1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen"

Transkript

1 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei wird im Unterschied zur Binomialverteilung ohne Zurücklegen gezogen. Da ohne Zurücklegen gezogen wird, ändert sich nach jeder Ziehung die Zusammensetzung der Kugeln, die noch in der Urne sind und damit die Wahrscheinlichkeit, eine rote oder nicht-rote Kugel zu ziehen:. Ziehg.: M P(A) und P(A) N N M N. Ziehg.: M N M P(A A ) und P(A A ) falls rote Kugel in. Ziehg. gezogen N N M P(A A) und P(A A) N N M N falls nicht-rote K. in. Ziehg. gezogen Die Ziehungen sind also nicht unabhängig voneinander. Damit liegt zwar bei jeder Ziehung ein Bernoulli-Eeriment, aber insgesamt kein Bernoulli-Prozess vor. Das Ereignis A tritt ein, wenn eine rote Kugel gezogen wird. Entsrechend ist Ereignis, dass die gezogene Kugel nicht rot ist. Zufallsvariable X: Anzahl der Realisationen des Ereignisses A, d.h. Anzahl der gezogenen roten Kugeln A das 8

2 Herleitung der Wahrscheinlichkeitsfunktion: Wir erhalten die gesuchte Wahrscheinlichkeit, indem wir die Anzahl der Auswahlmöglichkeiten mit roten und n nicht-roten Kugeln durch die Anzahl aller denkbaren Stichroben von n aus N Kugeln teilen (Lalace-Ansatz). Da das Ziehen der Kugeln aus der Urne ohne Zurücklegen erfolgt und die Reihenfolge irrelevant ist, lässt sich die Anzahl der Auswahlmöglichkeiten über die Formel für die OR-OZ-Auswahl berechnen. 9

3 Zähler: OR-OZ-Auswahl von aus M roten Kugeln: M OR-OZ-Auswahl von n aus N M nicht-roten Kugeln: Möglichkeiten N M n Möglichkeiten OR-OZ-Auswahl von aus M roten Kugeln und n aus N M nicht-roten Kugeln: M N n M Möglichkeiten ( jede mit jeder ) Nenner: OR-OZ-Auswahl von n aus N Kugeln: N Möglichkeiten n Eine Zufallsvariable X folgt einer hyergeometrischen Verteilung mit den Parametern N, M und n, wenn die Wahrscheinlichkeitsfunktion von X durch (6.5) f M N M n N n 0 für 0,,,n sonst N gegeben ist. Dabei ist M, n N M und n. Sofern diese Bedingung nicht erfüllt ist, nimmt die Wahrscheinlichkeitsfunktion den Wert 0 an. 30

4 Beisiel 6.6: Wir illustrieren die hyergeometrische Verteilung an einem Urnenmodell. In einer Urne befinden sich N = 0 Kugeln, von denen M = 4 Kugeln rot und N M = 6 nicht rot, hier weiß, sind. Wie groß ist die Wahrscheinlichkeit, bei einer Stichrobe vom Umfang n = 3 genau = rote Kugeln zu ziehen, wenn die Kugeln nach dem Ziehen nicht wieder zurückgelegt werden? Urne Stichrobe Eine günstige Kombination ist r r w, d.h. in den ersten beiden Zügen jeweils eine rote Kugel zu ziehen und im dritten Zug eine weiße Kugel. (Ereignisse hier: Kleinbuchst.) Wahrscheinlichkeit, im ersten Zug eine rote Kugel (r ) zu ziehen: P(r ) = 4/0 Bedingte Wahrscheinlichkeit, im zweiten Zug eine rote Kugel (r ) zu ziehen, wenn im ersten Zug eine rote Kugel gezogen worden ist (r ): P(r r ) = 3/9 Bedingte Wahrscheinlichkeit, im dritten Zug eine weiße Kugel (w) zu ziehen, wenn in den ersten beiden Zügen jeweils eine rote Kugel gezogen worden ist (r r ): P(w 3 r r ) = 6/8 3

5 Daher beträgt die Wahrscheinlichkeit der Kombination r r w Pr r w3 P(r ) P(r r ) P(w3 r r ) 0, Wie viele unterschiedliche Anordnung der beiden roten und einen weißen Kugeln gibt es aber? Mit der Formel für n-q-anordnungen erhalten wir 3! A 3, 3.!! Es handelt sich hierbei um die drei Stichroben r r w, r w r, w r r. Jede dieser drei Möglichkeiten hat die gleiche Wahrscheinlichkeit 0,, so dass ist. P "zweimal rot und einmal weiß" 0, 3 0, 3 Zum selben Ergebnis gelangt man unter Verwendung der Wahrscheinlichkeitsfunktion der hyergeometrischen Verteilung (6.5). Die Wahrscheinlichkeit dafür, dass die Zufallsvariable Anzahl der roten Kugeln den Wert = annimmt, ergibt sich aus (6.5) nach Einsetzen der Parameter N=0, M=4 und n=3: f ,3. 3

6 Erwartungswert und Varianz der hyergeometrischen Verteilung Erwartungswert Varianz M (6.6) EX n (6.7) N M M N n n N N N V X Vergleich zwischen der hyergeometrischen und der Binomialverteilung Erwartungswert Die Erwartungswerte der hyergeometrischen und Binomialverteilung (= n ) stimmen überein, wenn man = M/N setzt (entsricht Ziehen mit Zurücklegen). Varianz Die Varianz der hyergeometrischen Verteilung ist für n> um den Faktor (N-n)/(N-) ganz rechts kleiner als die Varianz der Binomialverteilung [= n (-) ]. Der Unterschied nimmt mit wachsendem Stichrobenumfang n zu. ( für n =!) Erklärung: Informationsgewinn beim Ziehen ohne Zurücklegen Je mehr Kugeln ohne Zurücklegen gezogen werden, desto genauere Informationen haben wir über die restlichen noch in der Urne enthaltenen Kugeln. Die Streuung der Zufalllvariablen X verringert sich dadurch. Wenn dagegen mit Zurücklegen gezogen wird, bleibt die Zusammensetzung der Urne stets unverändert. Die Streuung der Zufallsvariablen X bleibt dann gleich. 33

7 Faustregel: Aroimation der hyergeometrischen Verteilung durch die Binomialverteilung Bei endlichem Stichrobenumfang n geht der Faktor (N-n)/(N-) gegen, wenn N über alle Grenzen wächst. Die Varianz der hyergeometrischen Verteilung geht dann in die Varianz der Binomialverteilung über. Allgemein lässt sich zeigen, dass die Wahrscheinlichkeitsfunktion der hyergeometrischen Verteilung f H ( N,M,n) für N und M in die Wahrscheinlichkeitsfunktion der Binomialverteilung f B ( I n,) übergeht, sofern M/N geht: (6.8) lim M NM / N M N M n N n n n Wenn der Auswahlsatz n/n 0,05, d.h. kleiner oder gleich 5% ist, lässt sich die Wahrscheinlichkeit bei Zufallseerimenten mit Ziehen ohne Zurücklegen aroimativ mit der einfacher handhaberen Binomialverteilung berechnen.. Der Faktor (N-n)/(N-), um den sich die Varianzen der beiden Verteilungen unterscheiden, wird in diesem Kontet auch als Endlichkeitskorrektur bezeichnet. 34

8 Beisiel 6.7: Auf einem Markt von 00 Unternehmen befinden sich 0 innovative Unternehmen. Wie groß ist die Wahrscheinlichkeit, dass in einem Kartell von 4 Unternehmen mindestens die Hälfte der Unternehmen innovativ sind? Da ein Unternehmen, das dem Kartell beigetreten ist, nicht nochmals für einen Beitritt in Betracht kommt, liegt das Auswahlmodell Ziehen ohne Zurücklegen vor. Die Zufallsvariable X gibt die Anzahl der innovativen Unternehmer (= Ereignis A) in dem Kartell an. Die gesuchte Wahrscheinlichkeit P(X) lässt sich damit originär mit der hyergeometrischen Verteilung bestimmen. Mit den Parametern N=00, M=0 und n=4 erhält man P(X ) P(X ) P(X 3) P(X 4) ,0460 0,008 0,000 0,0489. Mit einer Wahrscheinlichkeit von 4,89% ist also mindestens die Hälfte der Unternehmer in dem Kartell innovativ. 35

9 Da der Auswahlsatz n/n = 4/00 = 0,04 kleiner als 0,05 ist, können wir die gesuchte Wahrscheinlichkeit aroimativ mit der Binomialverteilung bestimmen. Mit den Parametern n=4 und =M/N=0/00=0, erhalten wir P(X ) P(X ) P(X 3) P(X 4) 4 0, 0,9 4 0, 3 0,9 0,0486 0,0036 0,000 0, , 4 0,9 Mit zunehmender Zahl der konkurrierenden Unternehmen wird die Aroimation der hyergeometrischen Verteilung durch die Binomialverteilung genauer

10 6.5 Geometrische Verteilung Wir betrachten eine Urne, die eine beliebige Anzahl von roten und nicht-roten Kugeln enthält. Es sei A j das Ereignis, dass bei Ziehung j eine rote Kugel gezogen wird. Wir entnehmen so lange Kugeln mit Zurücklegen, bis zum ersten Mal A j eintritt, d. h. eine rote Kugel gezogen wird. Daher ist die Wahrscheinlichkeit, eine rote Kugel zu ziehen, im Verlauf des Zufallsvorgangs konstant (Bernoulli-Prozess). Bei jeder Ziehung ist A j P(A j ) = und P( ) =. Zufallsvariable X: Anzahl der Durchführungen des Zufallsvorgangs, bei denen das Ereignis A j nicht realisiert wird (= Anzahl der Misserfolge) Die Zufallsvariable X nimmt den Wert an, wenn das Ereignis A j bei der (+)-ten Durchführung des Zufallsvorgangs zum ersten Mal realisiert wird. Übersicht: Wahrscheinlichkeiten bei der geometrischen Verteilung X= Ereignisse P(X=) X=0 A X= A A X= X= A A A3 A A A A Ereignisse P X 0 PA PX PA PA X PA PA PA P 3 PX PA PA PA PA Faktoren 37

11 Die Wahrscheinlichkeitsfunktion der geometrischen Verteilung lautet für 0,,, (6.9) f 0 sonst. Die Wahrscheinlichkeitsfunktion der geometrischen Verteilung verläuft grundsätzlich rechtsschief. Die Funktion nimmt um so stärker ab, je größer der Parameter ist. Die geometrische Verteilung kommt bei Zufallsvorgängen mit dem Auswahlmodell Ziehen mit Zurücklegen zur Anwendung, die bei rinziiell beliebiger Wiederholung abgeschlossen sind, wenn das Ereignis A eintritt nachdem -mal hintereinander A realisiert worden ist. Abbildung: Wahrscheinlichkeitsfunktionen der geometrischen Verteilung 0,4 f () 0,8 f () 0,3 0, 0, 0,6 0,4 0, a) =0,4 b) =0,

12 Beisiel 6.8: Der Controller einer Firma hat ermittelt, dass die Lieferanten die vereinbarten Lieferfristen im Mittel in 85 % der Bestellungen einhalten. Die Firma hat mit einem neuen Lieferanten laufende Teillieferungen von Halbfertigerzeugnissen für die Herstellung eines Produktes vereinbart. Nachdem der Lieferant dreimal fristgerecht geliefert hat, ist er bei der vierten Teillieferung in Verzug geraten. Mit welcher Wahrscheinlichkeit ein solches Verhalten des Lieferanten zu erwarten? Die Zufallsvariable X misst stets die Anzahl der Misserfolge, die hier der Anzahl der fristgerechten Lieferungen entsricht. Eine Lieferung der Firma ist mit einer Wahrscheinlichkeit von 0,85 fristgerecht (Ereignis A). Daher ist die Wahrscheinlichkeit für eine nicht fristgerechte Lieferung (Ereignis A) gleich 0,5. Gesucht ist damit die Wahrscheinlichkeit, dass die geometrisch verteilte Zufallsvariable X den Wert 3 annimmt: P(X 3) f 3 3 0,85 0,5 0,09. Die Wahrscheinlichkeit, dass ein Lieferant erst bei der vierten Teillieferung in Verzug gerät, beträgt 9, %. 39

13 Erwartungswert und Varianz der geometrischen Verteilung Erwartungswert (6.0) EX (6.) Varianz V X Bei größerem nimmt der Erwartungswert ab, die Lage der Wahrscheinlichkeitsfunktion verschiebt sich dann also weiter nach links. Die Varianz verringert sich dabei ebenfalls, was bedeutet, dass die Verteilung schneller abfällt. Abbildung: Wahrscheinlichkeitsfunktionen der geometrischen Verteilung 0,4 0,3 0, 0, f () E 0,6 0,4 X, 5 3, 75 V X 0,6 0,4 0,8 0,6 0,4 0, f () E 0, 0,8 X , 35 V X 0, 0, a) =0,4 b) =0,

14 Als Differenz der beiden Summenformeln ergibt sich F, F, F F. F und nach Division durch schließlich 4 Verteilungsfunktion der geometrischen Verteilung Die Verteilungsfunktion der geometrischen Verteilung gibt die Wahrscheinlichkeit dafür an, dass nach höchstens Misserfolgen zum ersten Mal A eintritt. Sie lässt sich in komakter form darstellen: (6.) F() = ( ) +. Beweis von (6.): Man erhält die Verteilungsfunktion F() der geometrischen Verteilung, indem die Wahrscheinlichkeiten f(y) bis zum Wert y kumuliert, d.h. addiert:. F() Multiliziert man F() mit dem Faktor ( ), erhält man. F

15 Beisiel 6.9: Angenommen, die Statistik II-Klausur ist beliebig oft wiederholbar. Der Anteil der Studenten, die die Statistik II-Klausur bestehen, beträgt 60%. Wie groß ist dann die Wahrscheinlichkeit, dass ein Student die Klausur a) sätestens im dritten b) frühestens im dritten (= mind. Misserfolge) Versuch besteht? Zu a) Klausur sätestens im dritten Versuch bestehen Die Zufallsvariable X bezeichnet die Anzahl der Misserfolge, die hier den erfolglosen Versuchen entsrechen. Wenn sätestens im dritten Versuch bestanden wird, dann sind bis zu zwei Misserfolge zulässig. Gesucht ist dann der Wert der Verteilungsfunktion an der Stelle =: 3 Aufwendiger gelangt man zum selben Ergebnis, indem man die Wahrscheinlichkeiten für 0, und Misserfolge addiert: P(X ) f (0) f () f () ( ) ( ) 0,6 ( 0,6) 0,6 ( 0,6) 0,6 0,6 0,4 0,096 0,936. Zu b) Klausur frühestens im dritten Versuch bestehen (= mindestens Misserfolge) Die Klausur frühestens im dritten Versuch zu bestehen, bedeutet, mindestens zweimal durchzufallen, d.h. mindestens zwei Misserfolge zu erzielen. Die gesuchte Wahrscheinlichkeit ist daher durch P X PX [ ( ) P(X ) F F() ] ( ) ( ) 0,6 3 0,064 0,936. 0,6 ( 0,4 ) 0,4 0, 60 (Doch richtig!) gegeben. 4

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom Umfang n.

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen

7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen Hypergeometrische Verteilung Approimationen Typisierung der diskreten theoretischen Verteilungen Bibliografie: Prof. Dr. Kück

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 B I N O M I A L V E R T E I L U N G, B I N O M I A L T A B E L L E, U N A B H Ä N G I G E E R E I G N I S S E Zentrale Methodenlehre, Europa Universität

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Lernkarten. Stochastik. 4 Seiten

Lernkarten. Stochastik. 4 Seiten Lernkarten Stochastik 4 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf festem Papier

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable.

Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. Aufgabe 1 (5 + 2 + 1 Punkte) Sei X eine auf dem Intervall [2, 6] (stetig) gleichverteilte Zufallsvariable. a) Wie lautet die Verteilungsfunktion von X? Zeichnen Sie diese! 0 x < 2 1 F (x) = x 0.5 2 x 6

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das

Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

ˆ Die Verluste der einzelnen Perioden sind in den ersten zehn Perioden stochastisch

ˆ Die Verluste der einzelnen Perioden sind in den ersten zehn Perioden stochastisch Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@th-koeln.de Übungen zu QM III (Wirtschaftsstatistik) Binomialverteilung

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur

Institut für Stochastik, SoSe K L A U S U R , 8:00-11:00. Aufgabe Punkte erreichte Punkte Korrektur Institut für Stochastik, SoSe 2014 Mathematische Statistik Paravicini/Heusel 2. K L A U S U R 29.9.2014, 8:00-11:00 Name: Geburtsdatum: Vorname: Matrikelnummer: Übungsgruppe bei: Studiengang & angestrebter

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Aufgaben zur Stochastik

Aufgaben zur Stochastik Aufgaben zur Stochastik Wahrscheinlichkeiten über Baumdiagramme und bei Binomialverteilung bestimmen 1) Laura und Xenia gehen auf ein Fest. a) An einem Losestand gibt es 2 Gefäße mit Losen. Im ersten Gefäß

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

DEMO für Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

DEMO für  Wahrscheinlichkeitsrechnung Erwartungswert u.a. 1. Erwartungswert INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Wahrscheinlichkeitsrechnung Erwartungswert u.a.. Erwartungswert. Varianz und Standardabweichung. Spiele bewerten Datei Nr. Stand. April 0 Friedrich W. Buckel DEMO für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr

Übungen Abgabetermin: Freitag, , 10 Uhr Universität Münster Institut für Mathematische Statistik Stochastik für Lehramtskandidaten SoSe 015, Blatt 1 Löwe/Heusel Übungen Abgabetermin: Freitag, 10.7.015, 10 Uhr Hinweis: Dies ist nur eine Beispiellösung.

Mehr

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch

Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch Kapitel 4 Diskrete Verteilungen 4.1 Bernoulli-Verteilung Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch È Üµ ½ für Ü ¼ für Ü ½ ¼ sonst Die Bernoulli-Verteilung

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing.

Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing. Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing. Martin Nagel Höhere Mathematik 2 (Weihenstephan) 1. In einer Urne

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau

für eine rote Kugel denn von auf den 100% (da rot, rot rot, blau blau, rot blau, blau Berechnung von Wahrscheinlichkeiten beim Ziehen mit und ohne Zurücklegenn Ziehen mit Zurücklegenn Wir betrachten folgendes Beispiel: In einer Urne sind 2 rote und 3 blaue Kugeln.. Wenn man hier eine Kugel

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr