Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II"

Transkript

1 Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB fortführen. Matrizen und Vektoren werden in MATLAB nicht nur im Sinne linearer Gleichungssysteme verwendet, sondern dienen auch als Speicher für beliebige Informationen. Daher existiert eine Vielzahl von Funktionen um Vektoren und Matrizen zu manipulieren, von denen wir hier einige ansprechen wollen. Aufgabe 1. Um beliebige n m-matrizen zu erzeugen gibt es die Befehle zeros, eye und ones. Informieren Sie sich über help darüber, wie diese Befehle benutzt werden. Der Zugriff auf einzelne Elemente einer n m-matrix (a ij ) erfolgt in MATLAB über runde Klammern: Um auf den Eintrag a ij zuzugreifen, 1 i n, 1 j m, verwenden wir A(i,j): >> [8 1 6; 3 5 7; 4 9 2] >> A(2,3) 7 Geben wir statt Zeile und Spalte nur eine Zahl an, so wird die Matrix als Element von K nm (statt K n m ) interpretiert. Die Spalten werden dabei untereinander geschrieben interpretiert, A(i,j) entspricht daher dem Element A(i+(j-1)*n). 1

2 >> A(3) 4 >> A(4) 1 Wir können statt der Zahlen als Indizes auch Vektoren v {1,..., n} k, w {1,..., m} l angeben. Zurückgegeben wird dann die Matrix à Kk l mit Einträgen (ã i,j ) := (a vi,v j ). Da jeder Skalar gleichzeitig auch als Vektor der Länge 1 interpretiert werden kann, fällt diese Definition im Fall von k, l = 1 mit dem normalen Zugriff auf ein Element zusammen. >> A(2, [2, 3]) 5 7 >> A([1, 3], [2, 3]) Aufgabe 2. Sei A R 3 3 definiert durch A := Lösen Sie die folgenden Aufgaben mit Hilfe von Zugriffsoperatoren: a) Geben Sie das Element a 2,3 mit A(i,j) und A(k) aus. b) Geben Sie die erste Zeile von A aus. c) Geben Sie die linke, obere 2 2-Untermatrix von A aus. d) Definieren Sie B als A mit Zeilen 1 und 2 vertauscht. Tipp: MATLAB interpretiert die Matrix als einen Vektor. Beim Zugriff auf eine Matrix A K n m können 1:n und 1:m jeweils auch mit einem einfachen Doppelpunkt : abgekürzt werden. MATLAB kennt die Dimension der Matrix und ersetzt in diesem Fall den Doppelpunkt durch den richtigen Vektor. 2

3 >> A(2,:) >> A(:,3) All die bisher kennengelernten Ausdrücke können wir auch benutzen, um Matrizen zu ändern. Wir können sowohl einzelne Einträge, als auch ganze Spalten, Zeilen oder allgemein beliebige Untermatrizen ändern: >> A(2,3) = Man beachte, dass der Wert des Eintrags bei einer Zuweisung zu einer Variablen kopiert wird und daher späteres Ändern dieser Kopie keine Auswirkung mehr auf die Matrix hat: >> x = A(2,3) x = 0 >> x = 4 x = 4 >> A Aufgabe 3. Erstellen Sie eine 8 8-Matrix in MATLAB, bei der im Schachbrettmuster Nullen und Einsen angeordnet sind. Gehen Sie dabei wie folgt vor: a) Erzeugen Sie Ihre Matrix mit zeros und ersetzen Sie durch for-schleifen die Nullen an den entsprechenden Stellen durch Einsen. b) Lösen Sie das Problem nun ohne Schleifen, aber trotzdem in wenigen Schritten, in dem Sie ganze Teilmatrizen durch ones ersetzen. 3

4 Erweitern von Vektoren und Matrizen In einigen Situationen ist es sinnvoll, Vektoren um Einträge zu erweitern, bzw. eine Matrix durch das Anhängen einer Spalte oder einer Zeile in ihrer Dimension zu verändern. Ein Beispiel ist ein Vektor fib_n der Dimension n, in dem die ersten n Glieder der Fibonacci-Folge gespeichert werden. Will man nun alle Elemente der Folge bis zum (n+1)-ten Glied berechnen, also den Vektor fib_(n+1), so ist es sinnvoller, diesen um ein Element zu erweitern, statt alle Elemente der Folge erneut zu berechnen. Dies kann man mit der folgenden Syntax tun: >> fib_3 = [1 1 2] fib_3 = >> fib_4 = [ fib_3 3] fib_4 = Man beachte dabei, dass beide Vektoren als Zeilenvektoren konstruiert sind. Einen Zeilenvektor zu einem Spaltenvektor zu ergänzen funktioniert nicht und führt zu einem Dimensionsfehler. >> fib_3 = [1 1 2] fib_3 = >> fib_4 = [ fib_3; 3] Error using vertcat CAT arguments dimensions are not consistent. Bei Matrizen ergeben sich zum Teil ähnliche Situationen wie bei unserem Fibonacci Beispiel. Man nehme an wir wollen für zwei aufeinanderfolgende Dimensionen n und n + 1 die zugehörigen Hilbertmatrizen H_n und H_n+1 aufstellen. Statt die Einträge der Matrix H_n+1 alle neu zu berechnen, nutzen wir die bereits berechneten Einträge der Matrix H_n. Dazu müssen wir die Matrix H_n um eine Spalte der länge n und eine Zeile der Länge n + 1 ergänzen. H_2 = >> s_3 = [1/3; 1/4] 4

5 s_3 = >> z_3 = [1/3 1/4 1/5] z_3 = >> h_3 = [ H_2 s_3; z_3] H_3 = Geschwindigkeitsprobleme beim Anhängen Wenn wir Elemente an eine Matrix / einen Vektor anhängen, wird intern eine komplett neue Matrix der richtigen Größe erzeugt und die Einträge des alten Objekts in diese neue Matrix kopiert 1. Dieses Kopieren ist langsam und sollte wenn möglich vermieden werden. Oftmals ist dies möglich, da meist nicht die Größe der Matrix / des Vektors am Anfang unbekannt ist, sondern die Einträge. Wir reservieren daher zu Beginn genug Speicherplatz und arbeiten dann mit Untermatrizen / -vektoren über die oben vorgestellte Syntax. Das folgende Beispiel soll das Problem demonstrieren. In diesem werden abermals die ersten 10 Glieder der Fibonacci-Folge berechnet. v = [1 1]; for i=3:10 v = [ v v(i-1)+ v(i -2)]; end Sofern Sie diesen Programmcode in eine Skriptdatei schreiben, wird MAT- LAB das v in der for-schleife mit rot unterschlängeln. Wenn Sie dann mit dem Mauszeiger auf das v zeigen, gibt MATLAB Ihnen den folgenden 1 Erklärung: Matrizen werden vom Computer als zusammenhängede Blöcke von Zahlen gespeichert, deren Größe beim Anlegen der Matrix festgelegt wird. All die Daten, mit denen der Computer arbeitet, werden so nacheinander im Arbeitsspeicher gespeichert. Nach dem Anlegen der Matrix ist daher nicht mehr garantiert, dass links und rechts Platz für die Einträge unserer größeren Matrix frei ist. Daher muss woanders ein größerer, zusammenhänger Block reserviet und die Einträge der alten Matrix kopiert werden. 5

6 Hinweis: The variable v appears to change size on every loop iteration. Consider Preallocating for speed. MATLAB reserviert für die Variable v am Anfang nur den Speicherplatz für zwei double-werte. Im ersten Schritt der Schleife wird die Länge des Vektors dann auf Dimension drei geändert. MATLAB reserviert in diesem Moment komplett neuen Speicher für drei double-werte und kopiert die vorhergehenden zwei. Dies wird in jedem Schritt wiederholt. Wir wissen, dass wir ingesamt Speicher für 10 Einträge brauchen, daher erzeugen wir direkt am Anfang den Speicher für alle Einträge und lassen diese auf 0 solange, bis unsere Schleife an der Stelle ankommt. Ein effizientes Programm sähe daher wie folgt aus: v = zeros (10,1); v(1) = 1; v(2) = 1; for i=3:10 v(i) = v(i-1)+ v(i-2); end Elementweise Operationen Außer den bekannten Rechenoperatioren *, / und kennt MATLAB die elementweisen Operatoren.*,./ und., bei denen dem Rechenzeichen ein Punkt vorangestellt wird. Die elementweisen Operatoren können nur verwendet werden, wenn die Dimensionen der verknüpften Matrizen übereinstimmen oder eine von ihnen ein Skalar ist. >> [1 2 3; 4 5 6] >> B = [2 4 3; 2 1 1] B = >> A.^B

7 Falls eine der Größen ein Skalar ist, wird die skalare Operation auf alle Elemente der Matrix angewendet. Das Ergebnis hat dann die Dimension der Matrix. >> A.^ >> 2.^ A Aufgabe 4. a) Berechnen Sie n n für alle natürlichen Zahlen von 3 bis 9. b) Berechnen Sie für einen beliebigen Vektor a K 4 das elementweise Quadrat und das euklidische Skalarprodukt. Alle bekannten mathematischen Funktionen können auch elementweise angewendet werden, in dem man als Argument für die Funktion einen Vektor angibt. Das Ergebnis ist dann ein Vektor mit den Funktionsauswertungen: >> a = 0:pi/4:pi a = >> b = sin(a) b = Das Kronecker-Tensorprodukt Um Blockmatrizen wie für die erste Übungsaufgabe von Blatt 2 zu erstellen, können wir das Kroneckerprodukt von Matrizen verwenden. Das Kronecker-Tensorprodukt ist ein Multiplikationsoperator zwischen zwei Matrizen beliebiger Dimension, der als Ergebnis eine größere Matrix erzeugt, die alle möglichen Produkte aus den Einträgen der beiden Ausgangsmatrizen enthält. Für unsere Anwendung zum Aufstellen der Modellmatrix ist es sinnvoll, sich dieses Produkt als Blockmatrix vorzustellen: Das Kronecker- Produkt von zwei Matrizen (a ij ) n,m i,j=1 Rn m und B R k l ist eine Blockmatrix C R nk ml mit den Blöcken c ij = (a ij B) n,m 7 i,j=1.

8 In MATLAB ist das Kronecker-Tensorprodukt als kron(, )-Funktion verfügbar: >> B = eye(2,2) B = >> kron(a,b) Aufgabe 5. Benutzen Sie kron(), um möglichst einfach die folgende Matrix zu erstellen: C = Aufgabe 6. Lösen Sie Aufgabe 1 vom zweiten Übungsblatt mit Hilfe der folgenden Schritte: a) Erstellen Sie eine Funktion, welche die Matrix B m erzeugt. Benutzen Sie hierfür die Funktionen diag() und ones(). Bauen Sie die Matrix Schritt-für-Schritt auf und addieren Sie Ihre Teilergebnisse. b) Erweitern Sie Ihre Funktion, so dass die Matrix A m vom Übungsblatt erzeugt wird, in dem Sie zunächst mit Hilfe von kron() eine Blockdiagonalmatrix mit Blöcken B m erzeugen. c) Ergänzen Sie A m aus der letzten Teilaufgabe durch die Nebendiagonal- Blöcke. Wenden Sie dafür wieder kron() auf eine Matrix an, welche Sie mit diag() und ones() konstruiert haben. 8

Einführung in MATLAB Blockkurs DLR:

Einführung in MATLAB Blockkurs DLR: Einführung in MATLAB Blockkurs DLR: 19.4-22.4.24 Tag 1, 2.Teil Vektoren und Matrizen 19.4.24 Dr. Gerd Rapin grapin@math.uni-goettingen.de Gerd Rapin Einführung in MATLAB p.1/2 Matrizen und Vektoren Erzeugen

Mehr

WiMa-Praktikum 1. Woche 8

WiMa-Praktikum 1. Woche 8 WiMa-Praktikum 1 Universität Ulm, Sommersemester 2017 Woche 8 Lernziele In diesem Praktikum sollen Sie üben und lernen: Besonderheiten der For-Schleife in Matlab Wiederholung des Umgangs mit Matrizen und

Mehr

Übung 4: Einführung in die Programmierung mit MATLAB

Übung 4: Einführung in die Programmierung mit MATLAB Übung 4: Einführung in die Programmierung mit MATLAB AUFGABE 1 Was bewirkt der Strichpunkt? - Der Strichpunkt (Semikola) unterdrück die Anzeige der (Zwischen-) Resultate. Welche Rolle spielt ans? - Wenn

Mehr

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006

Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS Matlab: Fortsetzung. Jan Mayer. 4. Mai 2006 Praktikum zur Vorlesung: Numerische Mathematik für Lehramt SS 2006 Matlab: Fortsetzung Jan Mayer 4. Mai 2006 Manipulation von Matrizen und Vektoren [M,N]=size(A); speichert die Dimension einer Matrix bzw.

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Lorenz John Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2016 Theorie 1.2: Inhalt 1

Mehr

Einführung in die Programmierung (MA8003)

Einführung in die Programmierung (MA8003) Theorie 1.2: Vektoren & Matrizen II, Funktionen, Indizierung Dr. Laura Scarabosio Technische Universität München Fakultät Mathematik, Lehrstuhl für Numerische Mathematik M2 04.10.2017 Theorie 1.2: Inhalt

Mehr

Einführung in Matlab Was ist MATLAB? Hilfe Variablen

Einführung in Matlab Was ist MATLAB? Hilfe Variablen Einführung in Matlab Was ist MATLAB? MATLAB (Matrix Laboratory) ist eine interaktive Interpreter-Sprache, die einen einfachen Zugang zu grundlegenden numerischen Verfahren - wie beispielsweise der Lösung

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung.

Matrizen. Jörn Loviscach. Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Matrizen Jörn Loviscach Versionsstand: 12. April 2010, 19:00 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. 1 Matrix Ein rechteckige Anordnung von mathematischen Objekten

Mehr

Matrizen. Jörn Loviscach

Matrizen. Jörn Loviscach Matrizen Jörn Loviscach Versionsstand: 7. April 2010, 14:27 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.youtube.com/joernloviscach 1 Matrix Ein

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha): 3 Matrizen Jörn Loviscach Versionsstand: 20. März 2012, 16:02 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This work is licensed

Mehr

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha):

In den USA verwendet man statt dessen eckige Klammern, was sich in der Software niederschlägt (mit Ausnahmen wie Wolfram Alpha): 3 Matrizen Jörn Loviscach Versionsstand: 28. März 2015, 21:32 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This work is licensed

Mehr

Octave/Matlab-Übungen

Octave/Matlab-Übungen Aufgabe 1a Werten Sie die folgenden Ausdrücke mit Octave/Matlab aus: (i) 2 + 3(5 11) (ii) sin π 3 (iii) 2 2 + 3 2 (iv) cos 2e (v) ln π log 10 3,5 Aufgabe 1b Betrachten Sie (i) a = 0.59 + 10.06 + 4.06,

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

4.2 Selbstdefinierte Matlab-Funktionen 1. Teil

4.2 Selbstdefinierte Matlab-Funktionen 1. Teil 4.2 Selbstdefinierte Matlab-Funktionen 1. Teil 37 Ein m-file mit Namen Funktionsname.m und einer ersten Zeile der folgen Form: function Funktionsname(input1,input2,...,inputn) oder function output1=funktionsname(input1,input2,...,inputn)

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Einführung in. Pierre Bayerl

Einführung in. Pierre Bayerl Einführung in Pierre Bayerl 19. November 21 Matlab Numerische Manipulation von Matrizen und Vektoren und deren Visualisierung. Verwendung: Interaktive Eingabe von Befehlen Skriptprogramme ( Batch-Dateien

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Programmieren. Aufgabe 1 (Eine erste Datenstruktur)

Programmieren. Aufgabe 1 (Eine erste Datenstruktur) Prof. Dr. S.-J. Kimmerle (Vorlesung) Dipl.-Ing. (FH) V. Habiyambere (Übung) Institut BAU-1 Fakultät für Bauingenieurwesen und Umweltwissenschaften Herbsttrimester 2016 Aufgabe 1 (Eine erste Datenstruktur)

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten

Zweiter Teil des Tutorials. Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Zweiter Teil des Tutorials Workspace M-files Matrizen Flow Control Weitere Datenstrukturen Gemeinsames Beispiel erarbeiten Workspace Im Workspace sind die Variablen mit ihrem jeweiligen Wert gespeichert.

Mehr

Schülerworkshop Computertomographie Mathematik als Schlüsseltechnologie

Schülerworkshop Computertomographie Mathematik als Schlüsseltechnologie Schülerworkshop Computertomographie Mathematik als Schlüsseltechnologie Peter Quiel 1. und 2. Juni 2007 MATLAB-Einführung Überblick Für die nächsten 1 ½ Stunden ist MATLAB unser Thema! Was ist MATLAB,

Mehr

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen.

Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Variablen in MATLAB. Unterschiede zur Mathematik: Symbolisches und numerisches Rechnen. Skriptdateien. for-schleifen. Wir wollen uns heute dem Thema Variablen widmen und uns damit beschäftigen, wie sich

Mehr

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files.

m-files sind Folgen von MATLAB-Anweisungen oder Daten-Files. MATLAB m-files m-files sind Folgen von MATLAB- oder Daten-Files. Erstellen von m-files Über File New M-file wird ein Texteditor geöffnet. Dort wird das m-file als ASCII-File erzeugt und unter name.m im

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen

Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen 15.04.2011 Inhaltsverzeichnis Grundlagen 1 Grundlagen Matrizen Vektoren 2 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation

Mehr

Numerische Lineare Algebra - Matlab-Blatt 2

Numerische Lineare Algebra - Matlab-Blatt 2 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Wintersemester 014/015 Numerische Lineare Algebra - Matlab-Blatt Lösung (Besprechung

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

Ein kleiner Matlab Primer Frank Schimmel

Ein kleiner Matlab Primer Frank Schimmel Ein kleiner Matlab Primer Frank Schimmel Matlab ist eine Programmiersprache für des technische und wissenschaftliche Rechnen. Mit Matlab lassen sich relativ einfach erste numerische Berechnungen realisieren

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

3 Kurzeinführung in Matlab

3 Kurzeinführung in Matlab 3 Kurzeinführung in Matlab Matlab ist ein sehr leistungsfähiges interaktives Programmpaket für numerische Berechnungen. Nutzen Sie dies parallel zu den Vorlesungen. Sie können damit persönlich erfahren,

Mehr

Strings. Daten aus Dateien einlesen und in Dateien speichern.

Strings. Daten aus Dateien einlesen und in Dateien speichern. Strings. Daten aus Dateien einlesen und in Dateien speichern. Strings Ein String ist eine Zeichenkette, welche von MATLAB nicht als Programmcode interpretiert wird. Der Ausdruck 'a' ist ein String bestehend

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Informationsverarbeitung im Bauwesen

Informationsverarbeitung im Bauwesen V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30

Mehr

Wertebereich und Genauigkeit der Zahlendarstellung

Wertebereich und Genauigkeit der Zahlendarstellung Wertebereich und Genauigkeit der Zahlendarstellung Sowohl F als auch C kennen bei ganzen und Floating Point-Zahlen Datentypen verschiedener Genauigkeit. Bei ganzen Zahlen, die stets exakt dargestellt werden

Mehr

Übungspaket 23 Mehrdimensionale Arrays

Übungspaket 23 Mehrdimensionale Arrays Übungspaket 23 Mehrdimensionale Arrays Übungsziele: Skript: Deklaration und Verwendung mehrdimensionaler Arrays Kapitel: 49 Semester: Wintersemester 2016/17 Betreuer: Kevin, Matthias, Thomas und Ralf Synopsis:

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Blockmatrizen und -Algorithmen

Blockmatrizen und -Algorithmen Grundlagen 15.04.2011 Grundlagen Inhaltsverzeichnis 1 Grundlagen Blockmatrizen Untermatrizen 2 3 4 Blockmatrizen Grundlagen Blockmatrizen Untermatrizen Allgemein kann man sowie Zeilen als auch Spalten

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG Serie 6 ETH Zürich D-MATH Einleitung. Diese Serie behandelt nochmals das Rechnen mit Vektoren

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Einführung in MATLAB

Einführung in MATLAB Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 21 Einstieg in die Informatik mit Java Felder, eindimensional Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 21 1 Überblick: Was sind Felder? 2 Vereinbarung von Feldern

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Variablen Blöcke Abfragen Schleifen Listen Ende. Einführung in Python. Arne Hüffmeier

Variablen Blöcke Abfragen Schleifen Listen Ende. Einführung in Python. Arne Hüffmeier Einführung in Python Arne Hüffmeier 1 / 47 1 Variablen 2 Blöcke 3 Abfragen 4 Schleifen 5 Listen 6 Ende 2 / 47 Variablen Aus der Schule kennt ihr f (x) =... Das x ist eine Variable, die für eine beliebige

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

2 Matrizen und Vektoren

2 Matrizen und Vektoren 1 Hilfe in Matlab 1 Hilfe in Matlab 2 help Befehl Textorientierte Hilfe, die im Kommando-Fenster erscheint. doc Befehl Html-orienterte Hilfe, die in einem Web-Browser erscheint. Beispiel: help plot und

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

Mathematik am Computer 4. Vorlesung Matlab: Teil 1

Mathematik am Computer 4. Vorlesung Matlab: Teil 1 4. Vorlesung Matlab: Teil 1 4. Dez. 2008 Übersicht 1 Grundlegendes Matrizen Bedienung von Matlab 2 Matlab als Taschenrechner Operationen auf Matrizen Operationen der Linearen Algebra 3 Matlab als Programmiersprache

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Matlab Übersicht. Matlab steht für MATrix LABoratory, die Fa. The Mathworks wurde 1984 gegründet

Matlab Übersicht. Matlab steht für MATrix LABoratory, die Fa. The Mathworks wurde 1984 gegründet Matlab Übersicht Ziel: einfacher Zugang zu numerischen (FORTRAN)Bibliotheken [Freeware] Linpack (LINear Algebra Solution PACKage) und Eispack (EIgenvalue Solution PACKage) => aktuelle Version: Lapack (Linear

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

1. Referenzdatentypen: Felder und Strings. Referenz- vs. einfache Datentypen. Rückblick: Einfache Datentypen (1) 4711 r

1. Referenzdatentypen: Felder und Strings. Referenz- vs. einfache Datentypen. Rückblick: Einfache Datentypen (1) 4711 r 1. Felder und Strings Eigenschaften von Referenzdatentypen 1. Referenzdatentypen: Felder und Strings Referenzdatentypen sind Konstrukte, mit deren Hilfe wir aus einfachen Datentypen neue eigene Typen erzeugen

Mehr

1. Referenzdatentypen: Felder und Strings

1. Referenzdatentypen: Felder und Strings 1. Felder und Strings Eigenschaften von Referenzdatentypen 1. Referenzdatentypen: Felder und Strings Referenzdatentypen sind Konstrukte, mit deren Hilfe wir aus einfachen Datentypen neue eigene Typen erzeugen

Mehr

2. Einführung in das Ingenieurtool MATLAB

2. Einführung in das Ingenieurtool MATLAB 2. Einführung in das Ingenieurtool MATLAB MATLAB ist eine numerische Berechnungsumgebung wurde vorrangig zum Rechnen mit Vektoren und Matrizen entworfen ist interaktiv benutzbar, vergleichbar mit einem

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 26 Einstieg in die Informatik mit Java Felder Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 26 1 Was sind Felder? 2 Vereinbarung von Feldern 3 Erzeugen von Feldern

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Eine Kurzanleitung zu Maple. Symbolische, numerische und grafische Funktionalitäten:

Eine Kurzanleitung zu Maple. Symbolische, numerische und grafische Funktionalitäten: MOSES-Projekt, GL, Juli 2003 Eine Kurzanleitung zu Maple Wir geben im Folgenden eine kurze Einführung in die Möglichkeiten, die das Computer Algebra System Maple bietet. Diese Datei (kuzanleitung_maple.mws)

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Ingenieurinformatik II Numerik für Ingenieure Teil 2

Ingenieurinformatik II Numerik für Ingenieure Teil 2 Hochschule München, FK 03 MB SS 013 Name Vorname Matrikelnummer Sem.Gr. Hörsaal Platz Ingenieurinformatik II Numerik für Ingenieure Teil Bearbeitungszeit : 60 Minuten Aufgabensteller : Dr. Reichl Hilfsmittel

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Orthonormalbasis. Orthogonalentwicklung

Orthonormalbasis. Orthogonalentwicklung Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht

Mehr

Analytische Geometrie mit dem Voyage 1

Analytische Geometrie mit dem Voyage 1 Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr