Prof. Dr.-Ing. Rainer Schmidt 1

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr.-Ing. Rainer Schmidt 1"

Transkript

1 Prof. Dr.-Ing. Rainer Schmidt 1

2 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

3 Auch die Job-Chancen sind gut. Ein neues Berufsbild, der Data Scientist, ist entstanden. Er beherrscht die mathematischen Grundlagen, Datenbanken und hat Fachkenntnisse. Prof. Dr.-Ing. Rainer Schmidt 3

4 Business Analytics dient dazu, Entscheidungen in Geschäftsprozessen zu unterstützen. Bisher wurden vorwiegend strukturierte Daten verwendet, die in Data-Warehouses aggregiert und gespeichert wurden. Es gibt aber eine große Menge von semi- und unstrukturierten Daten, sowie Daten mit ungeklärter Semantik (heterogene Semantik). Ein Beispiel sind Twitter-Einträge von Kunden. Die Auswertung von semiund unstrukturierten Daten geschieht mit Big-Data, zu dem Technologien wie Hadoop oder NoSQL gehören. Prof. Dr.-Ing. Rainer Schmidt 4

5 Das erste Thema ist Hadoop 2.0. Hadoop dient zur verteilten Verarbeitung von Daten bis in den Peta-Byte-Bereich. War Hadoop früher in seinem Verarbeitungsmodell festgelegt, ist es mit Hadoop 2.0 möglich, verschiedene Verarbeitungsmodelle zu nutzen. Dazu wurde die Funktionalität von MapReduce aus Hadoop 1.0 auf eine Ressourcenverwaltung namens YARN und die eigentliche MapReduce Verarbeitung aufgeteilt. Ziel des Vortrages: Es sollen die Architektur und die Eigenschaften von Hadoop 2.0 dargestellt werden. Prof. Dr.-Ing. Rainer Schmidt 5

6 Der Aufbau eines Hadoop-Clusters ist nicht untrivial. Daher bieten immer mehr Cloud-Anbieter Hadoop als Cloud-Service an. Ein Beispiel ist Elastic MapReduce von Amazon. Ziel des Vortrages: Darstellung des Angebotes von Hadoop-Cloud-Services und ihre Nutzung. Prof. Dr.-Ing. Rainer Schmidt 6

7 Klassische relationale Datenbanken sind für manche Aufgabenstellung nicht geeignet. Ein Beispiel sind mehrfache Joins die schnell zu Leistungseinbrüchen führen. Dem versuchen sogenannte NoSQL-Datenbanken zu begegnen. Sie verzichten auf die relationale Struktur und geben Leistungssteigerungen den Vorrang. Ziel des Vortrages: Es soll ein Überblick der NoSQL Technologien gegeben werden. Prof. Dr.-Ing. Rainer Schmidt 7

8 Hadoop und relationale Datenbanken sollten in Unternehmen nicht alleine stehen. Daher ist die Integration der beiden wichtig. Ziel des Vortrages ist es, Integrationsmöglichkeit für Hadoop und relationale Datenbanken zu beschreiben. Prof. Dr.-Ing. Rainer Schmidt 8

9 Für die Business Analytics ist ein umfangreicher mathematischer Methodenvorrat geschaffen worden. Ein Beispiel ist das Data Mining, bei dem aus einer Menge historischer Daten ein Entscheidungsbaum gewonnen wird. Dieser Entscheidungsbaum wird dann beim Auftauchen neuer Daten zur Entscheidungsfindung eingesetzt. Ein Beispiel ist die Auswertung, welche Kunden für welche Angebote besonders empfänglich sind. Ziel des Vortrages: Die wichtigsten mathematischen Konzepte für Business Analytics sollen dargestellt werden. Prof. Dr.-Ing. Rainer Schmidt 9

10 Unstrukturierte Daten tauchen beispielsweise in Twitter-Einträgen auf. Klassische Datenbank-Verfahren sind nicht anwendbar. Ziel des Vortrages: Beschreibung von Verfahren und Technologien zur Integration und Analyse unstrukturierter Daten. Prof. Dr.-Ing. Rainer Schmidt 10

11 R ist eine Umgebung zur Durchführung von statistischen Auswertungen. Sie ist vor allem bei Nicht-Informatikern beliebt. Ziel des Vortrages: Beschreibung von R und dessen Möglichkeiten. Prof. Dr.-Ing. Rainer Schmidt 11

12 Funktionale Programmiersprachen ermöglichen es, Funktionen als Parameter anderer Funktionen anzugeben. Auf diese Weise lassen sich komplexe Auswertungsfunktionalitäten bilden. F# ist neben Clojure, Haskell und Scala ein wichtiger Vertreter der funktionalen Programmiersprachen und hat eine schnell wachsende Unterstützerszene. Ziel des Vortrages: Darstellung von F# und seiner Möglichkeiten Prof. Dr.-Ing. Rainer Schmidt 12

13 Visualisierungsverfahren ermöglichen es, auch größte Datenmengen für den Menschen zu veranschaulichen. Ein Beispiel sind die von Baidu erfassten Reiseanfragen zum chinesischen Neujahrsfest. Ziel des Vortrages: Darstellung von Visualisierungsverfahren. Prof. Dr.-Ing. Rainer Schmidt 13

14 Prof. Dr.-Ing. Rainer Schmidt 14

15 Begleitend zum fachlichen Teil gibt es von Prof. Schmidt Vorträge zu Literaturrecherche mit Zotero Erstellen großer Text Teamarbeit Präsentieren. 15

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016 Citizen Data Science Balázs Bárány Linuxwochen Wien 2016 29. April 2016 Inhalt Einführung: Data Science Werkzeuge und Methoden Citizen Data Science Daten holen Daten verstehen Daten-Vorverarbeitung Prädiktive

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

ISBN: 978-3-8428-0679-5 Herstellung: Diplomica Verlag GmbH, Hamburg, 2011

ISBN: 978-3-8428-0679-5 Herstellung: Diplomica Verlag GmbH, Hamburg, 2011 Nils Petersohn Vergleich und Evaluation zwischen modernen und traditionellen Datenbankkonzepten unter den Gesichtspunkten Skalierung, Abfragemöglichkeit und Konsistenz Diplomica Verlag Nils Petersohn Vergleich

Mehr

Definition Informationssystem

Definition Informationssystem Definition Informationssystem Informationssysteme (IS) sind soziotechnische Systeme, die menschliche und maschinelle Komponenten umfassen. Sie unterstützen die Sammlung, Verarbeitung, Bereitstellung, Kommunikation

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform Mit DVD Jobs im Wandel: Was für Informatiker bedeutet 2/2015 Auf der Heft-DVD Über 8 GByte Software für Entwickler Multimedia: 5 Videos zur Hoch leistungsdatenbank EXASolution Hadoop: Cloudera s Distribution

Mehr

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse?

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Ein Beispiel Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Dipl.-Kfm. Claus Häberle WS 2015 /16 # 42 XML (vereinfacht) visa

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Top 10 der Business Intelligence-Trends für 2014

Top 10 der Business Intelligence-Trends für 2014 Top 10 der Business Intelligence-Trends für 2014 Das Ende der Datenexperten. Datenwissenschaft kann künftig nicht nur von Experten, sondern von jedermann betrieben werden. Jeder normale Geschäftsanwender

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Big & Smart Data. bernard.bekavac@htwchur.ch

Big & Smart Data. bernard.bekavac@htwchur.ch Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science bernard.bekavac@htwchur.ch Quiz An welchem

Mehr

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung A. Göbel, Prof. K. Küspert Friedrich-Schiller-Universität Fakultät für Mathematik und Informatik Lehrstuhl für Datenbanken

Mehr

TOP 8 TRENDS FÜR 2016 BIG DATA

TOP 8 TRENDS FÜR 2016 BIG DATA In der Welt der Big Data war 2015 ein wichtiges Jahr. Was als Hype begann, wurde zum Standard, da immer mehr Unternehmen erkannten, dass Daten in allen Formaten und Größen die zentrale Grundlage für bestmögliche

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

BIG DATA Die Bewältigung riesiger Datenmengen

BIG DATA Die Bewältigung riesiger Datenmengen BIG DATA Die Bewältigung riesiger Datenmengen Peter Mandl Institut für Geographie und Regionalforschung der AAU GIS Day 2012, 13.11.2012, Klagenfurt Was sind BIG DATA? Enorm große Datenmengen, Datenflut

Mehr

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER

Pavlo Baron. Big Data. für IT-Entscheider. Riesige Datenmengen. und moderne Technologien. gewinnbringend nutzen HANSER Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen HANSER Inhalt Vorwort XI 1 Management Summary 1 2 Was? 7 2.1 Mein klassisches Business ist konkurrenzlos,

Mehr

Der Cloud-Dienst Windows Azure

Der Cloud-Dienst Windows Azure Der Cloud-Dienst Windows Azure Master-Seminar Cloud Computing Wintersemester 2013/2014 Sven Friedrichs 07.02.2014 Sven Friedrichs Der Cloud-Dienst Windows Azure 2 Gliederung Einleitung Aufbau und Angebot

Mehr

Geringere Komplexität zur schnelleren Big-Data- Auswertung

Geringere Komplexität zur schnelleren Big-Data- Auswertung Geringere Komplexität zur schnelleren Big-Data- Auswertung Copyright 2013 Pentaho Corporation. Weitergabe erlaubt. Alle Marken sind Eigentum der jeweiligen Inhaber. Aktuelle Informationen finden Sie auf

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

W.WIINM32.11 (Datawarehousing) W.WIMAT03.13 (Statistik)

W.WIINM32.11 (Datawarehousing) W.WIMAT03.13 (Statistik) Modulbeschrieb Business Intelligence and Analytics 16.10.2013 Seite 1/5 Modulcode Leitidee Art der Ausbildung Studiengang Modultyp W.WIINM42.13 Information ist eine derart wichtige Komponente bei der Entscheidungsfindung,

Mehr

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf

Mehr

paluno Software & CPS Matthias Book Innovationsworkshop Horizon 2020 ICT 23.01.2014

paluno Software & CPS Matthias Book Innovationsworkshop Horizon 2020 ICT 23.01.2014 Impulse aus dem CPS-Netzwerk NRW Software & CPS Matthias Book Innovationsworkshop Horizon 2020 ICT 23.01.2014 Cyber Physical NRW Überblick: Software-technische Herausforderungen Cyber Physical Systems

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015 Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends Cloud-Datenbanken Franz Anders 02.07.2015 Dies ist das erweiterte Abstract zum Vortrag Cloud-Datenbanken für das Oberseminar Datenbanksysteme

Mehr

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen MapReduce Johann Volz IPD Snelting, Lehrstuhl Programmierparadigmen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wozu MapReduce?

Mehr

Inhaltsverzeichnis. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen

Inhaltsverzeichnis. Pavlo Baron. Big Data für IT-Entscheider. Riesige Datenmengen und moderne Technologien gewinnbringend nutzen Inhaltsverzeichnis Pavlo Baron Big Data für IT-Entscheider Riesige Datenmengen und moderne Technologien gewinnbringend nutzen ISBN (Buch): 978-3-446-43339-7 ISBN (E-Book): 978-3-446-43392-2 Weitere Informationen

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Redaktionelles Arbeiten auf Basis von Big-Data Methoden aus der Rundfunk/Fernseh-Perspektive

Redaktionelles Arbeiten auf Basis von Big-Data Methoden aus der Rundfunk/Fernseh-Perspektive Redaktionelles Arbeiten auf Basis von Big-Data Methoden aus der Rundfunk/Fernseh-Perspektive Institut für Rundfunktechnik, 17. Februar 2014 Norbert Pillmayer, BU-Leiter Software Solutions, NorCom Information

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013 Forschunsprojekte und Independent Coursework Prof. Dr. Christian Herta 29. Januar 2013 Forschungsgebiete Suchtechnologie, Text- und Webmining Verarbeitung unstrukturierter Daten, insbesondere Text Large

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

Nr. 33. NoSQL Databases

Nr. 33. NoSQL Databases Nr. 33 NoSQL Databases Das Berner-Architekten-Treffen Das Berner-Architekten-Treffen ist eine Begegnungsplattform für an Architekturfragen interessierte Informatikfachleute. Partner Durch Fachvorträge

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Spezialisierung Business Intelligence

Spezialisierung Business Intelligence Spezialisierung Business Intelligence Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg peter.becker@h-brs.de 10. Juni 2015 Was ist Business Intelligence? Allgemein umfasst der Begriff Business

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Foto: violetkaipa - Fotolia

Foto: violetkaipa - Fotolia Die D kön Foto: violetkaipa - Fotolia 10 IT-Trend Big Data atenflut steigt wie nen wir sie nutzen? Ständig erhöht sich die Masse der uns umgebenden Daten, Informationen werden immer schneller generiert.

Mehr

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz 1 2 Dies ist ein Vortrag über Zeit in verteilten Anwendungen Wir betrachten die diskrete "Anwendungszeit" in der nebenläufige Aktivitäten auftreten Aktivitäten in einer hochgradig skalierbaren (verteilten)

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Positionspapier Big Data

Positionspapier Big Data TeleTrusT-interner Workshop Berlin, 05.06.2014 Positionspapier Big Data Oliver Dehning, antispameurope GmbH Leiter der AG Cloud Security Definition Big Data Big Data bezeichnet große Datenmengen (Volume)

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Ratgeber Integration von Big Data

Ratgeber Integration von Big Data SEPTEMBER 2013 Ratgeber Integration von Big Data Gesponsert von Inhalt Einführung 1 Herausforderungen der Big-Data-Integration: Neues und Altes 1 Voraussetzungen für die Big-Data-Integration 3 Bevorzugte

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Bundeskanzlei BK Programm GEVER Bund. als Basis für GEVER. 29. November 2012

Bundeskanzlei BK Programm GEVER Bund. als Basis für GEVER. 29. November 2012 Bundeskanzlei BK Programm GEVER Bund Geschäftsprozesse als Basis für GEVER 29. November 2012 Zielsetzung der Präsentation Sie erhalten einen Überblick über den Stand der Entwicklung von GEVER als Geschäftsverwaltungssystem

Mehr

big data @ work Chancen erkennen, Risiken verstehen von Thomas Davenport, Thomas H. Davenport, Péter Horváth 1. Auflage

big data @ work Chancen erkennen, Risiken verstehen von Thomas Davenport, Thomas H. Davenport, Péter Horváth 1. Auflage big data @ work Chancen erkennen, Risiken verstehen von Thomas Davenport, Thomas H. Davenport, Péter Horváth 1. Auflage Verlag Franz Vahlen München 2014 Verlag Franz Vahlen im Internet: www.vahlen.de ISBN

Mehr

Enterprise Content Management

Enterprise Content Management Enterprise Content Management Dr.-Ing. Raymond Bimazubute Lehrstuhl für Künstliche Intelligenz Friedrich Alexander Universität Erlangen-Nürnberg Email: raymond.bimazubute@informatik.uni-erlangen.de Vorbemerkungen

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen Big Data Modewort oder echter Mehrwert freenet Group Dr. Florian Johannsen freenet Group 2 Titel der Präsentation 07.07.2015 Mobilfunkgeschäft der freenet Group Austausch von Daten und Informationen Im

Mehr

Advanced Analytics mit EXAPowerlytics. Technisches Whitepaper

Advanced Analytics mit EXAPowerlytics. Technisches Whitepaper Advanced Analytics mit EXAPowerlytics Technisches Whitepaper Inhalt 1. Zusammenfassung... 3 2. Einführung... 4 3. Fachliche Einführung... 5 4. Beispiel: Zeichen zählen... 7 5. Fazit... 9 6. Anhang... 10-2

Mehr

Programmieren heute. Funktional vs. objektorientiert Professionelles JavaScript CoffeeScript, TypeScript, Dart

Programmieren heute. Funktional vs. objektorientiert Professionelles JavaScript CoffeeScript, TypeScript, Dart Mit Stellenanzeigen Digitale Ausgabe 8,99 1/2013 Zum Download: Über 8 GByte Software für Entwickler Intel Parallel Studio XE 2013 Update 1, Visual Studio 2012 für Web, Win dows 8 und Desktop, Eclipse Orion

Mehr

Virtual Roundtable: Business Intelligence - Trends

Virtual Roundtable: Business Intelligence - Trends Virtueller Roundtable Aktuelle Trends im Business Intelligence in Kooperation mit BARC und dem Institut für Business Intelligence (IBI) Teilnehmer: Prof. Dr. Rainer Bischoff Organisation: Fachbereich Wirtschaftsinformatik,

Mehr

Analysen sind nur so gut wie die Datenbasis

Analysen sind nur so gut wie die Datenbasis Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.

Mehr

Vorbesprechung Hauptseminar "Cloud Computing"

Vorbesprechung Hauptseminar Cloud Computing Vorbesprechung Hauptseminar "Cloud Computing" Dimka Karastoyanova, Johannes Wettinger, Frank Leymann {karastoyanova, wettinger, leymann}@iaas.uni-stuttgart.de Institute of Architecture of Application Systems

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Die Technologie- Landschaft für Big-Data-Analyse

Die Technologie- Landschaft für Big-Data-Analyse Die Technologie- Landschaft für Big-Data-Analyse Die Verwaltung großer Datenmengen wird durch neue Technologien einfacher und vor allem preiswerter. Dadurch ergeben sich nicht nur eine bessere Kosteneffizienz,

Mehr

Ihr Weg zu Big Data. Ein visueller Ratgeber

Ihr Weg zu Big Data. Ein visueller Ratgeber Ihr Weg zu Big Data Ein visueller Ratgeber Big Data bringt viele Vorteile Starten Sie hier, um zu erfahren, wie Sie diese nutzen können Mittlerweile hat es sich herumgesprochen, dass Big Data eine große

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

cloud4health Smart Data in der Medizin Dr. med. Philipp Daumke

cloud4health Smart Data in der Medizin Dr. med. Philipp Daumke cloud4health Smart Data in der Medizin Dr. med. Philipp Daumke CLOUD4HEALTH In cloud4health wird eine klinische Forschungsinfrastruktur zur verteilten Auswertung medizinischer Daten bereitgestellt Analyse

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch WANN REDEN WIR VON BIG DATA SCIENCE? Big Data ist der technische Teil von Big Data Science. Mehr Daten! Mehr Datenquellen(-änderungen)!

Mehr

Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie

Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie BIG DATA Future Opportunities and Challanges in the German Industry Zusammenfassung Die Menge der verfügbaren

Mehr

SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke

SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke SAS Visual Analytics Schnelle Einblicke für sichere Ausblicke SAS Visual Analytics In einer Welt wachsender Datenmengen sind Informationen schneller verfügbar und Auswertungen auf Big Data möglich Motivation

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen 01000111101001110111001100110110011001 Volumen 10 x Steigerung des Datenvolumens alle fünf Jahre Big Data Entstehung

Mehr

BigData Wie wichtig ist die Datenqualität bei der Analyse und Auswertung von großen Daten Praxisbeispiel. Christin Otto

BigData Wie wichtig ist die Datenqualität bei der Analyse und Auswertung von großen Daten Praxisbeispiel. Christin Otto BigData Wie wichtig ist die qualität bei der Analyse und Auswertung von großen Praxisbeispiel Christin Otto Was ist Big Data? Der Big Data Prozess Sammlung und Speicherung von Analyse der zum Gewinn von

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr