Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N N 2"

Transkript

1 Abiturprüfung Berufliche Oberschule 003 Mathematik 13 Technik - B I - Lösung Teilaufgabe 1.0 Eine Kfz-Werkstatt für Autoelektronik baut in Fahrzeuge Alarmanlagen ein. Die Werkstatt verfügt über 11 Stellplätze, 4 davon befinden sich in der Werkstatthalle. Fahrzeuge, in die bereits eine Alarmanlage eingebaut wurde, werden im Hof abgestellt, Fahrzeuge ohne Alarmanlage stehen in der Werkstatthalle. Am Abend eines Arbeitstages befinden sich in der Werkstatt 8 PKW, 5 davon bereits mit eingebauter Alarmanlage. Teilaufgabe 1.1 (3 BE) Wie viele verschiedene Möglichkeiten gibt es, die Stellplätze zu belegen, wenn die Anordnung der Fahrzeuge untereinander mit berücksichtigt wird. Es gibt Plätze auf dem Hof. Anzahl der Möglichkeiten auf dem Hof, 5 mit eingebauter Alarmanlage: N Anzahl der Möglichkeiten in der Werkstatthalle, 3 ohne eingebaute Alarmanlage: N 43 4 Anzahl der Möglichkeiten: N N 1 N oder: 7 N N 4 1 combin( 7 5) 5 50 N N combin( 4 3) ohne Zurücklegen, ohne Wiederholung, mit Reihenfolge 3 Teilaufgabe 1. (6 BE) Im Keller der Werkstatt werden die defekten Alarmanlagen bis zum Rücktransport zum Hersteller gesammelt. In einem Container liegen bereits völlig ungeordnet 70 defekte Anlagen vom Typ A und 50 vom Typ B. Ein Angstellter nimmt wahllos Anlagen heraus, um sie zu verpacken. Berechnen Sie die Wahrscheinlichkeit folgender Ereignisse: E: Es sind genau 9 Anlagen vom Typ A darunter, F: Alle entnommenen Anlagen sind vom Typ A, G: Es sind mindestens Anlagen vom Typ B darunter. Urnenmodell ohne Zurücklegen: Hypergeometrische Verteilung PX ( k) K k N K n k N n Gesamtzahl: N Anzahl eines bestimmten Merkmals: K mit K N Stichprobe: n Abi 003, Mathematik Technik Seite 1 von 5

2 PE ( ) PX ( 9) combin( 70 9) combin( 50 6) P E 0.18 P combin( 10 ) E 1.8 % PF ( ) PX ( ) combin( 70 ) combin( 50 0) P F P combin( 10 ) F 0.0 % PG ( ) PX ( ) 1 P( X 1) 1 ( P( X 0) PX ( 1) ) combin( 70 ) combin( 50 0) combin( 70 14) combin( 50 1) P G combin( 10 ) combin( 10 ) P G % Teilaufgabe.0 Ein Spielautomat liefert nach dem Zufallsprinzip voneinander unabhängig eine der drei Zahlen, 0 und. Die Zahl taucht mit der Wahrscheinlichkeit 0.5, die Zahl mit der Wahrscheinlichkeit 0.4 und folglich die Zahl 0 mit der Wahrscheinlichkeit 0.1 auf. Bei einem Spiel werden auf Knopfdruck drei der obigen Zahlen vom Automaten nacheinander ausgewählt und ihre Summe angezeigt. Teilaufgabe.1 (8 BE) Die Zufallsgröße X beschreibt die vom Automaten nach einem Spiel angezeigte Summe. Die Wahrscheinlichkeiten, mit denen die Werte der Zufallsgröße X eintreten, lassen sich mit den Parametern a, b und c IR wie folgt darstellen: "x" "P(Xx)" c 0 a b Berechnen Sie die Parameter a, b und c und stellen Sie die Wahrscheinlichkeiten in einem Histogramm dar (vertikale Achse: 0.1 LE cm). [ Teilergebnis: a 0.11; b 0.048; ] Abi 003, Mathematik Technik Seite von 5

3 Summe 0: ( 000) ( 0 ) ( 0) ( 0) ( 0) ( 0) ( 0) a P( X 0) Summe 4: ( 0) ( 0) ( 0) b P( X 4) Summe -: ( 0 0) ( 00) ( 00) ( ) ( ) ( ) c P( X ) μ 0.4 μ 0.3 W(X) X μ 0.4 μ 0.3 W(X) X Abi 003, Mathematik Technik Seite 3 von 5

4 Teilaufgabe. (5 BE) Ermitteln Sie den Erwartungswert EX ( ) und die Standardabweichung ( X) und kennzeichnen Sie Ihre Ergebnisse in der graphischen Darstellung aus Teilaufgabe.1. μ ( 6) 0. ( 4) ( ) μ 0.6 Var_X ( 6) 0. ( 4) ( ) μ Var_X Var_X 3.7 Teilaufgabe.3 (5 BE) Bestimmen Sie die Wahrscheinlichkeiten der Ereignisse: A: Bei drei Spielen erscheint an der Anzeige wenigstens einmal die Summe. B: Bei fünf Spielen erscheint genau zweimal die Summe > 0. n 3 p 0.5 k 0 PA ( ) PX ( 1) 1 P( X 0) 1 B( ) P A 1 pbinom k n p P A 0.58 n 5 p a 0.11 k p b PX ( 0) P( X ) PX ( 4) PX ( 6) p b p b P B ( ) 3 P B combin( 5 ) ( ) 3 P B Teilaufgabe.4 (9 BE) Es besteht der Verdacht, dass die Summe 0 nicht auf die Nullhypothese PX ( 0) 0.11, sondern auf einen neuen Wert eingependelt hat. Die Überprüfung dieses Sachverhalts soll in 800 Durchgängen erfolgen. Beschreiben Sie einen geeigneten Hypothesentest bei einem Signifikanzniveau von 5% und bestimmen Sie den Ablehnungsbereich der Nullhypothese. Testgröße X: Anzahl der Summe 0 unter n 800 Durchgängen Nullhypothese: p Gegenhypothese: p Zweiseitiger Test: Annahmebereich : A 1 { k 1 1 k 1... k } Ablehnungsbereich: A 1 { k1 } { k 1 k } Signifikanzniveau: 0.05 Abi 003, Mathematik Technik Seite 4 von 5

5 PA PX ( k) μ np np 0 1 p Φ k 1 μ k 1 μ k μ 0.5 k abrunden: k Φ k μ k μ k μ 0.5 k aufrunden: k 1 A { } { } Teilaufgabe.5 (4 BE) Berechnen Sie die Wahrscheinlichkeit des Fehlers. Art, wenn die Summe 0 tatsächlich mit der Wahrscheinlichkeit von 0. auftritt. β PA ( ) P( 79 X 1) P( X 1) PX ( 78) p 1 0. μ 1 np np 1 1 p μ μ β Φ Φ Φ( 0.466) Φ( 4.109) μ μ β 1 Φ( 0.466) ( 1 Φ( 4.109) ) Φ( 4.109) Φ( 0.466) knorm( 4.109) knorm( 0.466) β knorm( 4.109) knorm( 0.466) 0.31 β 3.1 % Abi 003, Mathematik Technik Seite 5 von 5

mathphys-online Abiturprüfung Berufliche Oberschule 2000 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2000 Mathematik 13 Technik - B I - Lösung Abiturprüfung Berufliche Oberschule Mathemati Techni - B I - Lösung Teilaufgabe (7 BE) Aus einem gut gemischten Kartenspiel mit Karten erhält ein Spieler Karten. Als Treffer gelten die drei Karten Pi As,

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Teilaufgabe 1.0 Ein Händler für Baby- und Keinkinderspielwaren hat in seinem Sortiment unter anderem Spielzeug aus

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung Abschlussprüfung Berufliche Oberschule 20 Mathematik 12 Nichttechnik - S I - Lösung Im Folgenden werden relative Häufigkeiten als Wahrscheinlichkeiten interpretiert. Teilaufgabe 1.0 Ein neues Medikament

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - S II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - S II - Lösung Abschlussprüfung Berufliche Oberschule 01 Mathematik 1 Nichttechnik - S II - Lösung Teilaufgabe 1.0 Eine Agentur vertreibt Tickets für Sportveranstaltungen (S), Konzerte (K), Musicals (M) und Eventreisen

Mehr

Teilaufgabe 1.0 In einem Karton befinden sich 50 Bauteile, von denen genau vier fehlerhaft sind.

Teilaufgabe 1.0 In einem Karton befinden sich 50 Bauteile, von denen genau vier fehlerhaft sind. Abiturprüfung Berufliche Oberschule 2008 Mathematik 13 Technik - B I - Lösung Ein Autoteilezulieferer stellt für eine Autofirma ein aufwändiges elektronisches Bauteil her. Langfristig stellt man fest,

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2005 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2005 Mathematik 13 Technik - B I - Lösung biturprüfung Berufliche Oberschule 0 Mathematik 3 Technik - B I - ösung Die Firma Schraubfix hat sich auf den Vertrieb von Schrauben spezialisiert. Für eine utofirma liefert sie zwei rten von Schrauben,

Mehr

Abschlussprüfung Mathematik 12 Nichttechnik S I - Lösung

Abschlussprüfung Mathematik 12 Nichttechnik S I - Lösung GS.06.0 - m_nt-s_lsg_gs_pdf Abschlussprüfung 0 - Mathematik Nichttechnik S I - Lösung Im Folgenden werden relative Häufgkeiten als Wahrscheinlichkeiten interpretiert. Teilaufgabe.0 Bei einer Casting-Show

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2011 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2011 Mathematik 13 Technik - B I - Lösung Abiturprüfung Berufliche Oberschule 20 Mathemati 3 Techni - B I - Lösung Teilaufgabe.0 Am Flughafen muss jeder Passagier durch eine Sicherheitsschleuse, in die ein Metalldetetor eingebaut ist. Das Gerät

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2012 Mathematik 13 Technik - Aufgabe B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2012 Mathematik 13 Technik - Aufgabe B I - Lösung Abiturprüfung Berufliche Oberschule 2012 Mathematik 13 Technik - Aufgabe B I - Lösung Während der Fußballweltmeisterschaft 2010 in Südafrika gelangte der Krake Paul aus dem Aquarium in Oberhausen zu großer

Mehr

Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2002, Stochastik S I Nichttechnische Ausbildungsrichtung

Abschlussprüfung an Fachoberschulen in Bayern Mathematik 2002, Stochastik S I Nichttechnische Ausbildungsrichtung Alexandra Steiner 7.5.005 A_NT_S_AS_Loes.mcd Abschlussprüfung an Fachoberschulen in Bayern Mathematik 00, Stochastik S I Nichttechnische Ausbildungsrichtung AUFGABENSTELLUNG:.0 Die Post eines kleineren

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Kugelschreiber-Aufgabe Bayern LK 1986

Kugelschreiber-Aufgabe Bayern LK 1986 Kugelschreiber-Aufgabe Bayern LK 1986 1. Eine Firma stellt Kugelschreiber her. Sie werden in Packungen zu je 20 Stück geliefert. Ein Händler prüft aus jeder Packung nacheinander zwei Kugelschreiber (ohne

Mehr

Teilaufgabe 1.1 (5 BE) Untersuchen Sie mithilfe einer Vierfeldertafel, ob die Ereignisse F und S stochastisch unabhängig sind. "F"

Teilaufgabe 1.1 (5 BE) Untersuchen Sie mithilfe einer Vierfeldertafel, ob die Ereignisse F und S stochastisch unabhängig sind. F Abschlussprüfung Berufliche Oberschule 2011 Mathemati 12 Nichttechni - S I - Lösung Teilaufgabe 1.0 Die Eisdiele BAVARIA bietet unterschiedliche Eisbecher an. Aus langjähriger Erfahrung weiß der Eigentümer,

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.

Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert. XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

Überblick Hypothesentests bei Binomialverteilungen (Ac)

Überblick Hypothesentests bei Binomialverteilungen (Ac) Überblick Hypothesentests bei Binomialverteilungen (Ac) Beim Testen will man mit einer Stichprobe vom Umfang n eine Hypothese H o (z.b.p o =70%) widerlegen! Man geht dabei aus von einer Binomialverteilung

Mehr

Lösungen zum Aufgabenblatt 14

Lösungen zum Aufgabenblatt 14 Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung siehe Prüfungsaufgabe

Mehr

Mathematik 12. Jahrgangsstufe - Hausaufgaben

Mathematik 12. Jahrgangsstufe - Hausaufgaben Mathematik 2. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Wahrscheinlichkeitsrechnung 2. Wahrscheinlichkeitsrechnung.......................... 2.. Binomialkoeffizienten Berechnen....................

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

Abitur 2017 Mathematik Stochastik III

Abitur 2017 Mathematik Stochastik III Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2017 Mathematik Stochastik III Teilaufgabe Teil A 2 (3 BE) Ein Glücksrad hat drei Sektoren, einen blauen, einen gelben und einen roten. Diese sind unterschiedlich

Mehr

Schleswig-Holstein Kernfach Mathematik

Schleswig-Holstein Kernfach Mathematik Aufgabe 5: Stochastik Der Schokoladenhersteller Nikolaus Hase produziert für namhafte Discounter Ostereier. Auf Grund langjähriger Erfahrungen ist davon auszugehen, dass 95 % der Produktion der Norm entsprechen

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L 2 und L 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise

Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise Hypothesentest Ein Biologe vermutet, dass neugeborene Küken schon Körner erkennen können und dies nicht erst durch Erfahrung lernen müssen. Er möchte seine Vermutung wissenschaftlich beweisen. Der Biologe

Mehr

2) Ihr Chef schlägt vor, dass die Firma nicht Lieferant werden soll, wenn

2) Ihr Chef schlägt vor, dass die Firma nicht Lieferant werden soll, wenn Aufgabe Stochastik Mathe Grundkurs Signifikanztests Ein Hersteller von Schrauben behauptet, dass mindestens 90% seiner Schrauben rostfrei sind, wenn sie fünf Jahre lang im Außenbereich eingesetzt werden.

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Grundwissen Stochastik Leistungskurs 10. Februar 2008

Grundwissen Stochastik Leistungskurs 10. Februar 2008 GYMNSIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium WILHELM-VON-HUMBOLDT-STRSSE 7 91257 PEGNITZ FERNRUF 09241/48333 FX 09241/2564 Grundwissen Stochastik Leistungskurs 10. Februar 2008

Mehr

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt R. Brinkmann http://brinkmann-du.de Seite 2.05.2009 Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt Aufgabe 0 0. In einer bestimmten Stadt an einer bestimmten

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz

Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz - 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Abiturprüfung Mathematik 03 Baden-Württemberg (ohne CAS) Wahlteil - Aufgaben Analytische Geometrie / Stochastik B Aufgabe B. In einem würfelförmigen Ausstellungsraum mit der Kantenlänge 8 Meter ist ein

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt.

Erstellen Sie eine Vierfeldertafel, die diese Situation wiedergibt. Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

(8 + 2 Punkte) = = 0.75

(8 + 2 Punkte) = = 0.75 Aufgabe 1 (8 + 2 Punkte) Von 20 Teilnehmern einer Bergwanderung geben 8 Personen an Knieschmerzen zu haben. 6 Teilnehmer leiden an Sonnenbrand. 8 Teilnehmer blieben unversehrt. a) Wie groß ist die Wahrscheinlichkeit,

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 7 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 9 Unterlagen für die Lehrkraft Abiturprüfung 01 Mathematik, Grundkurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest). Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

M A T H E M A T I K. Fachabiturprüfung 2016 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen

M A T H E M A T I K. Fachabiturprüfung 2016 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen Fachabiturprüfung 2016 an Fachoberschulen und Berufsoberschulen M A T H E M A T I K Nichttechnische Ausbildungsrichtungen Dienstag, 31. Mai 2016, 9.00 12.00 Uhr Die Schülerinnen und Schüler haben je eine

Mehr

6.2 Approximation der Binomialverteilung

6.2 Approximation der Binomialverteilung 56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion

Mehr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr

k np g(n, p) = Pr p [T K] = Pr p [T k] Φ. np(1 p) DWT 4.1 Einführung 359/467 Ernst W. Mayr Die so genannte Gütefunktion g gibt allgemein die Wahrscheinlichkeit an, mit der ein Test die Nullhypothese verwirft. Für unser hier entworfenes Testverfahren gilt ( ) k np g(n, p) = Pr p [T K] = Pr p

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Grundlagen der Stochastik

Grundlagen der Stochastik Grundlagen der Stochastik Johannes Recker / Sep. 2015, überarbeitet Nov. 2015 Fehlermeldungen oder Kommentare an recker@sbshh.de Inhalt 1. Grundlegende Begriffe der Wahrscheinlichkeitsrechnung... 2 1.1.

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Abiturienten-Aufgabe Bayern GK 2004

Abiturienten-Aufgabe Bayern GK 2004 Abiturienten-Aufgabe Bayern GK 2004 Die Bezeichnungen Abiturienten und Schüler beziehen sich im folgenden Text sowohl auf männliche als auch auf weibliche Personen. Die Abiturienten eines bayerischen Gymnasiums

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 003 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G, G und G 3 zur Bearbeitung aus. Gewählte

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

VPI

VPI 1.BWL a. Der Jahresdurchschnitt des österreichischen VPI ist für verschiedene Jahre angegeben. Die jeweiligen Bezugsjahreszahlen sie ändern sich alle 10 Jahre waren die Jahre 1966, 1976, 1986 und 1996,

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

MATHEMATIK. Fachabiturprüfung 2009 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen

MATHEMATIK. Fachabiturprüfung 2009 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen Fachabiturprüfung 2009 an Fachoberschulen und Berufsoberschulen MATHEMATIK Nichttechnische Ausbildungsrichtungen Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler haben je eine Aufgabe

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.

Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm. Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung

Mehr

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik Aufgabe 3: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. a) Das unten stehende

Mehr

1 Von Test zu Test. 2 Arbeitsblatt

1 Von Test zu Test. 2 Arbeitsblatt 1 Von Test zu Test 2 Arbeitsblatt 1. Ein FDP-Kandidat behauptet, dass 10% oder mehr Wahlberechtigten seines Stimmkreises FDP wählen würden. Zur Überprüfung befragt die Partei 200 Wahlberechtigte des Stimmkreises.

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

ABITURPRÜFUNG 2010 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik

ABITURPRÜFUNG 2010 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik ABITURPRÜFUNG 2010 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK Ausbildungsrichtung Technik Dienstag, den 18. Mai 2010, 9.00 Uhr bis 12.00 Uhr Die

Mehr

ABITURPRÜFUNG AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik

ABITURPRÜFUNG AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik ABITURPRÜFUNG 0 11 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK Ausbildungsrichtung Technik Mittwoch, den 1. Juni 011, 9.00 Uhr bis 1.00 Uhr Die Schülerinnen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs

Ministerium für Schule und Weiterbildung NRW M LK HT 7 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2012 Mathematik, Leistungskurs 1. Aufgabenart Stochastik mit Alternative 1 (ein- und zweiseitiger Hypothesentest) 2. Aufgabenstellung 1 siehe Prüfungsaufgabe

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten SCHRIFTLICHE ABITURPRÜFUNG 200 KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 200 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

MATHEMATIK. Fachabiturprüfung 2012 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen

MATHEMATIK. Fachabiturprüfung 2012 an Fachoberschulen und Berufsoberschulen. Nichttechnische Ausbildungsrichtungen Fachabiturprüfung 2012 an Fachoberschulen und Berufsoberschulen MATHEMATIK Nichttechnische Ausbildungsrichtungen Freitag, 25. Mai 2012, 9.00-12.00 Uhr Die Schülerinnen und Schüler haben je eine Aufgabe

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 004 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G, G und G 3 zur Bearbeitung aus. Gewählte

Mehr