7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

Größe: px
Ab Seite anzeigen:

Download "7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt."

Transkript

1 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim sup a n := lim (sup{a k k n}) lim inf heißt Limes inferior der Folge. a n := lim (inf{a k k n}) Zu dieser Definition ist eine Erläuterung erforderlich. Setzt man b n := sup{a k k n} für n N, so ist die Folge (b n ) n N monoton fallend; da sie beschränkt ist, existiert nach (7.5) der Grenzwert lim b n. Man kann also in der Tat wie oben definieren. Entsprechendes gilt für lim inf. Beispiel. a n = ( ) n ( + ). Es ist n + n, falls n gerade, sup{a k k n} = + n +, falls n ungerade. Also ist lim sup a n =. Ferner ist ( + n ), falls n ungerade, inf{a k k n} = ( + n + ), falls n gerade, also lim inf a n =. Der folgende Satz enthält eine äquivalente Definition, die oft besser zu handhaben ist als die ursprüngliche. (7.9) Satz. Sei (a n ) n N eine beschränkte Folge und a R. Dann gilt:

2 7 KONVERGENTE FOLGEN 36 () lim sup a n a Für jedes ɛ R + ist die Menge {k N a k a + ɛ} endlich. (2) lim sup a n a Für jedes ɛ R + ist die Menge {k N a k a ɛ} unendlich. Entsprechendes gilt für lim inf. Beweis. () : Sei lim sup a n a. Sei ɛ R +. Wäre die Menge {k N a k a + ɛ} unendlich, so wäre also lim sup a n a + ɛ > a, q.e.a. sup{a k k n} a + ɛ für alle n N, : Sei {k N a k a+ɛ} endlich für jedes ɛ R +. Dann gibt es zu gegebenem ɛ R + ein n 0 N mit a k < a + ɛ für n n 0, also sup{a k k n} a + ɛ für n n 0. Es folgt lim sup a n a + ɛ; da ɛ R + beliebig war, folgt lim sup a n a. (2) : Sei lim sup a n a. Sei ɛ R +. Wäre die Menge {k N a k a ɛ} endlich, so existierte ein n 0 N mit a k < a ɛ für n n 0, also sup{a k k n} a ɛ für n n 0. Daraus folgt lim sup a n a ɛ < a, q.e.a. : Sei {k N a k a ɛ} unendlich für jedes ɛ R +. Dann gilt für jedes ɛ R + sup{a k k n} a ɛ für alle n N, also ist lim sup a n a ɛ. Da ɛ R + beliebig war, folgt lim sup a n a. Der folgende Satz macht die Bedeutung von Limes superior und Limes inferior deutlicher und erklärt zugleich die Wahl dieser Bezeichnungen. (7.0) Satz. Sei (a n ) n N eine beschränkte Folge. Dann ist lim sup a n der größte und lim inf a n der kleinste Häufungswert dieser Folge. Beweis. Es genügt, die Behauptung für lim sup zu beweisen. Sei H die Menge der Häufungswerte der Folge (a n ) n N. Nach (7.6) ist H, und H ist beschränkt. Setze s := sup H und lim sup a n =: a. Nach (7.9)() ist für jedes ɛ R + die Menge {k N a k a + ɛ} endlich. Also kann keine Zahl a + ɛ Grenzwert einer Teilfolge (d.h. Häufungswert) sein. Für alle h H gilt also h a, folglich ist s a.

3 8 REIHEN 37 Beh.: a H [Daraus folgt dann a s, also a = s.] Bew.: Wir konstruieren eine Teilfolge, die gegen a konvergiert. Rekursive Definition: Setze k =. Sei k n schon definiert. Nach (7.9)(2) ist die Menge { k N a k a } n unendlich, also existiert ein k n N mit k n > k n und a kn a /n. Damit ist die Teilfolge (a kn ) n N definiert. Für alle n N gilt (wegen k n n) sup{a k k n} a kn a n. Für n konvergieren beide Seiten gegen a, woraus lim a kn = a folgt. Wir können nun ein weiteres notwendiges und hinreichendes Kriterium für die Konvergenz einer Folge aufstellen. (7.) Satz. Die Folge (a n ) n N konvergiert genau dann, wenn sie beschränkt ist und wenn lim sup a n = lim inf a n ist. Das folgt sofort aus (7.2), (7.7), (7.0). 8 Reihen Unter Verwendung des Grenzwertbegriffes kann man auch für gewisse Folgen (a n ) n N die unendliche Summe a +a erklären. Solche unendlichen Reihen sind wichtig, da man spezielle reelle Zahlen oder Funktionen häufig durch Reihen ausdrücken kann. Definition. Sei (a n ) n N eine Folge in R. Man nennt die Zahl s n := a k (n N) die n-te Partialsumme dieser Folge. Die Folge (s n ) n N heißt unendliche Reihe und wird mit bezeichnet. Ist die Folge (s n ) n N konvergent, so wird ihr Grenzwert ebenfalls mit a k bezeichnet. a k

4 8 REIHEN 38 Hiernach bedeutet a k also zweierlei; das führt erfahrungsgemäß aber nicht zu Mißverständnissen. Nach Definition ist a k = s lim a k = s. Bemerkung. Es ist klar, was unter a k (mit m Z) zu verstehen ist. Beispiel (unendliche geometrische Reihe): Sei q R, q <. Nach (4.6) gilt q k = qn+ q, also Folglich ist q k q = q n+ 0 für n. q q k = q. Konvergenz einer Reihe bedeutet nach Definition nichts anderes als die Konvergenz der zugehörigen Partialsummen-Folge. Die bisher für Folgenkonvergenz gewonnenen Ergebnisse übertragen sich also unmittelbar auf Ergebnisse über Konvergenz von Reihen. Wir wollen diese Resultate im folgenden zusammenstellen. Da es sich nur um Umformulierungen handelt, erübrigt es sich, auf die Beweise einzugehen. Aus (7.3) und (7.4) folgt: (8.) Satz. Seien a k, b k konvergente Reihen und sei λ R. Dann sind die Reihen (a k + b k ) und (λa k) konvergent, und es gilt (a k + b k ) = a k + b k, Gilt a k b k für k N, so ist a k b k. Aus (7.5) folgt: (λa k ) = λ a k. (8.2) Satz. Jede Reihe mit a k 0 für alle k N ist konvergent oder bestimmt divergent.

5 8 REIHEN 39 Beispiel. An dieser Stelle können wir die gewohnte Praxis rechtfertigen, reelle Zahlen durch (im Prinzip unendliche) Dezimalbrüche darzustellen. Zum Beispiel bedeutet die Schreibweise π = 3, ja verabredungsgemäß nichts anderes, als daß π = ist, also daß π durch eine gewisse Reihe mit nichtnegativen Gliedern dargestellt werden kann. Daß die Zahl 0 hier in unserer Kultur eine Sonderrolle spielt, hat keine mathematischen, sondern (vermutlich) biologische Gründe. Allgemeiner sei eine Zahl b N, b 2 vorgegeben. Unter einem b-adischen Bruch versteht man eine Reihe der Gestalt ± a k b k mit p N 0, a k N 0, a k < b. k= p Jeder solche b-adische Bruch konvergiert. Zum Beweis genügt es, den Fall p = 0 zu betrachten. Für n N gilt a k b k < b b k < b b k = b2 b. Die Konvergenz folgt also aus Satz (8.2), da die Partialsummenfolge beschränkt ist. Insbesondere stellt also jeder unendliche Dezimalbruch eine reelle Zahl dar. Es ist nicht schwer zu zeigen, daß umgekehrt jede reelle Zahl als b-adischer Bruch dargestellt werden kann (man bestimme die a k rekursiv). Wir fahren fort, Ergebnisse für Folgen auf Reihen umzuformulieren. Ist s n = a k, so ist für m < n s n s m = + a k. Aus Satz (7.8) erhalten wir also sofort die folgende wichtige Aussage. (8.3) Satz (Konvergenzkriterium von Cauchy). Die Reihe a k ist genau dann konvergent, wenn zu jedem ɛ R + ein n 0 N existiert mit m+p a k < ɛ für m n 0 und p N 0.

6 8 REIHEN 40 Da die Bedingung insbesondere für p = 0 erfüllt sein muß, haben wir: (8.4) Satz. Notwendig für die Konvergenz der Reihe a k ist die Bedingung lim k a k = 0. Diese Bedingung ist aber nicht hinreichend. Beispiel. Die harmonische Reihe k ( ) + ( ) }{{} > 2 4 = 2 ist bestimmt divergent. Es ist nämlich ) ( ) }{{}}{{} > 4 8 = > = 2 ( + u.s.w., also s 2 n + n, woraus die Behauptung folgt. 2 Beispiel. Für α > ist konvergent. [Dabei sei α N, denn sonst ist bis k α jetzt k α noch nicht erklärt. Wenn aber später k α für α R erklärt sein wird, bleiben Behauptung und Beweis für α > richtig.] Beweis: Sei n N. Wähle m N mit n 2 m+. Dann gilt s n = 2m+ k α ( k = + α 2 + ) α 3 α m 2 r (2 r ) = m (2 α ) r < α r=0 r=0 (2 α ) r = r=0 ( 2 m+ k α k=2 m ) 2 α. Dabei wurde 2 α < (wegen α > ) benutzt. Die Konvergenz folgt jetzt aus Satz (7.2). In Fällen, wo die Voraussetzung von (7.5) nicht erfüllt ist, ist häufig das folgende Kriterium von Nutzen. (8.5) Satz (Leibniz-Kriterium für alternierende Reihen). Ist (a n ) n N0 eine monoton fallende Nullfolge, so ist die Reihe konvergent. ( ) k a k

7 8 REIHEN 4 Beweis. Setze s n := n ( )k a k. Es gilt s 2n+2 s 2n = a 2n+ + a 2n+2 0, also ist die Folge (s 2n ) n N monoton fallend. Analog ist die Folge (s 2n+ ) n N monoton wachsend. Wegen s 2n+ s 2n = a 2n+ 0 gilt Nach (7.5) existieren also s 2n s 2n+ s und s 2n+ s 2n s 0. a := lim s 2n und b := lim s 2n+. Es ist a b = lim (s 2n s 2n+ ) = lim a 2n+ = 0, also a = b. Sei ɛ R + vorgegeben. Es gibt ein n 0 N mit und es gibt ein n N mit Für m max{n 0, n } gilt also Damit ist ( )k a k = a gezeigt. Absolute Konvergenz s 2n a < ɛ für 2n n 0, s 2n+ a < ɛ für 2n + n. s m a < ɛ. Feinere Konvergenzbetrachtungen für Reihen erfordern eine neue Begriffsbildung. Hierauf werden wir beispielshalber bei der folgenden Fragestellung geführt. Gilt für unendliche Reihen auch ein Kommutativgesetz? Mit anderen Worten: Hängen Konvergenz und Grenzwert einer Reihe von der Reihenfolge der Summanden ab, oder darf man die Summanden beliebig umordnen? Mit einer Umordnung ist folgendes gemeint: Definition. Sei a k eine Reihe und τ : N N eine Permutation (bijektive Abbildung auf sich) von N. Dann heißt die Reihe a τ(k) eine Umordnung der ursprünglichen. Beispiel. Die Reihe n= ( )n+ ist nach dem Leibniz-Kriterium konvergent. n Da n= divergiert, läßt sich leicht eine Umordnung angeben, die divergiert: n Für n N gilt 2 n n n+ > 2n 2 = n+ 4,

8 8 REIHEN 42 also ( ) 7 6 ( ) ( ) + 2 n n+ für n. 2n + 2 Wie sich zeigt, kann etwas derartiges nicht passieren, wenn neben a k auch die Reihe a k konvergiert. Definition. Die Reihe a k heißt absolut konvergent, wenn die Reihe a k konvergiert. (8.6) Satz. Jede absolut konvergente Reihe ist konvergent. Beweis. Sei a k konvergent. Wir zeigen, daß a k die Voraussetzung des Konvergenzkriteriums von Cauchy erfüllt. Sei ɛ R +. Da a k konvergiert, existiert ein n 0 N mit m+p Für diese m, p gilt also erst recht m+p a k a k < ɛ für m n 0, p N 0. m+p Nach (8.3) ist die Reihe a k konvergent. a k < ɛ. Hier wurde die Ungleichung b b n b b n benutzt, die natürlich aus der Dreiecksungleichung durch Induktion herzuleiten ist. (8.7) Satz. (Umordnungssatz). Sei a k eine absolut konvergente Reihe mit Grenzwert a. Dann konvergiert auch jede Umordnung dieser Reihe gegen a.

9 8 REIHEN 43 Beweis. Sei τ : N N eine Permutation von N. Sei ɛ R + vorgegeben. Da ak konvergiert, gibt es ein m N mit + a k < ɛ 2. Wählen wir ein n 0 N mit {,..., m} {τ(),..., τ(n 0 )}, so gilt für alle n n 0 a τ(k) a m m a τ(k) a k + a k a a k + a k < ɛ. + + Nachdem schon hierdurch (und erst recht im weiteren Verlauf) die Bedeutung von absoluter Konvergenz unterstrichen wird, wollen wir Kriterien für absolute Konvergenz zusammenstellen. Am häufigsten anwendbar ist wohl das folgende: (8.8) Satz (Majorantenkriterium). Seien a k, c k Reihen. Gilt a k c k für alle k N und ist die Reihe c k konvergent, dann ist die Reihe a k absolut konvergent. Beweis. Sei ɛ R +. Da c k konvergiert, existiert ein n 0 N mit Für diese m, p gilt also m+p c k < ɛ für m n 0, p N 0. m+p Aus (8.3) folgt die Behauptung. a k m+p c k < ɛ. Gilt a k c k für k N, so nennt man die Reihe c k eine Majorante der Reihe ak. Eine Reihe ist also absolut konvergent, wenn sie eine konvergente Majorante besitzt. Häufig brauchbare Vergleichsreihen sind die geometrische Reihe (c k = q k, q < ) und die ζ-reihen (c k = k α mit einem α > ). Gilt dagegen a k c k 0 für k N 0, so nennt man die Reihe c k eine Minorante der Reihe a k. Besitzt die Reihe a k eine bestimmt divergente Minorante, so ist sie selbst bestimmt divergent. Eine manchmal brauchbare Vergleichsreihe ist die harmonische Reihe.

10 8 REIHEN 44 Wenn sich keines der obigen Kriterien unmittelbar anwenden läßt, versuche man es mit einem der folgenden. (8.9) Satz (Quotientenkriterium). Sei a k eine Reihe mit a k 0 für k N. Es gebe eine Zahl q R mit 0 < q < und a n+ a n q für n N. Dann ist die Reihe a n absolut konvergent. Beweis. Aus der Voraussetzung folgert man durch Induktion sofort a n+ q n a. Da die Reihe q n a = a q n wegen q < konvergiert, folgt die Behauptung aus dem Majorantenkriterium. Natürlich genügt es, wenn beim Quotientenkriterium die Voraussetzungen a n 0 und q für fast alle n erfüllt sind. a n+ a n Besonders bequem ist das Quotientenkriterium anzuwenden, wenn es gelingt, a lim n+ a n =: a zu bestimmen, falls dieser Grenzwert existiert. Ist a <, so gilt für beliebiges q mit a < q < jedenfalls a n+ a n < q für fast alle n; die Reihe ist also absolut konvergent. Gilt a >, so gilt a n+ a n für fast alle n. In diesem Fall ist die Reihe divergent, da (a n ) n N keine Nullfolge ist. Im Fall a = kann sowohl absolute Konvergenz als auch Divergenz vorliegen (z.b. n 2 und ). n Beispiel n= n! (2n + ) Die Formulierung eines weiteren nützlichen Kriteriums erfordert eine Vorbemerkung. Sind Zahlen n N und a R + gegeben, so gibt es eine Zahl b R + mit b n = a. Man schreibt dann b = n a und nennt b die n-te Wurzel aus a. Sie ist eindeutig bestimmt, denn aus 0 < b < c folgt b n < c n. Die Existenz der n-ten Wurzel

11 8 REIHEN 45 könnten wir bereits an dieser Stelle leicht zeigen; wir verzichten aber darauf, da sie sich später in allgemeinerem Rahmen ergibt. Ferner sei daran erinnert, daß wir in 7 für eine beschränkte Folge (a n ) n N den Limes superior lim sup a n definiert hatten. Wir ergänzen diese Definition noch: Definition. Ist (a n ) n N nicht nach oben beschränkt, so schreibt man Man vereinbart noch > a für a R. lim sup a n =. (8.0) Satz (Wurzelkriterium). Die Reihe n= a n ist absolut konvergent, wenn n lim sup an < ist, und divergent, wenn ist. lim sup n an > Beweis. Sei lim sup n a n =: a <. Dann gibt es ein q < mit n a n q und daher a n q n für fast alle n. Aus dem Majorantenkriterium folgt die absolute Konvergenz der Reihe a n. Ist lim sup n a n >, so gilt a n für unendlich viele n; also ist (a n ) n N keine Nullfolge und daher a n divergent. Bemerkung. Besonders bequem ist die Anwendung des Wurzelkriteriums, wenn lim n a n existiert und bestimmt werden kann. Man beachte, daß das Wurzelkriterium im Fall lim sup n a n = keine Aussage über Konvergenz oder Divergenz der Reihe a n ermöglicht. Absolute Konvergenz spielt auch eine Rolle, wenn wir versuchen, zwei konvergente Reihen gliedweise zu multiplizieren. Betrachten wir zunächst endliche Summen. Es ist (a a n )(b b m ) = a i b j, wo über alle Paare (i, j) {,..., n} {,..., m} (in beliebiger Reihenfolge) zu summieren ist. Wenn wir dies auf unendliche Reihen übertragen wollen, müssen wir für die Paare (i, j) N N eine Reihenfolge festlegen. Es ist übersichtlich, die Paare (i, j) nach wachsendem i + j anzuordnen (und die mit festem i + j beliebig). Man definiert daher folgendermaßen:

12 8 REIHEN 46 Definition. Seien a k, b k Reihen. Das Cauchy-Produkt dieser Reihen ist die Reihe c k mit c k := k a j b k j = a 0 b k + a b k a k b 0. j=0 (8.) Satz. Sind die Reihen a k und b k absolut konvergent, so ist auch ihr Cauchy-Produkt absolut konvergent, und es gilt ( ) ( ) ( k ) a k b k = a j b k j. j=0 Beweis. Setze k j=0 a jb k j =: c k. Partialsummen bezeichnen wir mit den entsprechenden großen Buchstaben, also A n := a k, B n := b k, C n := c k.. Beh.: lim (A n B n C n ) = 0. Beweis: Sei ɛ R + gegeben. Es ist mit Setze A n B n C n = i n j n a i b j i+j n a i b j = (i,j) Γ n a i b j Γ n := {(i, j) N 0 N 0 i n, j n, i + j > n}. ( ) ( ) D n := a k b k = i n j n a i b j. Nach Voraussetzung und (7.3) ist die Folge (D n ) n N konvergent, also existiert nach (7.8) ein n 0 N mit D n D n0 < ɛ für n n 0. Es ist D n D n0 = (i,j) n a i b j

13 9 DIE EXPONENTIALREIHE 47 mit n := {(i, j) N 0 N 0 i n, j n} \ {(i, j) N 0 N 0 i n 0, j n 0 }. Für alle n 2n 0 gilt Γ n n und daher A n B n C n (i,j) n a i b j Damit ist die. Behauptung bewiesen. Aus der. Behauptung folgt nach (7.3) ( lim C n = lim A n (i,j) Γ n a i b j = D n D n0 < ɛ. ) ( ) lim B n. 2. Beh.: c k konvergiert absolut. Beweis: Setze c k := k j=0 a j b k j. Da die Reihen a k, b k absolut konvergieren, konvergiert nach dem Vorstehenden die Reihe c k. Es gilt c k k a j b k j = c k. j=0 Nach dem Majorantenkriterium ist c k absolut konvergent. 9 Die Exponentialreihe Als erste Anwendung des Vorstehenden behandeln wir nun die Exponentialreihe. Viele für die Analysis und ihre Anwendungen wichtige reelle Funktionen werden durch unendliche Reihen definiert. Als erstes und besonders wichtiges Beispiel hierfür wollen wir jetzt die Exponentialfunktion einführen. Warum sie zum Beispiel bei der Beschreibung physikalischer Vorgänge, aber auch in anderen Anwendungsgebieten, oft auftritt, läßt sich allerdings erst gut erklären, wenn wir die Differentiation von Funktionen eingeführt haben. Einen Hinweis gibt aber schon (9.4). (9.) Satz. Für jedes x R ist die Reihe n=0 x n n!

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen.

Unendliche Reihen. D.h. Die Summe einer unendlichen Reihe ist der Grenzwert der Folge der Partialsummen. Unendliche Reihen Wegen der elementaren Eigenschaften der Zahlen ist lar, was unter einer endlichen Summe von Zahlen a + a 2 +... + zu verstehen ist. Vorderhand ist noch nicht erlärt, was unter einer unendlichen

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel

2 Stetige Funktionen. 2.1 Grenzwerte von Funktionen. Definition Beispiel 2 Stetige Funktionen 2. Grenzwerte von Funktionen Definition Sei I R ein Intervall, a I ein innerer Punkt und f eine reellwertige Funktion, die auf I \ {a} (aber eventuell nicht in a) definiert ist. Wir

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen

Kapitel 7. Reihen. Konvergenz unendlicher Reihen. Konvergenzkriterien. Potenzreihen und Taylorreihen. Anwendungen Kapitel 7 Reihen Konvergenz unendlicher Reihen Konvergenzkriterien Potenzreihen und Taylorreihen Anwendungen Reihen Konvergenz unendlicher Reihen Konvergenz unendlicher Reihen Betrachtet man die unendliche

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Analysis I. Vorlesung 16. Funktionenfolgen

Analysis I. Vorlesung 16. Funktionenfolgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis I Vorlesung 16 Funktionenfolgen Eine (vertikal gestauchte) Darstellung der ersten acht polynomialen Approximationen der reellen Exponentialfunktion

Mehr

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1

Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Reihen gibt es spezielle Konvergenzkriterien. n k=1 Kapitel 3 Reihen Es geht nun um spezielle Folgen, deren Glieder durch Summation entstehen. Für diese Reihen gibt es spezielle Konvergenzriterien. 3. Definitionen, Beispiele, Sätze Definition 3.: (Reihen)

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Folgen und Reihen. Rainer Hauser. Februar 2011

Folgen und Reihen. Rainer Hauser. Februar 2011 Folgen und Reihen Rainer Hauser Februar 2011 1 Einleitung 1.1 Unendliche Prozesse und Approximationen Zählen ist ein unendlicher Prozess, der theoretisch von 1 über die Nachfolgerfunktion plus 1 jede natürlich

Mehr

4 Konvergenz von Folgen und Reihen

4 Konvergenz von Folgen und Reihen 4 KONVERGENZ VON FOLGEN UND REIHEN 4 Konvergenz von Folgen und Reihen 4.1 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge(a n ) n N heißt monoton wachsend streng monoton wachsend nach

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Analysis I. Universität Stuttgart, WS 05/06 M. Griesemer

Analysis I. Universität Stuttgart, WS 05/06 M. Griesemer Analysis I Universität Stuttgart, WS 05/06 M. Griesemer Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Aussagenlogik................................. 3 1.2 Mengen.................................... 4 1.3 Relationen...................................

Mehr

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen:

2 Folgen und Reihen. 2.1 Folgen. Definition 2.1 (Zahlenfolge). Betrachten Sie folgende Liste von Zahlen: 2 Folgen und Reihen 2. Folgen Betrachten Sie folgende Liste von Zahlen:,, 2, 3, 5, 8, 3, 2... Erkennen Sie ein Gesetz, mit dem man die Liste sinnvoll fortsetzen kann? Offenbar können Sie mit diesem Gesetz

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Arbeitsmaterialien. Analysis I + II

Arbeitsmaterialien. Analysis I + II Arbeitsmaterialien (Bezeichnungen, Definitionen, Sätze, Beispiele, Übungsaufgaben) zur Vorlesung Analysis I + II im SS 2007 und WS 2007/08 (überarbeitete Version des WS 1993/94 und SS 1994) FB Mathem.,

Mehr

Folgen und Reihen. Petra Grell, WS 2004/05

Folgen und Reihen. Petra Grell, WS 2004/05 Folgen und Reihen Petra Grell, WS 2004/05 Folgen 1 Einführung Beispiel 1.1. Setze fort: 1, 2, 3,... 4, 5, 6,... natürliche Zahlen 5, 8, 13,... Fibonacci-Zahlen Wir können nicht eindeutig sagen, wie es

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

20. Juni Einige andere wichtige algebraische Verknüpfungen lassen sich besser mit unendlichen

20. Juni Einige andere wichtige algebraische Verknüpfungen lassen sich besser mit unendlichen 20. Juni 200 33 4 Reihen 4. Beispiele von Reihen Bemerkung (Folgen Reihen).. Folgen und ihre Konvergenz lassen sich in beliebigen metrischen Räumen definieren und untersuchen und sind unabhängig von einer

Mehr

Höhere Mathematik II

Höhere Mathematik II Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Beilagen) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L A TEX-Satz

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Die reellen Zahlen nach Cantor

Die reellen Zahlen nach Cantor Die reellen Zahlen nach Cantor Dustin Lazarovici 3. Dezember 2013 In unserem ersten Vortrag sind wir den Pythagoreern gefolgt und haben die Inkommensurabilität entdeckt: Es gibt Strecken, die kein gemeinsames

Mehr

KAPITEL 9. Funktionenreihen

KAPITEL 9. Funktionenreihen KAPITEL 9 Funktionenreihen 9. TaylorReihen............................ 28 9.2 Potenzreihen............................ 223 9.3 Grenzfunktionen von Funktionenfolgen bzw. reihen........ 230 9.4 Anwendungen............................

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016

Mehr

5. Zahlentheoretische Funktionen

5. Zahlentheoretische Funktionen 5. Zahlentheoretische Funktionen 5.1. Definition. Unter einer zahlentheoretischen (oder arithmetischen Funktion versteht man eine Abbildung f : N 1 C. Die Funktion f : N 1 C heißt multiplikativ, wenn f(1

Mehr

5 Reihen. s n := a k. k=0

5 Reihen. s n := a k. k=0 5 Reihen 5. Folgen von Partialsummen Definitionen und Beispiele Ist a. eine beliebige Folge von Zahlen oder Vetoren, so heisst der formale Ausdruc a = a 0 + a + a 2 +... () eine Reihe, die einzelnen a

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Mathematik III. Produkt-Präringe

Mathematik III. Produkt-Präringe Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 66 Es ist unser Ziel zu zeigen, dass auf der Produktmenge von Maßräumen unter recht allgemeinen Voraussetzungen ein Maß definiert ist,

Mehr

Kapitel II. Konvergenz von Folgen und Reihen

Kapitel II. Konvergenz von Folgen und Reihen Kapitel II Konvergenz von Folgen und Reihen 7 Einführende Beispiele und Rechenregeln für konvergente Folgen 8 Konvergenzkriterien und Häufungswerte von Folgen in R 9 Konvergenz und absolute Konvergenz

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1 Kapitel 1 Folgen und Reihen 1 a 1 Folgen und Reihen Folgen sind sehr grundlegend für die Mathematik an sich, aber auch für das persönliche Bild eines Menschen zur Mathematik. Wenn ein kleines Kind der

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß

Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II. Heinrich Voß Aufgaben und Lösungen zu Mathematik für Studierende der Ingenieurwissenschaften II Heinrich Voß Institut für Angewandte Mathematik der Universität Hamburg 99 Inhaltsverzeichnis Folgen und Reihen 2. Einführende

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker e von Folgen und Reihen 13.11.2008 Allgemeine Folgen Nullfolgen Allgemeine Folgen Erinnerung: Folgen Wird jeder natürlichen Zahl n eine reelle Zahl a n zugeordnet, so spricht man von einer Zahlenfolge

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Weitere Interessante Funktionen

Weitere Interessante Funktionen Weitere Interessante Funktionen Pascal Wagner Ausarbeitung zum Vortrag im PS Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Die Weierstaÿ'sche -Funktion

Die Weierstaÿ'sche -Funktion Die Weierstaÿ'sche -Funktion Kapitel : Konstruktion Motivation: Ziel dieses Kapitels ist es ein möglichst einfaches Beispiel für eine elliptische Funktion zu nden.wir wissen bereits, dass keine elliptische

Mehr

Analysis I. Prof. Dr. Andreas Griewank. Wintersemester 2012/2013. Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt.

Analysis I. Prof. Dr. Andreas Griewank. Wintersemester 2012/2013. Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt. Analysis I Prof. Dr. Andreas Griewank Wintersemester 2012/2013 Dieses Skript wurde von Alexander Prang in Anlehnung an die Vorlesung erstellt. Es enthält lediglich die Definitionen, Sätze, Lemmata, Korollare

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr