Experimentalphysik E1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Experimentalphysik E1"

Transkript

1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : Jan. 016

2 Gedämpfte Schwingungen m d x dt + b dx dt + D x = 0 Lösung : gedämpfter Oszillator x t ( ) = A 0 e γ t sin ω t ( ) Einhüllende Zeit γ = b m τ A = 1 γ Abklingkoeffizient Abklingzeit der Amplitude

3 Gedämpfte Schwingungen Weitere Eigenschaften des gedämpften Oszillators 1.) Die Kreisfrequenz ist etwas kleiner als die Kreisfrequenz im ungedämpften Fall & ω " = ω 0 1 γ ) ( + ' ω 0 *.) Die Energie nimmt exponentiell ab mit der Abklingzeit. τ E =1 γ E ( ) t τ E t E e = 0 3.) Die Dämpfung wird durch den Gütefaktor (Q-Faktor) gekennzeichnet, welcher umgekehrt zum relativen Energieverlust pro Periode ist. Q = π E ΔE

4 Der freie gedämpfte Oszillator z.b.: Federpendel + Dämpfer (Wahl des Ursprungs??? ) Stokessche Reibung: F r m x + b x + D x = 0 b D x + x + x = 0 m m = 6 π η r v b 0 = x + γ x + ω x 0 mit D ω0 = ; γ m = b m

5 λ t Ansatz für die DGL: x( t) = c e λ + γλ + ω 0 = 0 λ 1/ = γ ± γ ω0 x & # ( ) = γ t γ ω0 t γ ω0 t t e c e + c e! " $ % 1 Amplitude fällt exponentiell Im x( t) Re

6 Schwache Dämpfung: γ < ω 0 λ ist komplex mit ω = ω 0 γ λ 1/ = γ ± - ω = γ ± i ω x( t) = e γ t ( c e i ωt + c* e i ωt ) x γ t ( t) = e A cos( ωt + ϕ) wie gehabt: A = ( c c *) i c ; tan ϕ = = c + c * Imc Rec Frequenz wird durch Reibung reduziert

7 Amplitude fällt exponentiell x ( t + T ) x( t) = e γ T ; nach A e 1 τ = γ abgefallen ist die Amplitude auf x( t) T = ω π 0 γ A e A e γ t t τ = 1 γ

8 Erzwungene Schwingungen Bewegungsgleichung m d x dt + b dx dt + D x = F 0 cos(ωt) x ʹ + γx ʹ + ω 0 x = K cosωt ω 0 = D m γ = b m K = F 0 m Lösung an Komplexer Ebene Erweitert um imaginäre Schwingung z = x + iy z ʹ + zγ + ω 0 z = K e iωt Ansatz für stationäre Lsg. iωt z = z 0 e z 0 = z 0 e iϕ tanϕ = Imz Re z = γω ω 0 ω

9 Allgemeine Lösung der Inhomogene DGL= Allgemeine Lösung der Homogenen DGL + spezielle Lösung der Inhomogenen DGL x( t) = A 1 e γt cos( ω 1 t + ϕ 1 ) + A cos( ωt + ϕ) mit ω 1 = ω 0 γ für schwache Dämpfung Stationäre Lösung x( t) = A cos( ωt + ϕ)

10 m F = F 0 cos( ω t) Erzwungene Schwingungen m x + γm x + m ω 0 x = F t ( ) F t ( ) : Von außen angelegte Kraft F( t) = F 0 e iω t x( t) = x 0 e iω t m ω x 0 e iω t + i ω γm x 0 e iω t + m ω 0 x 0 e iω t = F 0 e iω t m ω x 0 + i ω γm x 0 + m ω 0 x 0 = F 0 F x 0 = 0 m ω 0 ω + i ω γ = F 0 m ω ( ω 0 ω ) 0 ω i ω γ + (γω) ( ) Im ϕ x 0 = x 0 e iϕ Re

11 x 0 = F 0 m ω ( ω 0 ω ) 0 ω i ω γ + (γω) ( ) x 0 = x 0 x 0 * = ( F 0 m) ω 0 ω ω 0 ω ( ) + (γω) ( ) + (γω) = ( F 0 m) ( ω 0 ω ) + (γω) x 0 = F 0 m ( ω 0 ω ) + (γω) Amplitude tan ϕ ( ) = Im ( x 0) ( ) Re x 0 γ ω = ( ω 0 ω ) Phasenverschiebung

12 x 0 = F 0 m ( ω 0 ω ) + (γω) F 0 m ω 0 0 π ω 0 tan( ϕ) = γω ( ω 0 ω ) π ω 0 - In der Resonanz liegt die Phase des Erregers um π/ vor dem Oszillator z. B. Anregung mit cos (ω 0 t) -> Resonanz cos(ω 0 t-π/)=sin(ω 0 t) - Für ω->0 gleichphasig, für ω-> gegenphasig Versuche Pohl sches Rad und Glas Film Tacoma Bridge

13 Näherung für schwache Dämpfung γ<<ω x 0 = F 0 m ( ω 0 ω ) + (γω) = F 0 m ( ω 0 ω) ( ω 0 +ω) + (γω) In der Nähe der Resonanz ω 0 ω ω 0 ω 0 x 0 mω 0 F 0 x ( ω 0 ω) 0 +γ F 0 4m ω ( 0 ( ω 0 ω) +γ ) Maximum: A := x 0 ( ) ω 0 F 0 4m ω 0 γ ω 0 = ω 1 ±γ Halbwertsbreite: Δω H = γ A =! x 0 ( ) = γ ( ω 1 ) ω 0 ω 1 A Güte des Oszillators: Q = ω 0 Δω H A Δω H

14 Energie im Harmonischen Oszillator Ungedämpfter harm. Oszillator: Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. kinetische Energie: Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Potentielle Energie: Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Mittelwerte über eine Periode D a s Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise

15 Energieübertragung bei erzwungener Schwingung im gedämpften harm. Oszillator: Im eingeschwungenen Zustand ändert sich die Amplitude der Schwingung mit der Zeit nicht mehr. Alle Energie, die dem System von außen zugeführt wird, muß vollständig in Reibungswärme umgewandelt werden. dissipierte Leistung: Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn = β x = γm x Pro Zyklus aufgenommene Arbeit: Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Mittlere Leistung: Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. Maximal für weil A dann maximal Das Bild kann nicht angezeigt werden. Dieser Computer verfügt möglicherweise über

16 Absorption und Transmission von infrarotem Licht bei Einstrahlung einer el.-magn. Welle werden die positiven Na + und negativen Cl - ausgelenkt und schwingen im Takt des elektr. Feldes kubische Struktur eines Kochsalz-Kristalls Q=10 10

17 -dimensionale Überlagerungen Lissajous Figuren Schwingungen gleicher Frequenz: Kreisschwingung, Fadenpendel ( ωt) ( ω + ϕ) x = a cos x y x y cosϕ + = Ellipsengleichung y = b cos t a * b * a * b * Spezialfall: a* = a sin b* = b sin ϕ = 0 Gerade ϕ ϕ ϕ = 90 Kreis (a = b) Kreisschwingung eines Fadenpendels superponierbar aus zwei unabhängigen (orthogonalen) Schwingungen (zirkular- und linear polarisiertes Licht) Schwingungen verschiedener Frequenzen: ω1 falls R geschlossene Kurven; ansonsten flächenfüllend ω ω1 ω

18 -dimensionale Überlagerungen Lissajous Figuren

19 Überlagerungen von Schwingungen a) gleiche Frequenz: ϕ / ω 1 x x ( t) = a ( ω t + ) 1 cos 0 ϕ1 ( t) = b ( ω t + ) cos 0 ϕ ϕ / ω b a t Additionstheorem: cos( x + y) = cos x cos y sin x sin y x ( t) = x1( t) + x( t) = A cos( ωt) + B sin( ωt) = C cos( ωt + ϕ) mit A = a cosϕ1 + b cosϕ B = a sin ϕ1 b sin ϕ C = A + B ; tan ϕ = B A

20 Überlagerung harmonischer Schwingungen b) ungleiche Frequenz: Schwebung a sin( ω 1 t) + ( t) a sin ω = a cos ( ω ω ) t ( ω + ω ) 1 1 t sin Zeit (t) 6

21 Anharmonische Schwingungen und Fourierzerlegung x Fouriertheorem: Jede periodische Funktion lässt sich als eine Summe von Sinus- und Kosinusfunktionen ausdrücken x x f (t) = a 0 + a 1 sin(ω 0 t) + a sin(ω 0 t) + a 3 sin(3ω 0 t) b 1 cos(ω 0 t) + b cos(ω 0 t) + b 3 cos(3ω 0 t) +... t a n = 4 A 0 n π für n ungerade sonst 0 a t b Spektrum ω 0 ω 0 3ω 0 4ω 0 5ω 0 6ω 0 7ω 0 t b n = 8 A 0 1 π für n ungerade sonst 0 n ω 0 ω 0 3ω 0 4ω 0 5ω 0 6ω 0 7ω 0

22 Darstellung der Fouriersynthese einer Rechteckfunktion f (t) = a 0 + a 1 sin(ω 0 t) + a sin(ω 0 t) + a 3 sin(3ω 0 t) b 1 cos(ω 0 t) + b cos(ω 0 t) + b 3 cos(3ω 0 t) +... a n = 4 A 0 n π für n ungerade sonst 0

23 Gekoppelte Oszillatoren A) Gekoppelte Federn, eine Masse D 1 D D ges = D 1 + D ω = D 1 + D m m D 1 1 D ges = 1 D D ω = D 1 D ( ) m D 1 + D D m

24 B) Gekoppelte Federn, mehrere Massen D 1 m 1 D 1 m D 0 Vereinfachung: (1) + () m x 1 + (1) () m x 1 Normalkoordinaten x + = 1 ( x 1 + x ) x 1 0 x D 1 = D = D; m 1 = m = m ( x ) + D x 1 + x ( ) = 0 ( x ) + D x 1 x := ω 1 x + + D m x + = 0 x + D + D 1 m ( ) + D 1 ( x 1 x ) = 0 x = 1 ( x 1 x ) := ω x = 0 x + x ( ) = 0 ( ) = 0 (1) m 1 x 1 + D 1 x 1 + D 1 x 1 x () m x + D x + D 1 x x 1 ( t) = A 1 cos ω 1 t + ϕ 1 Kopplung der DGL ( ) ( t) = A cos ω t + ϕ ( ) Eigenschwingungen, Normalmoden x 1 = x + + x x = x + x Versuche Gekoppelte Pendel und Metronome Schwebungen

25 B) Gekoppelte Federn, mehrere Massen

26 B) Gekoppelte Pendel unter externer Anregung

27 C) Gekoppelte Federn, mehrere Massen

28 Wechselwirkung von IR-Strahlung mit Molekülen Streckschwingung Schaukelschwingung Scherschwingung

29 Wechselwirkung von IR-Strahlung mit Molekülen 1. Symmetrische Streckschwingung. Asymmetrische Streckschwingung 3. Transversale Kippschwingung (-fach entartet) O=C=O

30 IR-Spektrum von Methan

31 IR-Spektrum einer Aminosäure

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Kapitel 2 Schwingungen

Kapitel 2 Schwingungen Kapitel Schwingungen Mit Schwingungen bzw. Oszillationen bezeichnen wir periodische Bewegungen von Objekten bzw. ganzen Systemen. In diesem Kapitel erweitern wir unsere bisherigen Kenntnisse über den harmonischen

