische zweidimensionale Tragwerksberechnung Dipl.-Ing. M. Nicolai, Dipl. Phys. Eva Schlauch, Dipl. Phys. Roland Siegbert, Chair for Computational Analysis

Mehr

Hochschule Wismar University of Technology, Business and Design

Hochschule Wismar University of Technology, Business and Design achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

7 Bedingte Erwartungswerte und Bedingte Verteilungen

7 Bedingte Erwartungswerte und Bedingte Verteilungen 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω 1 + + n und σ(y

Mehr

Statik im Bauwesen. HUSS-MEDIEN GmbH Verlag Bauwesen Berlin. Fritz Bochmann/Werner Kirsch. Band 3: Statisch unbestimmte ebene Systeme

Statik im Bauwesen. HUSS-MEDIEN GmbH Verlag Bauwesen Berlin. Fritz Bochmann/Werner Kirsch. Band 3: Statisch unbestimmte ebene Systeme Fritz Bochmann/Werner Kirsch Statik im Bauwesen Band 3: Statisch unbestimmte ebene Systeme 13. Auflage HUSS-MEDIEN GmbH Verlag Bauwesen 10400 Berlin Inhaltsverzeichnis Einführung 11.1. Allgemeine Grundlagen

Mehr

å å Fakultät für Bauingenieurwesen und Umwelttechnik 15. Juli 2013 Baumechanik I-Klausur 6 (2 Stunden)-Lösung

å å Fakultät für Bauingenieurwesen und Umwelttechnik 15. Juli 2013 Baumechanik I-Klausur 6 (2 Stunden)-Lösung achhochschule Köln Sommer-Semester 03 akultät für auingenieurwesen und Umwelttechnik ozent: nsgar Neuenhofer ufgabe (a) esucht: Zulässig für eine zulässige uflagerkraft = 9 kn. aumechanik I-Klausur 6 (

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

HTWG Konstanz, Fakultät Maschinenbau, Studiengang WIM 1 Übungen Technische Mechanik F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. x y z

HTWG Konstanz, Fakultät Maschinenbau, Studiengang WIM 1 Übungen Technische Mechanik F 2 = 20KN P 2 (9;-3) F A (1,3;-5) F 4. x y z HTWG Konstan, akultät Maschinenbau, Studiengang WIM 1 ufgabe 1: Berechnen sie die Kraftkomponenten, und und den Betrag der Kraft, falls dieser nicht gegeben ist. Berechnen Sie die Summen der Kräfte 1 und

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

ÜBUNGSAUFGABEN ZUR VORLESUNG TECHNISCHE MECHANIK I

ÜBUNGSAUFGABEN ZUR VORLESUNG TECHNISCHE MECHANIK I ÜUNGSUGEN ZUR VORLESUNG TECHNISCHE MECHNIK I Kpitel : chwerke Lehrstuhl für Technische Mechnik Technische Universität Kiserslutern c 00 Lehrstuhl für Technische Mechnik Technische Universität Kiserslutern

Mehr

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,

TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b, TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt

Mehr

Lineare Programmierung

Lineare Programmierung asis Definition 3.38 Gegeben sei ein LP in der Normalform mit m als Rang der Matrix 2 R m n. x 2 R n mit x = b heißt asislösung gdw. n m Komponenten x i gleich Null und die zu den restlichen Variablen

Mehr