Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN"

Transkript

1 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei manchen Rechnungen kommt man jedoch auch mit den rationalen Zahlen nicht aus. Wir versuchen zum Beispiel folgende Gleichung zu lösen: x. Damit wir x berechnen können, ziehen wir auf beiden Seiten der Gleichung die Quadratwurzel: x Hinter dem Rechenausdruck x steht folgende Rechenanweisung: Suche einen Ausdruck, der mit sich selbst multipliziert x er- gibt. Die Lösung ist natürlich x. Wenn wir also wissen wollen, suchen wir eine Zahl, die mit sich selbst multipliziert ergibt. Diesen Wert tippen wir mit dem Taschenrechner aus. Wir erhalten also: x 1, Das interessante an dieser Dezimalzahl ist, daß Sie unendlich lang ist und niemals periodisch wird. Solche Zahlen lassen sich nicht als Bruch darstellen, sind folglich also keine rationalen Zahlen. Man nennt diese Zahlen irrationale Zahlen. Definition: Unendlich lange, nicht periodische Zahlen nennt man irrationale Zahlen. Beispiele für solche irrationalen Zahlen: Alle Quadratwurzeln von nicht-quadratischen Zahlen (z.b. ; ; 5; 6; usw.).. Die Zahl π, (sprich: Pi ): Diese Zahl ist uns bereits von den Kreisberechnungen bekannt. Die Zahl e, (sprich: e ): Dies ist die sogenannte Eulersche Zahl. Sie wird später unter anderem bei sämtlichen Wachstums- oder Zerfallsaufgaben (z.b. radioaktiver Zerfall) von Bedeutung sein. Beweis, dass eine irrationale Zahl ist: Annahme: ist eine rationale Zahl. 1

2 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester Unter dieser Annahme kann ich also in Form eines gekürzten Bruchs m darstellen. Dabei sind m und n ganze Zahlen 0 und n sicher nicht 1, n da sonst eine natürliche Zahl sein müsste. Wenn man n m nicht kürzen kann nun n ungleich 1 ist, dann kann man sicher auch nicht m n m m n n keine ganze Zahl sein. kürzen und n muss ungleich 1 sein. Daher kann Da aber ( ) eine ganze Zahl ist liegt ein Widerspruch vor, folglich kann keine rationale Zahl sein. Alle rationalen und irrationalen Zahlen zusammen nennt man die reellen Zahlen, abgekürzt mit dem Buchstaben R. Definition. Die Menge der reellen Zahlen besteht aus den Mengen der rationalen und irrationalen Zahlen. Folgerungen: Wir können irrationale Zahlen niemals wirklich ganz exakt berechnen, sondern nur beliebig genau. Dies bedeutet, dass ich bei gegebenem Kreisradius den Umfang des Kreises zwar beliebig genau berechnen kann, aber eben unmöglich ganz exakt. Für uns gilt: Wir rechnen immer auf zwei Dezimalstellen genau. Übungen: Übungsblatt 8; Aufgaben Nun noch einige Definitionen und Überlegungen zum Wurzelziehen: Wurzelzeichen Definition: x a Radikand sprich: x ist die Quadratwurzel (kurz: Wurzel) aus a. Die Bedeutung der Quadratwurzel haben wir uns bereits überlegt. Noch einmal: 9 bedeutet, dass wir eine Zahl suchen, die mit sich selbst multipliziert 9 ergibt. Folglich ist 9 da 9. Dies bedeutet aber, dass Wurzelziehen und Potenzieren einander entgegengesetzte Rechenoperationen sind. Satz: Wurzelziehen und Potenzieren sind einander entgegengesetzte Rechenoperationen.

3 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester Dies bedeutet, dass sich die Quadratwurzel und der Exponent gegenseitig aufheben. Beispiel: ( ) Übung: Übungsblatt 8; Aufgabe 95 Mit einem Problem müssen wir uns noch befassen. Was erhalten wir, wenn wir die Wurzel aus einer negativen Zahl ziehen wollen? Beispiel: 4 ( ) ( ) 4 Lösung: Wir suchen also eine Zahl, die mit sich selbst multipliziert -4 ergibt. Man würde wahrscheinlich zur Lösung tendieren, aber 4 und nicht -4. Folglich ist keine Lösung. Versuchen wir also - als Lösung, aber. Also ist auch - keine Lösung. Es gibt also keine reelle Lösung für diese Wurzel. Wir sagen 4 ist nicht definiert. Das Ziehen einer Quadratwurzel aus einer negativen Zahl ist für uns also folglich nicht sinnvoll. Satz: Aus einer negativen Zahl kann in R keine Quadratwurzel gezogen werden. Andererseits bekommen wir aber folgende Tatsache, wenn wir die Wurzel aus einer positiven Zahl ziehen wollen: Beispiel: 4 Lösung: ist eine Lösung, da 4. Wir probieren aber jetzt auch - aus. ( ) ( ) 4. Folglich ist auch - eine Lösung. Wir erhalten also gleich zwei Lösungen, die sich nur durch das Vorzeichen unterscheiden: 4 ±. Satz: Die Quadratwurzel aus einer positiven Zahl ist doppeldeutig. Man erhält stets Zahl und Gegenzahl als Lösungen.

4 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester Rechnen mit Wurzeln a) Multiplikation: Beispiel: 5 Können wir die beiden Wurzeln unter eine Wurzel zusammenfassen? Lösung: Wir überlegen uns dies zunächst allgemein: Annahme: a b a b a, b 0 Beweis: Rechnung Anmerkungen a b a b Wir quadrieren beide Seiten der Gleichung. ( a b ) ( a b ) Für die linke Seite der Gleichung kennen wir vom Rechnen mit Potenzen ( a b) a b. Für die rechte Seite wissen wir, dass sich die Wurzel und das Quadrat gegenseitig aufheben. ( a ) ( b ) a b Nun heben sich auch bei den beiden Ausdrücken auf der linken Gleichungsseite Wurzel und Quadrat gegenseitig auf und wir erhalten. a b a b Da dies offensichtlich eine wahre Aussage ist, stimmt also unser obiger Satz. Satz: a b a b a, b 0 Für unser Beispiel gilt also: Übung: Übungsblatt 8; Aufgabe 96 Natürlich gilt auch der umgekehrte Weg: Beispiel: 5 5 Übungen: Übungsblatt 8; Aufgaben

5 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester b) Division: Kann man nun die beiden Wurzeln unter eine zusammenfas- 6 Beispiel: sen? Lösung: Wir rechnen zunächst wieder allgemein: Annahme: a b a b Beweis: Rechnung Anmerkungen a a Wir quadrieren wieder beide b b Gleichungsseiten. a a Für die linke Gleichungsseite gilt wieder vom Rechnen mit Potenzen:. Auf der rechten b b a a b b Seite heben sich Potenzieren und Wurzelziehen wieder auf. ( a ) a Auf der linken Gleichungsseite ( b ) b heben sich im Zähler und Nenner potenzieren und Wurzelziehen wieder auf. a a Damit haben wir unsere Behauptung wieder b b bewiesen. a a Satz: a 0 ; b > 0 b b 6 6 Für unser Beispiel gilt also: Auch der umgekehrte Weg gilt natürlich: Beispiel: Übungen: Übungsblatt 8; Aufgabe 99 Mittels dieser Rechengesetze lassen sich aus Termen auch teilweise Wurzeln ziehen: 5

6 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester Beispiel: Beispiel: 7x 7 x 7 x Übungen: Übungsblatt 8; Aufgaben c) Addieren und Subtrahieren Beispiel: 5 + Kann man die beiden Wurzeln wieder unter eine Wurzel zusammenfassen? Lösung: Wir überlegen uns das ganze wieder allgemein: Annahme: a + b a + b Beweis: Rechnung Anmerkungen a + b a + b Wir quadrieren beide Seiten der Gleichung. ( a + b ) ( a + b ) Auf der linken Gleichungsseite liegt eine binomische Formel vor. Rechts heben sich potenzieren und Wurzelziehen auf. ( a ) + a b + ( b ) a + b Wir vereinfachen die linke Seite. a + ab + b a + b / a b ab 0 Dies ist aber im Allgemeinen falsch (Ausnahme: a oder b 0). Wurzeln, die durch + oder - getrennt sind, lassen sich nicht zusammenfassen, bzw. trennen. Merke: a ± b a ± b Kubikwurzel Beispiel: Ein Würfel habe ein Volumen von 8 cm. Wie lang ist seine Seitenkante a? Lösung: Für den Würfel gilt: V a. Wir setzen in die Formel ein: a 8 6

7 Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester Wir suchen also eine Zahl, die dreimal mit sich selbst multipliziert 8 ergibt. Dies ist natürlich, da 8. Mathematisch nennt man dies als die dritte Wurzel oder Kubikwurzel. Man schreibt dies folgendermaßen: a 8 a Übung: Übungsblatt 8; Aufgabe 105 7

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN ARBEITSBLATT 5 WURZELGLEICHUNGEN Definition: Gleichungen, in denen eine Variable unter dem Wurzelzeichen auftritt, nennt man Wurzelgleichungen. Das Rechnen mit diesen Gleichungen können wir nach der Anzahl

Mehr

1.Rationale und irrationale Zahlen. Quadratwurzel.

1.Rationale und irrationale Zahlen. Quadratwurzel. 1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.

Mehr

QUADRATISCHE GLEICHUNGENN

QUADRATISCHE GLEICHUNGENN Schule Bundesgymnasium für Berufstätige Salzburg Thema Mathematik Arbeitsblatt A -.: Quadratische Gleichungen LehrerInnenteam m/ Mag Wolfgang Schmid Unterlagen QUADRATISCHE GLEICHUNGENN Definition: Eine

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE

ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib Länge und Breite des Rechtecks in einer Formel an. Es ist natürlich leicht

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

2.2 Quadratwurzeln. e) f) 8

2.2 Quadratwurzeln. e) f) 8 I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen

Mehr

1.8 Mengenlehre-Einführung in die reellen Zahlen

1.8 Mengenlehre-Einführung in die reellen Zahlen .8 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 irrationale und reelle Zahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist...........................

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Für das Rechnen mit Logarithmen gibt es nun natürlich eigene Rechengesetze, welche wir uns nun anschauen

Mehr

1.2 Mengenlehre I-Einführung in die reellen Zahlen

1.2 Mengenlehre I-Einführung in die reellen Zahlen .2 Mengenlehre I-Einführung in die reellen Zahlen Inhaltsverzeichnis Checkliste 2 2 Repetition 2 3 Dezimalzahlen 3 4 Die Darstellung von Brüchen als Dezimalzahlen 3 5 irrationale Zahlen 4 6 Beispiele von

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion

Michael Körner. Grundwissen Wurzeln und Potenzen Klasse VORSCHAU. Bergedorfer Kopiervorlagen. zur Vollversion Michael Körner Grundwissen Wurzeln und Potenzen 5.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Zu dieser Mappe Was sind Wurzeln? Wozu benötigt man Potenzen? Wieso gelten die Potenzgesetze

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Mathematik - Wurzeln und Potenzen Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Wurzeln

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN Mathematische Gleichungen ergeben sich normalerweise aus einem textlichen Problem heraus. Hier folgt nun ein zugegebenermaßen etwas künstliches Problem:

Mehr

1.2 Mengenlehre-Einführung in die reellen Zahlen

1.2 Mengenlehre-Einführung in die reellen Zahlen .2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen

4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen 4 Wurzeln, Dezimalzahlen und eine neue Menge die reellen Zahlen Tom und Sara werden jeden Tag von einem Schülerlotsen über einen Zebrastreifen vor der Schule geleitet. Sara hat ihn beobachtet und ihr ist

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 4. Semester ARBEITSBLATT 4 POTENZEN MIT RATIONALEM EXPONENTEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 4. Semester ARBEITSBLATT 4 POTENZEN MIT RATIONALEM EXPONENTEN ARBEITSBLATT POTENZEN MIT RATIONALEM EXPONENTEN Um mit Wurzeln rechnen zu können müssen wir diese in Potenzschreibweise umformen. Dazu benötigen wir folgende Definition: s r r s + Definition: a a a R,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 4 1. Semester ARBEITSBLATT 4 DIE RATIONALEN ZAHLEN. 1) Einleitung ARBEITSBLATT DIE RATIONALEN ZAHLEN 1) Einleitung Wie wir schon bei der Erweiterung von der Menge der natürlichen Zahlen auf die Menge der ganzen Zahlen gesehen haben, ist es ein Ziel der Mathematik, innerhalb

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur

Mehr

Grundwissen Wurzeln und Potenzen

Grundwissen Wurzeln und Potenzen Michael Körner Grundwissen Wurzeln und Potenzen 5.-10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Zu dieser Mappe Was sind Wurzeln? Wozu benötigt man Potenzen? Wieso gelten die Potenzgesetze

Mehr

Grundwissen 9. Klasse. Mathematik

Grundwissen 9. Klasse. Mathematik Grundwissen 9. Klasse Mathematik Philipp Kövener I. Reelle Zahlen 1.1 Quadratwurzel Definition Für a 0 ist die Quadratwurzel diejenige nicht-negative Zahl, deren Quadrat a ergibt. a heißt Radikand und

Mehr

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

DIE RATIONALEN ZAHLEN

DIE RATIONALEN ZAHLEN Bundesgymnasium für Mathematik 1 -Arbeitsblatt 1-3: Rationale Zahlen 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB DIE RATIONALEN ZAHLEN 1) Einleitung Wie wir schon bei der Erweiterung von der

Mehr

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

Demo-Text für  Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W. Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst kann man sagen, dass alles beim Alten bleibt. Es bleiben also sämtliche

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Wurzeln. Quadratwurzeln, Wurzelgesetze, Wurzelziehen. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michael Körner Wurzeln Quadratwurzeln, Wurzelgesetze, Wurzelziehen Michael Körner Grundwissen Wurzeln und Potenzen 5. 0. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel:

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 6. Semester ARBEITSBLATT 3 RECHENREGELN FÜR DAS DIFFERENZIEREN VERKETTETER FUNKTIONEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 6. Semester ARBEITSBLATT 3 RECHENREGELN FÜR DAS DIFFERENZIEREN VERKETTETER FUNKTIONEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt. Semester ARBEITSBLATT RECHENREGELN FÜR DAS DIFFERENZIEREN VERKETTETER FUNKTIONEN Schauen wir uns nun noch das Differenzieren von komplizierteren Ausdrücken

Mehr

QUADRATWURZELN FRANZ LEMMERMEYER

QUADRATWURZELN FRANZ LEMMERMEYER QUADRATWURZELN FRANZ LEMMERMEYER Nach den negativen Zahlen und den Brüchen steht in Klasse 8 eine weitere Erweiterung des Zahlbereichs an. Den ersten Schritt dazu machen die Quadratwurzeln.. Quadratwurzeln

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Potenzen und Wurzeln Anna Heynkes 18.6.2006, Aachen Dieser Text soll zusammenfassen und erklären, wie Potenzen und Wurzeln zusammenhängen und wie man mit ihnen rechnet. Inhaltsverzeichnis 1 Die Potenzgesetze

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Mathematik Runden, Potenzen, Terme

Mathematik Runden, Potenzen, Terme Mathematik Runden, Potenzen, Terme Mag. Rainer Sickinger HTL v 7 Mag. Rainer Sickinger Mathematik Runden, Potenzen, Terme 1 / 81 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend...

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

Wiederholung der Algebra Klassen 7-10

Wiederholung der Algebra Klassen 7-10 PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:

Mehr

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen Ma th ef it 4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen Tom und Sara werden jeden Tag von einem Schüler/innen-Lotsen über einen Zebrastreifen vor der Schule geleitet. Sara

Mehr

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)

= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b) GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis

Mehr

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert.

Lernmodul Bruchrechnen. Gemischte, unechte Brüche. Brüche: Addition, Subtraktion. Brüche multiplizieren. Kehrwert. Lernmodul Bruchrechnen Gemischte, unechte Brüche Brüche: Addition, Subtraktion Brüche multiplizieren Kehrwert Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen addieren, subtrahieren Dezimalzahlen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Einführung und Grundeigenschaften (Klasse 8 / 9)

Einführung und Grundeigenschaften (Klasse 8 / 9) ALGEBRA Quadratwurzeln Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 10. Januar 018 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion:

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion: Wie rechne ich mit Ungleichungen? Die do s und don t s mit Beispielen aus der Miniklausur Lukas Steenvoort Addition und Subtraktion 1 ) Dies funktioniert ähnlich wie bei Gleichungen addieren wir denselben

Mehr

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)

M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010) M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier

Mehr

Lernskript Potenzrechnung 2³ = 8

Lernskript Potenzrechnung 2³ = 8 Lernskript Potenzrechnung 2³ = 8 Inhaltsverzeichnis Erklärungen...2 Potenz...2 Basis...3 Exponent...4 Hoch null...5 Punkt- vor Strichrechnung mit Potenzen...5 Potenzen mit gleicher Basis...6 Potenzen mit

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

Die komplexen Zahlen

Die komplexen Zahlen Die komplexen Zahlen Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de 1 Die nicht lösbaren quadratischen Gleichungen Seite 1 2 Das

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis. zwei gleiche Binome 132 zwei gleiche Binome mit unterschiedlichen Vorzeichen 133

Stichwortverzeichnis. Symbole. Stichwortverzeichnis. zwei gleiche Binome 132 zwei gleiche Binome mit unterschiedlichen Vorzeichen 133 Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 37, 89 (Wurzelzeichen) 36, 84 (Multiplikations-Zeichen) 36 * (Multiplikations-Zeichen) 36 + (Plus-Zeichen) 36, 43, 99, 120 - (Minus-Zeichen)

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13?

Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13? 1 Welche reelle Zahl ergibt, wenn man sie mit sich selbst multipliziert, die Zahl 13? 2 Sanya und Thomas sollen die Quadratwurzel aus 625 durch Probieren ermitteln. Sanya hat die Aufgabe ziemlich schnell

Mehr

Irrationale Zahlen. Drei einfache Beweise für die Irrationalität von Zahlen

Irrationale Zahlen. Drei einfache Beweise für die Irrationalität von Zahlen Astrophysikalisches Institut Neunhof Mitteilung sd01311, Februar 2010 1 Irrationale Zahlen Drei einfache Beweise für die Irrationalität von Zahlen Übersicht Nach einer kurzen Überlegung im Abschnitt 1

Mehr

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze:

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze: Mathematik/Informatik Gierhardt Komplexe Zahlen Komplexe Zahlen Bekannte Zahlenmengen Natürliche Zahlen Die Zahlenmenge ist IN = {0,,,,} Es gelten die folgenden Gesetze: Addition: a + b IN, wenn a,b IN

Mehr

Terme sind beliebige (sinnvolle) Zusammenstellungen von Zahlen, Platzhaltern, Rechenzeichen und Klammern.

Terme sind beliebige (sinnvolle) Zusammenstellungen von Zahlen, Platzhaltern, Rechenzeichen und Klammern. Terme sind beliebige (sinnvolle) Zusammenstellungen von Zahlen, Platzhaltern, Rechenzeichen und Klammern. Beispiele: 7 110 13 (42 + 15) 2 4 + 1 1. Rechne aus. (Zahlenwert der Terme ermitteln) 420 + 105

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

MATHEMAT IK 4. Kompetent AUFSTEIGEN. Kompetenzen erwerben und festigen Bildungsstandards erreichen. Kompetenzorientiert Bildungsstandards

MATHEMAT IK 4. Kompetent AUFSTEIGEN. Kompetenzen erwerben und festigen Bildungsstandards erreichen. Kompetenzorientiert Bildungsstandards 4 Kompetenzen erwerben und festigen Bildungsstandards erreichen Die neue Reihe Kompetent AUFSTEIGE entspricht dem neuen, aktuellen Unterricht an österreichischen AHS und MS. Schülerinnen und Schüler sollen

Mehr

numerische Berechnungen von Wurzeln

numerische Berechnungen von Wurzeln numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln

Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln I Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30 Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln Von Alessandro Totaro, Stuttgart Illustriert von

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

2.3 Potenzen (Thema aus dem Bereichen Algebra)

2.3 Potenzen (Thema aus dem Bereichen Algebra) . Potenzen Thema aus dem Bereichen Algebr Inhaltsverzeichnis 1 Repetition: Potenzen mit natürlichen Exponenten Potenzen mit ganzzahligen Exponenten 4 Potenzen mit rationalen Exponenten 8 1 Potenzen 19.11.007

Mehr

Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30

Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30 I Zahlen und Größen Beitrag 44 Fit im Umgang mit Quadratwurzeln 1 von 30 Wer darf das Wurzelgefängnis wieder verlassen? Fit im Umgang mit Quadratwurzeln Von Alessandro Totaro, Stuttgart Illustriert von

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11

) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11 Wert eines Terms berechnen sind sinnvolle Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammern bestehen können. Setzt man für die Variablen Zahlen ein, so erhält man als Ergebnis wieder

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN

Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große

Mehr

Wurzelgleichungen. W. Kippels 16. August 2014

Wurzelgleichungen. W. Kippels 16. August 2014 Wurzelgleichungen W. Kippels 16. August 01 Inhaltsverzeichnis 1 Grundlagen Übungsaufgaben.1 Aufgabe 1.................................... Aufgabe....................................3 Aufgabe 3....................................

Mehr

2.6 Potenzen (Thema aus dem Bereichen Algebra)

2.6 Potenzen (Thema aus dem Bereichen Algebra) 2.6 Potenzen Thema aus dem Bereichen Algebra) Inhaltsverzeichnis 1 Einführung in den Begriff der Potenz 2 2 Repetition: Potenzen mit natürlichen Exponenten 2 Potenzen mit ganzzahligen Exponenten 4 4 Potenzen

Mehr

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Mathe Leuchtturm Übungsleuchtturm 5.Kl. 1 by Mathe Leuchtturm Übungsleuchtturm 5.Kl. 014 Übungskapitel Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der 5.Klasse) Verschiedene Lösungsmethoden von quadratischen

Mehr

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der 1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art

Mehr

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich!

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich! Kapitel 1 Rechengesetze 1.1 Körperaxiome und Rechenregeln 1.1.1 Binomische Formeln Aufgabe 1.1.1.1. 1. Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14. Systeme linearer Ungleichungen in einer Variablen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14. Systeme linearer Ungleichungen in einer Variablen ARBEITSBLATT 14 Systeme linearer Ungleichungen in einer Variablen Zunächst einmal können wir die Lösungen einer Ungleichung auf mehrere Arten angeben. Man kann wählen zwischen einer Ungleichungskette,

Mehr

Gleichungen, die auf quadratische Gleichungen führen: Teil 1: Bruchgleichungen. Shareware-Datei ohne Lösungen. Datei Nr

Gleichungen, die auf quadratische Gleichungen führen: Teil 1: Bruchgleichungen. Shareware-Datei ohne Lösungen. Datei Nr Spezielle Gleichungen Klassenstufe 9 Gleichungen, die auf quadratische Gleichungen führen: Teil : Bruchgleichungen Shareware-Datei ohne Lösungen Datei Nr. 0 April 00 Friedrich Buckel Internatsgymnasium

Mehr