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

4. Schwingungen und Wellen

4. Schwingungen und Wellen Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

feste Körper: Idealvorstellung Kristall

feste Körper: Idealvorstellung Kristall Elastizität fester Körper Massenpunkt starrer Körper Gase reale Körper feste Körper: Idealvorstellung Kristall Zug-, Druck-, Tangential- und Schubspannung Beispiele von Oberflächenkräften (im Gegensatz

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 07 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Kontrollfragen Zeichnen Sie den typischen Verlauf einer Verformungskurve

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist

Mehr

EPI WS 2007/08 Dünnweber/Faessler

EPI WS 2007/08 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Das 2. Newtonsche Gesetz liefert folgende Bewegungsgleichung. mx"(t) = -k x (t) - b x'(t) (1) x" + 2γ x' + ω 0 2 x = 0 (2)

Das 2. Newtonsche Gesetz liefert folgende Bewegungsgleichung. mx(t) = -k x (t) - b x'(t) (1) x + 2γ x' + ω 0 2 x = 0 (2) 6.2-1 6.2 Schwingungen II 6.2.1 Freie Schwingungen mit Dämpfung Bis jetzt haben wir Reibungskräfte außer Acht gelassen. Aber jedes mechanische System besitzt einen gewissen Grad an innerer Reibung, die

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr.

Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Schwingungen Lena Flecken Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Eine Schwingung (auch Oszillation) bezeichnet den Verlauf

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2

Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2 Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

PS1. Grundlagen-Vertiefung Version

PS1. Grundlagen-Vertiefung Version PS1 Grundlagen-Vertiefung Version 14.03.01 Inhaltsverzeichnis 1 1.1 Freie Schwingung................................ 1 1.1.1 Gedämpfte Schwingung......................... 1 1.1. Erzwungene Schwingung........................

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung

Harmonische Schwingung die einfachste Schwingung ist die harmonische Schwingung 1. Schwingungen Fast alles schwingt, d.h. der Zustand ändert sich periodisch it der Zeit wie in Kreisbewegung. Bsp. Uhr, Kolben i Autootor, wippende Boote auf de Wasser. Haronische Schwingung die einfachste

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob 1. Vorarbeiten zu Hause 1.1 Erzwungene Schwingung einer Feder mit Dämpfung Bewegungsgleichung: m & x + b x& + k x m g = F cos(

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

Differentialgleichungen für Ingenieure WS 06/07

Differentialgleichungen für Ingenieure WS 06/07 Differentialgleichungen für Ingenieure WS 06/07 5. Vorlesung, korrigierte Fassung Michael Karow Themen heute:. Gewöhnliche Lineare Differentialgleichungen. Ordnung mit konstanten Koeffizienten (a) Die

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Mathematik 2 für Ingenieure

Mathematik 2 für Ingenieure Skriptum zur Vorlesung Mathematik für Ingenieure Differentialgleichungen Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner) Fachhochschule Pforzheim FB-Ingenieurwissenschaften,

Mehr

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator

III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Musterlösung William Hefter - 10/09/009 1. Elektromagnetische Schwingungen 1. Die dafür benötigte Zeit ist t = T 4, wobei

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

6.4.1 Nichtgedämpfte erzwungene Schwingungen

6.4.1 Nichtgedämpfte erzwungene Schwingungen 6.4-1 6.4 Schwingungen IV 6.4.1 Nichtgedämpfte erzwungene Schwingungen Wenn ein Oszillator (Pendel) in seiner Bewegung nur leicht beeinflusst (erzwungen) wird, behält er die meisten seiner Eigenschaften

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Schwingungen. Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung. D m. und B = ω

Schwingungen. Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung. D m. und B = ω Schwingungen Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung ẍ = D m x führt zu einer Schwingung A = x(t) = A e iωt + B e iωt, mit ω = ( x0 2 i 2 ) ẋ 0 e iωt 0 und B = ω D m ( x0 2 +

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz Versuch M3b für Physiker Erzwungene Schwingung / Resonanz I. Physikalisches Institut, Raum HS0 Stand: 3. April 04 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner angeben

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr