7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

Größe: px
Ab Seite anzeigen:

Download "7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt."

Transkript

1 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim sup a n := lim (sup{a k k n}) lim inf heißt Limes inferior der Folge. a n := lim (inf{a k k n}) Zu dieser Definition ist eine Erläuterung erforderlich. Setzt man b n := sup{a k k n} für n N, so ist die Folge (b n ) n N monoton fallend; da sie beschränkt ist, existiert nach (7.5) der Grenzwert lim b n. Man kann also in der Tat wie oben definieren. Entsprechendes gilt für lim inf. Beispiel. a n = ( ) n ( + ). Es ist n + n, falls n gerade, sup{a k k n} = + n +, falls n ungerade. Also ist lim sup a n =. Ferner ist ( + n ), falls n ungerade, inf{a k k n} = ( + n + ), falls n gerade, also lim inf a n =. Der folgende Satz enthält eine äquivalente Definition, die oft besser zu handhaben ist als die ursprüngliche. (7.9) Satz. Sei (a n ) n N eine beschränkte Folge und a R. Dann gilt:

2 7 KONVERGENTE FOLGEN 36 () lim sup a n a Für jedes ɛ R + ist die Menge {k N a k a + ɛ} endlich. (2) lim sup a n a Für jedes ɛ R + ist die Menge {k N a k a ɛ} unendlich. Entsprechendes gilt für lim inf. Beweis. () : Sei lim sup a n a. Sei ɛ R +. Wäre die Menge {k N a k a + ɛ} unendlich, so wäre also lim sup a n a + ɛ > a, q.e.a. sup{a k k n} a + ɛ für alle n N, : Sei {k N a k a+ɛ} endlich für jedes ɛ R +. Dann gibt es zu gegebenem ɛ R + ein n 0 N mit a k < a + ɛ für n n 0, also sup{a k k n} a + ɛ für n n 0. Es folgt lim sup a n a + ɛ; da ɛ R + beliebig war, folgt lim sup a n a. (2) : Sei lim sup a n a. Sei ɛ R +. Wäre die Menge {k N a k a ɛ} endlich, so existierte ein n 0 N mit a k < a ɛ für n n 0, also sup{a k k n} a ɛ für n n 0. Daraus folgt lim sup a n a ɛ < a, q.e.a. : Sei {k N a k a ɛ} unendlich für jedes ɛ R +. Dann gilt für jedes ɛ R + sup{a k k n} a ɛ für alle n N, also ist lim sup a n a ɛ. Da ɛ R + beliebig war, folgt lim sup a n a. Der folgende Satz macht die Bedeutung von Limes superior und Limes inferior deutlicher und erklärt zugleich die Wahl dieser Bezeichnungen. (7.0) Satz. Sei (a n ) n N eine beschränkte Folge. Dann ist lim sup a n der größte und lim inf a n der kleinste Häufungswert dieser Folge. Beweis. Es genügt, die Behauptung für lim sup zu beweisen. Sei H die Menge der Häufungswerte der Folge (a n ) n N. Nach (7.6) ist H, und H ist beschränkt. Setze s := sup H und lim sup a n =: a. Nach (7.9)() ist für jedes ɛ R + die Menge {k N a k a + ɛ} endlich. Also kann keine Zahl a + ɛ Grenzwert einer Teilfolge (d.h. Häufungswert) sein. Für alle h H gilt also h a, folglich ist s a.

3 8 REIHEN 37 Beh.: a H [Daraus folgt dann a s, also a = s.] Bew.: Wir konstruieren eine Teilfolge, die gegen a konvergiert. Rekursive Definition: Setze k =. Sei k n schon definiert. Nach (7.9)(2) ist die Menge { k N a k a } n unendlich, also existiert ein k n N mit k n > k n und a kn a /n. Damit ist die Teilfolge (a kn ) n N definiert. Für alle n N gilt (wegen k n n) sup{a k k n} a kn a n. Für n konvergieren beide Seiten gegen a, woraus lim a kn = a folgt. Wir können nun ein weiteres notwendiges und hinreichendes Kriterium für die Konvergenz einer Folge aufstellen. (7.) Satz. Die Folge (a n ) n N konvergiert genau dann, wenn sie beschränkt ist und wenn lim sup a n = lim inf a n ist. Das folgt sofort aus (7.2), (7.7), (7.0). 8 Reihen Unter Verwendung des Grenzwertbegriffes kann man auch für gewisse Folgen (a n ) n N die unendliche Summe a +a erklären. Solche unendlichen Reihen sind wichtig, da man spezielle reelle Zahlen oder Funktionen häufig durch Reihen ausdrücken kann. Definition. Sei (a n ) n N eine Folge in R. Man nennt die Zahl s n := a k (n N) die n-te Partialsumme dieser Folge. Die Folge (s n ) n N heißt unendliche Reihe und wird mit bezeichnet. Ist die Folge (s n ) n N konvergent, so wird ihr Grenzwert ebenfalls mit a k bezeichnet. a k

4 8 REIHEN 38 Hiernach bedeutet a k also zweierlei; das führt erfahrungsgemäß aber nicht zu Mißverständnissen. Nach Definition ist a k = s lim a k = s. Bemerkung. Es ist klar, was unter a k (mit m Z) zu verstehen ist. Beispiel (unendliche geometrische Reihe): Sei q R, q <. Nach (4.6) gilt q k = qn+ q, also Folglich ist q k q = q n+ 0 für n. q q k = q. Konvergenz einer Reihe bedeutet nach Definition nichts anderes als die Konvergenz der zugehörigen Partialsummen-Folge. Die bisher für Folgenkonvergenz gewonnenen Ergebnisse übertragen sich also unmittelbar auf Ergebnisse über Konvergenz von Reihen. Wir wollen diese Resultate im folgenden zusammenstellen. Da es sich nur um Umformulierungen handelt, erübrigt es sich, auf die Beweise einzugehen. Aus (7.3) und (7.4) folgt: (8.) Satz. Seien a k, b k konvergente Reihen und sei λ R. Dann sind die Reihen (a k + b k ) und (λa k) konvergent, und es gilt (a k + b k ) = a k + b k, Gilt a k b k für k N, so ist a k b k. Aus (7.5) folgt: (λa k ) = λ a k. (8.2) Satz. Jede Reihe mit a k 0 für alle k N ist konvergent oder bestimmt divergent.

5 8 REIHEN 39 Beispiel. An dieser Stelle können wir die gewohnte Praxis rechtfertigen, reelle Zahlen durch (im Prinzip unendliche) Dezimalbrüche darzustellen. Zum Beispiel bedeutet die Schreibweise π = 3, ja verabredungsgemäß nichts anderes, als daß π = ist, also daß π durch eine gewisse Reihe mit nichtnegativen Gliedern dargestellt werden kann. Daß die Zahl 0 hier in unserer Kultur eine Sonderrolle spielt, hat keine mathematischen, sondern (vermutlich) biologische Gründe. Allgemeiner sei eine Zahl b N, b 2 vorgegeben. Unter einem b-adischen Bruch versteht man eine Reihe der Gestalt ± a k b k mit p N 0, a k N 0, a k < b. k= p Jeder solche b-adische Bruch konvergiert. Zum Beweis genügt es, den Fall p = 0 zu betrachten. Für n N gilt a k b k < b b k < b b k = b2 b. Die Konvergenz folgt also aus Satz (8.2), da die Partialsummenfolge beschränkt ist. Insbesondere stellt also jeder unendliche Dezimalbruch eine reelle Zahl dar. Es ist nicht schwer zu zeigen, daß umgekehrt jede reelle Zahl als b-adischer Bruch dargestellt werden kann (man bestimme die a k rekursiv). Wir fahren fort, Ergebnisse für Folgen auf Reihen umzuformulieren. Ist s n = a k, so ist für m < n s n s m = + a k. Aus Satz (7.8) erhalten wir also sofort die folgende wichtige Aussage. (8.3) Satz (Konvergenzkriterium von Cauchy). Die Reihe a k ist genau dann konvergent, wenn zu jedem ɛ R + ein n 0 N existiert mit m+p a k < ɛ für m n 0 und p N 0.

6 8 REIHEN 40 Da die Bedingung insbesondere für p = 0 erfüllt sein muß, haben wir: (8.4) Satz. Notwendig für die Konvergenz der Reihe a k ist die Bedingung lim k a k = 0. Diese Bedingung ist aber nicht hinreichend. Beispiel. Die harmonische Reihe k ( ) + ( ) }{{} > 2 4 = 2 ist bestimmt divergent. Es ist nämlich ) ( ) }{{}}{{} > 4 8 = > = 2 ( + u.s.w., also s 2 n + n, woraus die Behauptung folgt. 2 Beispiel. Für α > ist konvergent. [Dabei sei α N, denn sonst ist bis k α jetzt k α noch nicht erklärt. Wenn aber später k α für α R erklärt sein wird, bleiben Behauptung und Beweis für α > richtig.] Beweis: Sei n N. Wähle m N mit n 2 m+. Dann gilt s n = 2m+ k α ( k = + α 2 + ) α 3 α m 2 r (2 r ) = m (2 α ) r < α r=0 r=0 (2 α ) r = r=0 ( 2 m+ k α k=2 m ) 2 α. Dabei wurde 2 α < (wegen α > ) benutzt. Die Konvergenz folgt jetzt aus Satz (7.2). In Fällen, wo die Voraussetzung von (7.5) nicht erfüllt ist, ist häufig das folgende Kriterium von Nutzen. (8.5) Satz (Leibniz-Kriterium für alternierende Reihen). Ist (a n ) n N0 eine monoton fallende Nullfolge, so ist die Reihe konvergent. ( ) k a k

7 8 REIHEN 4 Beweis. Setze s n := n ( )k a k. Es gilt s 2n+2 s 2n = a 2n+ + a 2n+2 0, also ist die Folge (s 2n ) n N monoton fallend. Analog ist die Folge (s 2n+ ) n N monoton wachsend. Wegen s 2n+ s 2n = a 2n+ 0 gilt Nach (7.5) existieren also s 2n s 2n+ s und s 2n+ s 2n s 0. a := lim s 2n und b := lim s 2n+. Es ist a b = lim (s 2n s 2n+ ) = lim a 2n+ = 0, also a = b. Sei ɛ R + vorgegeben. Es gibt ein n 0 N mit und es gibt ein n N mit Für m max{n 0, n } gilt also Damit ist ( )k a k = a gezeigt. Absolute Konvergenz s 2n a < ɛ für 2n n 0, s 2n+ a < ɛ für 2n + n. s m a < ɛ. Feinere Konvergenzbetrachtungen für Reihen erfordern eine neue Begriffsbildung. Hierauf werden wir beispielshalber bei der folgenden Fragestellung geführt. Gilt für unendliche Reihen auch ein Kommutativgesetz? Mit anderen Worten: Hängen Konvergenz und Grenzwert einer Reihe von der Reihenfolge der Summanden ab, oder darf man die Summanden beliebig umordnen? Mit einer Umordnung ist folgendes gemeint: Definition. Sei a k eine Reihe und τ : N N eine Permutation (bijektive Abbildung auf sich) von N. Dann heißt die Reihe a τ(k) eine Umordnung der ursprünglichen. Beispiel. Die Reihe n= ( )n+ ist nach dem Leibniz-Kriterium konvergent. n Da n= divergiert, läßt sich leicht eine Umordnung angeben, die divergiert: n Für n N gilt 2 n n n+ > 2n 2 = n+ 4,

8 8 REIHEN 42 also ( ) 7 6 ( ) ( ) + 2 n n+ für n. 2n + 2 Wie sich zeigt, kann etwas derartiges nicht passieren, wenn neben a k auch die Reihe a k konvergiert. Definition. Die Reihe a k heißt absolut konvergent, wenn die Reihe a k konvergiert. (8.6) Satz. Jede absolut konvergente Reihe ist konvergent. Beweis. Sei a k konvergent. Wir zeigen, daß a k die Voraussetzung des Konvergenzkriteriums von Cauchy erfüllt. Sei ɛ R +. Da a k konvergiert, existiert ein n 0 N mit m+p Für diese m, p gilt also erst recht m+p a k a k < ɛ für m n 0, p N 0. m+p Nach (8.3) ist die Reihe a k konvergent. a k < ɛ. Hier wurde die Ungleichung b b n b b n benutzt, die natürlich aus der Dreiecksungleichung durch Induktion herzuleiten ist. (8.7) Satz. (Umordnungssatz). Sei a k eine absolut konvergente Reihe mit Grenzwert a. Dann konvergiert auch jede Umordnung dieser Reihe gegen a.

9 8 REIHEN 43 Beweis. Sei τ : N N eine Permutation von N. Sei ɛ R + vorgegeben. Da ak konvergiert, gibt es ein m N mit + a k < ɛ 2. Wählen wir ein n 0 N mit {,..., m} {τ(),..., τ(n 0 )}, so gilt für alle n n 0 a τ(k) a m m a τ(k) a k + a k a a k + a k < ɛ. + + Nachdem schon hierdurch (und erst recht im weiteren Verlauf) die Bedeutung von absoluter Konvergenz unterstrichen wird, wollen wir Kriterien für absolute Konvergenz zusammenstellen. Am häufigsten anwendbar ist wohl das folgende: (8.8) Satz (Majorantenkriterium). Seien a k, c k Reihen. Gilt a k c k für alle k N und ist die Reihe c k konvergent, dann ist die Reihe a k absolut konvergent. Beweis. Sei ɛ R +. Da c k konvergiert, existiert ein n 0 N mit Für diese m, p gilt also m+p c k < ɛ für m n 0, p N 0. m+p Aus (8.3) folgt die Behauptung. a k m+p c k < ɛ. Gilt a k c k für k N, so nennt man die Reihe c k eine Majorante der Reihe ak. Eine Reihe ist also absolut konvergent, wenn sie eine konvergente Majorante besitzt. Häufig brauchbare Vergleichsreihen sind die geometrische Reihe (c k = q k, q < ) und die ζ-reihen (c k = k α mit einem α > ). Gilt dagegen a k c k 0 für k N 0, so nennt man die Reihe c k eine Minorante der Reihe a k. Besitzt die Reihe a k eine bestimmt divergente Minorante, so ist sie selbst bestimmt divergent. Eine manchmal brauchbare Vergleichsreihe ist die harmonische Reihe.

10 8 REIHEN 44 Wenn sich keines der obigen Kriterien unmittelbar anwenden läßt, versuche man es mit einem der folgenden. (8.9) Satz (Quotientenkriterium). Sei a k eine Reihe mit a k 0 für k N. Es gebe eine Zahl q R mit 0 < q < und a n+ a n q für n N. Dann ist die Reihe a n absolut konvergent. Beweis. Aus der Voraussetzung folgert man durch Induktion sofort a n+ q n a. Da die Reihe q n a = a q n wegen q < konvergiert, folgt die Behauptung aus dem Majorantenkriterium. Natürlich genügt es, wenn beim Quotientenkriterium die Voraussetzungen a n 0 und q für fast alle n erfüllt sind. a n+ a n Besonders bequem ist das Quotientenkriterium anzuwenden, wenn es gelingt, a lim n+ a n =: a zu bestimmen, falls dieser Grenzwert existiert. Ist a <, so gilt für beliebiges q mit a < q < jedenfalls a n+ a n < q für fast alle n; die Reihe ist also absolut konvergent. Gilt a >, so gilt a n+ a n für fast alle n. In diesem Fall ist die Reihe divergent, da (a n ) n N keine Nullfolge ist. Im Fall a = kann sowohl absolute Konvergenz als auch Divergenz vorliegen (z.b. n 2 und ). n Beispiel n= n! (2n + ) Die Formulierung eines weiteren nützlichen Kriteriums erfordert eine Vorbemerkung. Sind Zahlen n N und a R + gegeben, so gibt es eine Zahl b R + mit b n = a. Man schreibt dann b = n a und nennt b die n-te Wurzel aus a. Sie ist eindeutig bestimmt, denn aus 0 < b < c folgt b n < c n. Die Existenz der n-ten Wurzel

11 8 REIHEN 45 könnten wir bereits an dieser Stelle leicht zeigen; wir verzichten aber darauf, da sie sich später in allgemeinerem Rahmen ergibt. Ferner sei daran erinnert, daß wir in 7 für eine beschränkte Folge (a n ) n N den Limes superior lim sup a n definiert hatten. Wir ergänzen diese Definition noch: Definition. Ist (a n ) n N nicht nach oben beschränkt, so schreibt man Man vereinbart noch > a für a R. lim sup a n =. (8.0) Satz (Wurzelkriterium). Die Reihe n= a n ist absolut konvergent, wenn n lim sup an < ist, und divergent, wenn ist. lim sup n an > Beweis. Sei lim sup n a n =: a <. Dann gibt es ein q < mit n a n q und daher a n q n für fast alle n. Aus dem Majorantenkriterium folgt die absolute Konvergenz der Reihe a n. Ist lim sup n a n >, so gilt a n für unendlich viele n; also ist (a n ) n N keine Nullfolge und daher a n divergent. Bemerkung. Besonders bequem ist die Anwendung des Wurzelkriteriums, wenn lim n a n existiert und bestimmt werden kann. Man beachte, daß das Wurzelkriterium im Fall lim sup n a n = keine Aussage über Konvergenz oder Divergenz der Reihe a n ermöglicht. Absolute Konvergenz spielt auch eine Rolle, wenn wir versuchen, zwei konvergente Reihen gliedweise zu multiplizieren. Betrachten wir zunächst endliche Summen. Es ist (a a n )(b b m ) = a i b j, wo über alle Paare (i, j) {,..., n} {,..., m} (in beliebiger Reihenfolge) zu summieren ist. Wenn wir dies auf unendliche Reihen übertragen wollen, müssen wir für die Paare (i, j) N N eine Reihenfolge festlegen. Es ist übersichtlich, die Paare (i, j) nach wachsendem i + j anzuordnen (und die mit festem i + j beliebig). Man definiert daher folgendermaßen:

12 8 REIHEN 46 Definition. Seien a k, b k Reihen. Das Cauchy-Produkt dieser Reihen ist die Reihe c k mit c k := k a j b k j = a 0 b k + a b k a k b 0. j=0 (8.) Satz. Sind die Reihen a k und b k absolut konvergent, so ist auch ihr Cauchy-Produkt absolut konvergent, und es gilt ( ) ( ) ( k ) a k b k = a j b k j. j=0 Beweis. Setze k j=0 a jb k j =: c k. Partialsummen bezeichnen wir mit den entsprechenden großen Buchstaben, also A n := a k, B n := b k, C n := c k.. Beh.: lim (A n B n C n ) = 0. Beweis: Sei ɛ R + gegeben. Es ist mit Setze A n B n C n = i n j n a i b j i+j n a i b j = (i,j) Γ n a i b j Γ n := {(i, j) N 0 N 0 i n, j n, i + j > n}. ( ) ( ) D n := a k b k = i n j n a i b j. Nach Voraussetzung und (7.3) ist die Folge (D n ) n N konvergent, also existiert nach (7.8) ein n 0 N mit D n D n0 < ɛ für n n 0. Es ist D n D n0 = (i,j) n a i b j

13 9 DIE EXPONENTIALREIHE 47 mit n := {(i, j) N 0 N 0 i n, j n} \ {(i, j) N 0 N 0 i n 0, j n 0 }. Für alle n 2n 0 gilt Γ n n und daher A n B n C n (i,j) n a i b j Damit ist die. Behauptung bewiesen. Aus der. Behauptung folgt nach (7.3) ( lim C n = lim A n (i,j) Γ n a i b j = D n D n0 < ɛ. ) ( ) lim B n. 2. Beh.: c k konvergiert absolut. Beweis: Setze c k := k j=0 a j b k j. Da die Reihen a k, b k absolut konvergieren, konvergiert nach dem Vorstehenden die Reihe c k. Es gilt c k k a j b k j = c k. j=0 Nach dem Majorantenkriterium ist c k absolut konvergent. 9 Die Exponentialreihe Als erste Anwendung des Vorstehenden behandeln wir nun die Exponentialreihe. Viele für die Analysis und ihre Anwendungen wichtige reelle Funktionen werden durch unendliche Reihen definiert. Als erstes und besonders wichtiges Beispiel hierfür wollen wir jetzt die Exponentialfunktion einführen. Warum sie zum Beispiel bei der Beschreibung physikalischer Vorgänge, aber auch in anderen Anwendungsgebieten, oft auftritt, läßt sich allerdings erst gut erklären, wenn wir die Differentiation von Funktionen eingeführt haben. Einen Hinweis gibt aber schon (9.4). (9.) Satz. Für jedes x R ist die Reihe n=0 x n n!

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Folgen und Reihen. 1 Konvergenz

Folgen und Reihen. 1 Konvergenz Folgen und Reihen Man betrachte viele Zahlen hintereinander geschrieben. Solche Folgen von Zahlen können durch nummeriert werden. Es entsteht eine Zuordnung der natürlichen Zahlen zu den Gliedern der Folge.

Mehr

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R Definition: Zahlenfolge Kap. 10: Folgen und Reihen 10.1 Definition: Zahlenfolge Eine Funktion a : N Ñ R poder Cq heißt reelle (oder komplexe) Zahlenfolge. Man nennt a n apnq das n-te Folgenglied und schreibt

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Dozent: Dr. Michael Karow Thema: unendliche Reihen Definition. Eine unendliche Reihe ist der Grenzwert einer Folge von Summen: a k = lim k a k, wobei a k C. Falls der

Mehr

Die alternierende harmonische Reihe.

Die alternierende harmonische Reihe. Die alternierende harmonische Reihe Beispiel: Die alternierende harmonische Reihe k k + = 2 + 3 4 + konvergiert nach dem Leibnizschen Konvergenzkriterium, und es gilt k k + = ln2 = 06934 für den Grenzwert

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die 3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind ( n N, auch

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert 4 Reihen Im Folgenden sei K R oder K C. 4. Definition. Es sei (x k ) Folge in K. Wir schreiben x k s und sagen, die Reihe x k konvergiere, falls die sogenannte Partialsummen-Folge s n x k n, 2,... in K

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Kapitel 3. Folgen und Reihen. 3.1 Folgen

Kapitel 3. Folgen und Reihen. 3.1 Folgen Kapitel 3 Folgen und Reihen 3. Folgen 3.2 Cauchy Folgen 3.3 Unendliche Reihen 3.4 Absolut konvergente Reihen 3.5 Multiplikation von Reihen 3.6 Potenzreihen 3. Folgen In diesem gesamten Abschnitt bezeichnen

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Folgen und Reihen Bernhard Ganter Institut für Algebra TU Dresden D-0062 Dresden bernhard.ganter@tu-dresden.de Folgen Eine (unendliche) (Zahlen)folge ist eine Abbildung f : N R. Statt f (n) schreibt man

Mehr

9 Konvergenz und absolute Konvergenz von Reihen

9 Konvergenz und absolute Konvergenz von Reihen 9 Konvergenz und absolute Konvergenz von Reihen 9.2 Konvergenz von Reihen 9.5 Monotoniekriterium für Reihen 9.6 Konvergenzkriterium von Cauchy für Reihen 9.9 Rechenregeln für konvergente Reihen 9.10 Absolute

Mehr

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt Beispiel. Gegeben sei die Folge (a n ) n N mit a n := n 2 + 5n + 1 n Es gilt ( ( ) (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n + 1 + n, woraus folgt a n = (n2 + 5n + 1) n 2 n2 + 5n + 1 + n = 5n + 1 n2

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe. Folgen und Reihen Christoph Laabs, christoph.laabs@tu-dresden.de Grundlagen Eine Reihe ist darstellbar durch z. B. = a 0 + a + a 2 + a + a 4 +... Ausgesprochen wird das als Summe von von k bis Unendlich.

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 3 Reihen, Potenzreihen und elementare Funktionen Peter Becker (H-BRS) Analysis Sommersemester 2016 160 / 543 Inhalt Inhalt 3 Reihen Absolute Konvergenz Potenzreihen Elementare Funktionen Anwendung:

Mehr

Analysis I - Einige Lösungen und Ergänzungen

Analysis I - Einige Lösungen und Ergänzungen Christian-Albrechts-Universität zu Kiel Mathematisch-Naturwissenschaftliche Fakultät Mathematisches Seminar Analysis I - Einige Lösungen und Ergänzungen von Dipl.-Math. Joscha Prochno Dipl.-Math. Dennis

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

Kapitel 4 Folgen und Reihen

Kapitel 4 Folgen und Reihen Kapitel 4 Folgen und Reihen Inhalt 4.1 4.1 Konvergenzkriterien für für Folgen 4.2 4.2 Reihen 4.3 4.3 Achilles und und die die Schildkröte Seite 2 4.1 Konvergenzkriterien für Folgen Wiederholung (vgl. (vgl.

Mehr

6 - Unendliche Reihen

6 - Unendliche Reihen Kapitel 2 Folgen und Reihen Seite 1 6 Unendliche Reihen Definition 6.1 (Unendliche Reihen) Sei eine Folge aus C. Unter der unendlichen Reihe mit den Gliedern versteht man das Symbol oder Die Zahl heißt

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya

Konvergenz und Divergenz einer unendlichen Reihe. 5-E Ma 2 Lubov Vassilevskaya Konvergenz und Divergenz einer unendlichen Reihe 5-E Ma 2 Lubov Vassilevskaya Folgen und Reihen: Beispiele Unter dem Bildungsgesetz einer unendlichen Reihe n i= versteht man einen funktionalen Zusammenhang

Mehr

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen Kapitel V Folgen und Konvergenz V.1 Konvergenz von Zahlenfolgen Wir erinnern an den Begriff der Folge, den wir schon im Kapitel III verwenden. Eine Folge (a n ) n=1 AN in A ist eine Abbildung a ( ) : N

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) 1 Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16) Kapitel 7: Konvergenz und Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth

Folgen und Reihen. Mathematik I für Chemiker. Daniel Gerth Folgen und Reihen Mathematik I für Chemiker Daniel Gerth Überblick Folgen und Reihen Dieses Kapitel erklärt: Was man unter Folgen und Reihen versteht; Was man unter Grenzwert von Folgen und Reihen versteht;

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

11. Übungsblatt zur Mathematik I für Maschinenbau

11. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 200/ 2.0.-28.0. Aufgabe G (Grenzwertberechnung)

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Kapitel 6 REIHEN. Fassung vom 21. April Claude Portenier ANALYSIS 99

Kapitel 6 REIHEN. Fassung vom 21. April Claude Portenier ANALYSIS 99 Kapitel 6 REIHEN Fassung vom 2 April 2002 Claude Portenier ANALYSIS 99 6 Der Begri der Reihe 6 Der Begri der Reihe DEFINITION Sei (z l ) l2n eine Folge in C Die Folge (s k ) k2n in C de niert durch s k

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Die komplexe Exponentialfunktion und die Winkelfunktionen

Die komplexe Exponentialfunktion und die Winkelfunktionen Die komplexe Exponentialfunktion und die Winkelfunktionen In dieser Zusammenfassung werden die für uns wichtigsten Eigenschaften der komplexen und reellen Exponentialfunktion sowie der Winkelfunktionen

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Mathematik I. (für Informatiker, ET und IK) Oliver Ernst. Wintersemester 2013/14. Professur Numerische Mathematik

Mathematik I. (für Informatiker, ET und IK) Oliver Ernst. Wintersemester 2013/14. Professur Numerische Mathematik Mathematik I (für Informatiker, ET und IK) Oliver Ernst Professur Numerische Mathematik Wintersemester 2013/14 Inhalt 1 Vorbemerkungen 2 Grundlagen 3 Folgen und Reihen 4 Grenzwerte, Stetigkeit und Beispiele

Mehr

ist streng monoton fallend.

ist streng monoton fallend. Beispiel 3.5 Betrachte die Folgen aus Beispiel 3.1 Die Folgen a und d mit a n = n 2 und d n = 2 n sowie die Fibonacci-Folge sind streng monoton wachsend. Die Folge b mit b n = 1 n ist streng monoton fallend.

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Folgen und Reihen. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) Fragen und Antworten Folgen und Reihen (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Folgen und Reihen 2 1.1 Fragen............................................... 2 1.1.1 Folgen...........................................

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis

Mehr

Konvergenzbegriffe und Konvergenzkriterien

Konvergenzbegriffe und Konvergenzkriterien Kapitel 4 Konvergenzbegriffe und Konvergenzkriterien 4. Konvergenz reeller Zahlenfolgen Im Abschnitt 2.5 haben wir bereits den Begriff des Grenzwerts einer Folge eingeführt und Rechenregeln für Folgengrenzwerte

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen:

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen: 2 Folgen und Reihen 2. Folgen Betrachten Sie folgende Liste von Zahlen:,, 2, 3, 5, 8, 3, 2... Erkennen Sie ein Gesetz, mit dem man die Liste sinnvoll fortsetzen kann? Offenbar können Sie mit diesem Gesetz

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Höhere Mathematik II. (Vorlesungskript)

Höhere Mathematik II. (Vorlesungskript) Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Vorlesungskript) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L

Mehr

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T.

Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen,T. Streubel Lösungsalternativen für die Übungsaufgaben zur Vorlesung

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Stefan Etschberger Hochschule Augsburg Grundlagentest Polynome! Testfrage: Polynome 1 Die Summe

Mehr

Grundlagen: Folgen u. endliche Reihen Unendliche Reihen Potenzreihen. Reihen. Fakultät Grundlagen. März 2015

Grundlagen: Folgen u. endliche Reihen Unendliche Reihen Potenzreihen. Reihen. Fakultät Grundlagen. März 2015 Fakultät Grundlagen März 015 Fakultät Grundlagen Grundlagen: und endliche Beispiele Geometrische Reihe, Konvergenzkriterien Fakultät Grundlagen Folie: Übersicht Grundlagen: und endliche Artithmetische

Mehr

Folgen. Folgen. Kurt Frischmuth (IfM) Mathe4WiWi WS / 415

Folgen. Folgen. Kurt Frischmuth (IfM) Mathe4WiWi WS / 415 Folgen Folgen Eine Zahlenfolge {a n } ist eine Funktion, deren Definitionsbereich eine Menge natürlicher Zahlen ist und deren Wertebereich aus reellen Zahlen, den Gliedern der Zahlenfolge, besteht. Kurt

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen 7. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung β-version) Aufgabe : Bestimmen Sie alle Häufungspunkte der Folgen mit den Folgengliedern a) a n n n X + cosnπ), b) b n i) i j, und geben Sie

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens mit C++ und Matlab SS2013 Inhalt Bis jetzt : Die grundlegende Aspekte

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen Kapitel 7 Reihen Konvergenz unendlicher Reihen Konvergenzkriterien Potenzreihen und Taylorreihen Anwendungen Reihen Konvergenz unendlicher Reihen Konvergenz unendlicher Reihen Betrachtet man die unendliche

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Abbildungen, Funktionen, Folgen, Summen und Grenzwerte

Abbildungen, Funktionen, Folgen, Summen und Grenzwerte Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Münster Fachbereich Mathematik und Informatik 7.9.203 Ÿ5 Abbildungen, Funktionen, Folgen, Summen und Grenzwerte Ÿ5. Abbildungen und Funktionen Wir beginnen

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr