6 Reelle und komplexe Zahlenfolgen

Größe: px
Ab Seite anzeigen:

Download "6 Reelle und komplexe Zahlenfolgen"

Transkript

1 $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen eine Zahl eingeführt und unter anderem bewiesen, dass eine solche Folge gegen höchstens eine Zahl konvergieren kann. Damit können wir nun auch den Grenzwert einer Folge definieren. Definition 6.5 (Folgengrenzwerte) SeiK {R, C}. Dann heißt eine Folge (a n ) n N in K konvergent wenn es ein a K mit (a n ) n N a gibt. Nach Lemma.(b) ist a K dann eindeutig bestimmt und heißt der Grenzwert der Folge (a n ) n N, geschrieben als a = a n. Eine nicht konvergente Folge heißt divergent. Nach Lemma.(a) ist jede Teilfolge einer konvergenten Folge wieder konvergent und hat denselben Grenzwert wie die Originalfolge. Weiter ist eine komplexe Folge (z n ) n N nach Lemma.(d) genau dann konvergent wenn die Folgen der Real- und der Imaginärteile beide konvergent sind, und in diesem Fall gelten ( ) ( ) Re z n = Re(z n ) und Im z n = Im(z n ). Schließlich besagt Lemma.(e) das es für eine reelle Folge keine Rolle spielt, ob wir sie in K = R oder in K = C betrachten, sowohl die Konvergenz als auch der notwendig reelle Grenzwert stimmen in beiden Fällen überein. Daher kann man, wie schon letztes Mal erwähnt, den komplexen Fall K = C als den allgemeinen Fall behandeln. Lemma 6.2 (Grundeigenschaften konvergenter Folgen) Seien K {R, C} und (a n ) n N eine konvergente Folge in K. Dann gelten: (a) Die Folge (a n ) n N ist beschränkt. (b) Die Folge der Beträge ( a n ) n N ist wieder konvergent und es gilt a n = a n. -

2 Beweis: Sei a K der Grenzwert der Folge (a n ) n N. (a) Wegen (a n ) n N a existiert ein n 0 N mit a n a < für alle n N mit n n 0. Weiter setzen wir c := max{ a +, a 0,..., a n0 } 0. Dann gilt a n c für alle n N. Sei nämlich n N gegeben. Ist dann n < n 0, so haben wir sofort a n c nach Definition von c, und ist n n 0, so ist ebenfalls a n = a + (a n a) a + a n a < a + c. Damit ist die Folge (a n ) n N beschränkt. (b) Sei ɛ > 0. Dann existiert ein n 0 N mit a n a < ɛ für alle n N mit n n 0. Für jedes n N mit n n 0 ist dann nach 5.Lemma 3.(e) auch an a an a < ɛ. Dies zeigt ( a n ) n N a. In der letzten Sitzung hatten wir als Beispiel eines Grenzwerts bereits n = 0 eingesehen. Einige weitere Grenzwerte sind eine unmittelbare Folgerung. Beispielsweise ist n 2 + = 0, einfach da (/(n 2 +)) n N eine Teilfolge von (/n) n N ist. Zwei weitere Beispiele wollen wir jetzt einfach angeben, der Beweis ist eine Übungsaufgabe. Sei q C. Dann gilt und im Konvergenzfall ist (q n ) n N ist konvergent q < oder q = qn = { 0, q <,, q =. Für jedes q C ist dagegen q n n! = 0. Wir kommen jetzt zu einem schon recht komplizierten Beispiel, wir wollen die Folge ( a n = + ) n n auf Konvergenz untersuchen. Wir wissen bereits, dass diese Folge streng monoton steigend und nach oben beschränkt ist, genauer ist a n < 3 für jedes n N. Der folgende -2

3 Satz zeigt, dass diese beiden Eigenschaften bereits die Konvergenz der Folge implizieren. Satz 6.3 (Konvergenz monotoner Folgen) Sei (a n ) n N eine reelle Folge. (a) Ist (a n ) n N monoton steigend und nach oben beschränkt, so ist (a n ) n N auch konvergent mit a n = sup{a n n N}. (b) Ist (a n ) n N monoton fallend und nach unten beschränkt, so ist (a n ) n N auch konvergent mit a n = inf{a n n N}. Beweis: (a) Schreibe s := sup{a n n N}. Sei ɛ > 0. Nach 4.Lemma 2.(a) existiert ein n 0 N mit a n0 > s ɛ. Sei n N mit n n 0. Dann ist Dies zeigt (a n ) n N s. (b) Analog. s ɛ < a n0 a n s, also a n s = s a n < ɛ. Dieser Satz ergibt insbesondere die Existenz des Grenzwerts ( α := + n ( = sup + n) n. n N n) Tatsächlich wird sich später herausstellen das α = e die Euler-Napiere Konstante e = 2, ist. Die ersten Folgenglieder von a n = ( + /n) n sind a = 2, a 2 = 9 4, a 3 = 64 27, a 4 = , a 5 = , a 6 = > 5 2, und da außerdem 3 eine obere Schranke unserer Folge ist, folgt 5 2 < α 3. Für die meisten Zwecke innerhalb der reinen Mathematik ist das schon genau genug. Als nächstes Beispiel wollen wir die Folge ( n n) n behandeln. Wir wissen bereits das diese für n 3 streng monoton fallend ist und außerdem trivialerweise durch nach unten beschränkt ist, also existiert ihr Grenzwert. Wir behaupten das n n = -3

4 gilt. Sei nämlich ɛ > 0 gegeben. Mit der archimedischen Eigenschaft der reellen Zahlen 4.Lemma 4 erhalten wir ein n 0 N mit n 0 > + 2 ɛ 2. Sei nun n N mit n n 0 gegeben, also insbesondere n 2. Mit der allgemeinen binomischen Formel 4.Lemma 5 erhalten wir n = ( n n) n = ( + ( n n )) n = Hieraus folgen weiter n k=0 ( ) n ( n n ) k k ( ) n ( n n ) 2 2 = n(n ) ( n n ) 2. 2 ( n n ) 2 2 n und 0 < n 2 2 n n n 0 < ɛ 2 = ɛ, also schließlich n n = n n < ɛ. Dies beweist ( n n) n wie behauptet. Wir werden zeigen, dass auch für jede positive reelle Zahl c R mit c > 0 stets die Aussage ( n c) n gilt. Dies kann man analog zur eben vorgeführten Berechnung von n n durchführen, es ist sogar etwas einfacher, aber wir wollen hier einen alternativen Zugang wählen, der ohne Rechnung auskommt. In der Tat folgt die Konvergenzaussage direkt aus dem eben bewiesenen n n. Hierzu ist es hilfreich zuvor einige allgemeine Aussagen zu beweisen. Wir beginnen mit dem Begriff einer Nullfolge, der es uns erlauben wird viele Grenzwerte ohne die ɛ n 0 Überlegungen behandeln zu können. Definition 6.6 (Nullfolgen) Sei K {R, C}. Eine Folge (a n ) n N in K heißt eine Nullfolge wenn (a n ) n N 0 gilt. Offenbar ist eine reelle oder komplexe Folge (a n ) n N genau dann eine Nullfolge wenn die reelle Folge ( a n ) n N eine Nullfolge ist. Lemma 6.4 (Grundeigenschaften von Nullfolgen) Sei K {R, C}. Dann gelten: (a) Sind (a n ) n N und (b n ) n N zwei Nullfolgen in K, so ist auch (a n + b n ) n N eine Nullfolge in K. (b) Sind (a n ) n N eine Nullfolge in K und c K, so ist auch (ca n ) n N eine Nullfolge in K. (c) Sind (a n ) n N eine beschränkte Folge in K und (b n ) n N eine Nullfolge in K, so ist auch (a n b n ) n N eine Nullfolge in K. -4

5 (d) Sind (a n ) n N eine Folge in K und a K, so gilt genau dann (a n ) n N a wenn (a n a) n N eine Nullfolge ist. (e) Sind (a n ) n N eine Folge in K und (b n ) n N eine Nullfolge in R mit a n b n für alle n N, so ist auch (a n ) n N eine Nullfolge in K. (f) Sind (a n ) n N eine Nullfolge in R mit a n > 0 für alle n N und α Q mit α > 0, so ist auch (a α n) n N eine Nullfolge. Beweis: (a) Sei ɛ > 0. Dann existieren n, n 2 N mit a n < ɛ/2 für alle n N mit n n und b n < ɛ/2 für alle n N mit n n 2. Setze n 0 := max{n, n 2 }. Für alle n N mit n n 0 ist dann auch a n + b n a n + b n < ɛ 2 + ɛ 2 = ɛ. Damit ist (a n + b n ) n N eine Nullfolge in K. (c) Es gibt eine Konstante c 0 mit a n c für alle n N. Sei ɛ > 0. Dann existiert ein n 0 N mit b n < ɛ/(c + ) für alle n N mit n n 0. Ist n N mit n n 0, so ist damit auch a n b n = a n b n c b n cɛ c + < ɛ. Damit ist (a n b n ) n N eine Nullfolge in K. (b) Klar nach (c). (d,e) Klar. (f) Seien p, q Z mit p, q und α = p/q. Wir zeigen zunächst, dass ( q a n ) n N eine Nullfolge ist. Sei also ɛ > 0 gegeben. Dann existiert ein n 0 N mit a n < ɛ q für alle n N mit n n 0. Für jedes n N mit n n 0 folgt damit auch q a n < q ɛ q = ɛ. Also ist ( q a n ) n N eine Nullfolge. Da konvergente Folgen nach Lemma 2.(a) auch beschränkt sind, ist somit auch (a α n) n N = (( q a n ) p ) n N nach (c) eine Nullfolge. Wir wollen noch ein paar Anmerkungen zum eben bewiesenen Lemma festhalten. Zunächst beachte das konvergente Folgen nach Lemma 2.(a) auch beschränkt sind, Aussage (c) des Lemmas ergibt also insbesondere, dass das Produkt einer konvergenten Folge und einer Nullfolge wieder eine Nullfolge ist. Weiter ist es in Aussage (e) des Lemmas nicht wirklich nötig das a n b n für alle n N gilt, es reicht aus das es einen Startindex n 0 N mit a n b n für alle n N mit n n 0 gibt. Dies ist implizit bereits im Lemma enthalten. Erinnern Sie sich daran, dass wir eingehends gesagt hatten, dass implizit immer auch Folgen mit gemeint sind, die erst ab einem Startindex definiert sind. Weiter ist es für die Konvergenz und den Grenzwert einer Folge offenbar egal ob wir die Folge selbst oder dieselbe Folge ab einem anderen Startindex betrachten. Wenden wir also Aussage (e) des Lemmas auf die Folgen (a n ) n n0 und (b n ) n n0 an, so ergibt sich genaz die genannte stärkere Aussage. Letztendlich haben wir uns in Teil (f) auf den Fall rationaler Exponenten α beschränkt, da wir Potenzrechnung mit beliebigen reellen Exponenten noch gar nicht eingeführt haben. Die Aussage (f) wird auch -5

6 für allgemeine positive Exponenten wahr sein, bedarf dann allerdings eines anderen Beweises, aber dazu werden wir dann später im Semester kommen. Unser Ziel ist noch immer einen ɛ n 0 freien Beweis der Aussage n c für jedes c R mit c > 0 anzugeben. Das eben bewiesene Lemma über Nullfolgen ist ein erster Schritt hierzu, und der zweite Schritt ist das folgende Lemma über reelle Folgen. Lemma 6.5 (Anordnungseigenschaften reeller Grenzwerte) Seien (a n ) n N und (b n ) n N zwei konvergente, reelle Folgen. (a) Gilt a n b n für alle n N, so ist auch a n b n. (b) Gilt a n = b n und ist (u n ) n N eine weitere reelle Folge mit a n u n b n für alle n N, so ist auch die Folge (u n ) n N konvergent mit u n = a n = b n. Beweis: (a) Seien a der Grenzwert von (a n ) n N und b der Grenzwert von (b n ) n N. Angenommen es wäre a > b. Dann ist ɛ := (a b)/2 > 0 und es gibt n, n 2 N mit a n a < ɛ für alle n N mit n n und b n b < ɛ für alle n N mit n n 2. Setze n := max{n, n 2 }. Dann ist a n = b (a a n ) a a n a > b ɛ = a a b = a + b = b + a b = b + ɛ > b + b n b b + b n b = b n, im Widerspruch zu unserer Annahme a n b n. Dies beweist die Behauptung a b. (b) Sei a der gemeinsame Grenzwert der Folgen (a n ) n N und (b n ) n N. Für jedes n N gelten also auch u n a b n a b n a und (u n a) = a u n a a n a n a, u n a max{ a n a, b n a } a n a + b n a. Nach Lemma 4.(a,d,e) ist (u n a) n N eine Nullfolge, d.h. auch die Folge (u n ) n N konvergiert gegen a. Die Aussage (b) des Lemmas wird manchmal auch als das Einschnürungslemma bezeichnet. Beachte das es auch für dieses Lemma reicht die Ungleichungen a n b n beziehungsweise a n u n b n nur für alle n N mit n n 0 für einen Startindex n 0 N zu fordern. Auch dies liegt daran, dass immer auch Folgen mit gemeint sind, -6

7 die erst ab einem gewissen Startindex definiert sind. Zur Illustration der jetzt bewiesenen Lemmata wollen wir uns noch einmal den Beweis der Aussage ( n n) n N anschauen. Wir hatten gezeigt, dass für jedes n N mit n 2 die Ungleichung 0 < n n 2 n gilt. Weiter ist die Folge (/(n )) n N als Teilfolge einer Nullfolge wieder eine Nullfolge und nach Lemma 4.(b,f) ist auch ( 2/(n )) n N eine Nullfolge. Damit ist ( n n ) n N nach dem Einschnürungslemma Lemma 5.(b) eine Nullfolge, d.h. wir haben ( n n) n N. Beachte das wir die Konvergenzaussage diesmal direkt aus der obigen Ungleichung gefolgert haben, ein Argumentieren über die Konvergenzdefinition mit ɛ und n 0 war gar nicht mehr nötig. Diesen Effekt werden wir noch häufiger sehen, der Nullfolgenbegriff und das unterstützende Lemma 4 erlauben es viele, aber nicht alle, ɛ-überlegungen durch einfacheres Schließen zu ersetzen. Als eine weitere Anwendung des Einschnürungslemmas wollen wir jetzt, wie schon angekündigt, n c = für alle c R mit c beweisen. Nach der archimedischen Eigenschaft der reellen Zahlen 4.Lemma 4 gibt es ein n 0 N mit n 0 c. Für alle n N mit n n 0 c ist damit auch n c n n, und da wir bereits ( n n) n N wissen, folgt mit dem Einschnürungslemma Lemma 5.(b) auch ( n c) n N. Der andere Fall für c, also 0 < c < muss etwas anders behandelt werden, wir werden ihn mit Hilfe der Rechenregeln für Grenzwerte auf den Fall c > zurückführen. Satz 6.6 (Rechenregeln für Folgengrenzwerte) Sei K {R, C} und seien (a n ) n N und (b n ) n N zwei konvergente Folgen in K. (a) Die Folge (a n + b n ) n N ist konvergent mit (a n + b n ) = a n + b n. (b) Für jedes c K ist die Folge (ca n ) n N konvergent mit (c) Die Folge (a n b n ) n N ist konvergent mit (ca n) = c a n. ( ) ( ) (a nb n ) = a n b n. -7

8 (d) Ist b n 0 und gilt b n 0 für alle n N, so ist die Folge (a n /b n ) n N konvergent mit a a n n = b n b. n Beweis: Seien a der Grenzwert von (a n ) n N und b der Grenzwert von (b n ) n N. (a) Die Folge ((a n + b n ) (a + b)) n N = ((a n a) + (b n b)) n N ist nach Lemma 4.(a,d) eine Nullfolge. (b) Die Folge (ca n ca) n N = (c(a n a)) n N ist nach Lemma 4.(b,d) eine Nullfolge. (c) Nach Lemma 2.(a) ist die Folge (a n ) n N beschränkt, und damit ist die Folge (a n b n ab) n N = (a n b n a n b + a n b ab) n N = (a n (b n b) + b(a n a)) n N nach Lemma 4.(a,b,c,d) eine Nullfolge. (d) Es gibt ein n 0 N mit b n < b /2 für alle n N mit n n 0. Für jedes n N mit n n 0 folgen damit auch b n = b (b b n ) b b n b > b b 2 = b 2 und = b n < 2 b, d.h. die Folge (/b n ) n N ist beschränkt. Damit ist die Folge ( an a ) ( ) ( ) an b ab n an b ab + ab ab n = = b n b n N b b b n N b b b n N ( = (a n a) a ) b n b n b (b n b) nach Lemma 4.(a,b,c,d) eine Nullfolge. b n n N Die Forderung b n 0 für alle n N in Aussage (d) ist eigentlich nicht nötig. Im Beweis von (d) haben wir ja gesehen, dass es ein n 0 N mit b n > b /2 für alle n N mit n n 0 gibt, und damit ist insbesondere auch b n 0 für alle n N mit n n 0. Betrachten wir also wieder die Folge ab dem Startindex n 0, so ergibt sich (d) auch in diesem Fall, solange wir uns die Folge (a n /b n ) n n0 als ab dem Startindex n 0 definiert denken. Die Voraussetzung b 0 ist dagegen wirklich nötig. Wir wollen jetzt ein paar Beispiele zur Anwendung der Grenzwertregeln behandeln.. Sei eine reelle Zahl c (0, ) gegeben. Dann ist /c > und somit folgt n c = n c = n c =, da wir den Grenzwert im Nenner bereits früher zu berechnet hatten. Insgesamt ist damit ( n c) n N für überhaupt jedes c R mit c > 0 gezeigt. -8

9 2. Wir wollen jetzt den schon recht kompliziert aussehenden Grenzwert 2n 3 2n + 7 n 3 + 3n + behandeln. Erweitern wir Zähler und Nenner mit /n 3 und erinnern uns an den schon bekannten Grenzwert /n 0, so rechnen wir mit den Grenzwertregeln 2n 3 2n + 7 n 3 + 3n + = n 2 n = n 2 n n 2 n = 2. n 2 n 3 Außerdem haben wir dabei die triviale Tatsache verwendet, dass konstante Folgen (c) n N gegen die entsprechende Konstante c konvergieren. 3. Ein ähnliches, scheinbar noch komplizierteres, Beispiel ist der Grenzwert Wir erweitern mit /n 2, und erhalten 2n 2 n cos(n) + 3 sin(n 4 + ). 3n 2 + n + ( ) n 2n 2 n cos(n) + 3 sin(n 4 + ) 3n 2 + n + ( ) n 2 cos n = + 3 sin(n4 +) n n ( )n n n 2. Nun ist (/n) n eine Nullfolge und (cos n) n N eine beschränkte Folge, da der Cosinus ja nur Werte zwischen und annimmt, also ist (cos(n)/n) n nach Lemma 4.(c) eine Nullfolge. Ebenso sind (3 sin(n 4 +)/n 2 ) n und (( ) n /n 2 ) n Nullfolgen, es gilt also 2n 2 n cos(n) + 3 sin(n 4 + ) 3n 2 + n + ( ) n 2 cos n = + 3 sin(n4 +) n n = 2 ( )n 3. n n 2 Als ein weiteres Beispiel zur Anwendung der Grenzwertregeln wollen wir die letzten beiden Beispiele noch etwas ausweiten, und allgemein den Grenzwert von Folgen berechenen die als rationale Ausdrücke in n gegeben sind, also als Quotient von Polynomen in n. Zur Vorbereitung beweisen wir ein kleines Lemma über das Wachstumsverhalten von Polynomen. Lemma 6.7 (Wachstumsverhalten von Polynomen) Seien K {R, C}, n N, ɛ > 0 und a 0,..., a n K mit a n 0 gegeben. Dann existiert eine reelle Zahl r > 0 so, dass für jedes x K mit x r stets ( a n ɛ) x n n < a k x k < ( a n + ɛ) x n gilt. k=0 Dies werden wir in der nächsten Sitzung beweisen, das Lemma ist hier nur schon angegeben, da es für die Präsenzaufgaben in Serie 5 hilfreich ist. -9

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 14. Gruppenübung zur Vorlesung Höhere Mathematik 1 Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 3.2 Konvergenzkriterien

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

Einführung in die Analysis

Einführung in die Analysis Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Lösungen zu Aufgabenblatt 7P

Lösungen zu Aufgabenblatt 7P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0

Mehr

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n.

λ(a n ) n 1 = (λa n ) n 1. Abbildung 1: Graph einer Folge. b n = arctan(n), f n = cos(nπ), g n = n 2, h n = ( 1) n n. Folgen Es sei X eine beliebige Menge. Eine Folge mit Werten in X ist eine Abbildung von N nach X. Es wird also jeder natürlichen Zahl n (dem Index) ein Element a n aus X zugeordnet (das n-te Folgenglied).

Mehr

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 + 8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2 Ferienurs Analysis I für Physier WS 15/16 Aufgaben Tag 1 1 Komplee Zahlen I Aufgaben Tag 1 Berechnen Sie Real- und ImaginÃďrteil von a) (1 + i) (1 + i) 0 + i b) 1 + 1 1 i ( 1 + 1 i ) 1 ( 1 + i i ) 1 i

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

19 Folgen. Grenzwerte. Stetigkeit

19 Folgen. Grenzwerte. Stetigkeit 19 Folgen. Grenzwerte. Stetigkeit Jörn Loviscach Versionsstand: 27. Dezember 2014, 16:35 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const.

Folgen und Reihen. Beschränkte Folge: Es gibt eine Zahl c = const. Folgen und Reihen Folgen: Def.: Eine Abbildung a N K, n a(n) := a n (K = R C) wird Zahlenfolge genannt. Sie heißt reelle (komplexe) Zahlenfolge, falls K = R(C) ist. Symbole: a n K: Elemente der Folge,

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Die reellen Zahlen nach Cantor

Die reellen Zahlen nach Cantor Die reellen Zahlen nach Cantor Dustin Lazarovici 3. Dezember 2013 In unserem ersten Vortrag sind wir den Pythagoreern gefolgt und haben die Inkommensurabilität entdeckt: Es gibt Strecken, die kein gemeinsames

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also

Der Abschluss D ist die Menge, die durch Hinzunahme der Intervallränder entsteht, in den obigen Beispielen also Festlegung Definitionsbereich 11.1 Festlegung Definitionsbereich Festlegung: Wir betrachten Funktionen f : D Ñ R, deren Definitionsbereich eine endliche Vereinigung von Intervallen ist, also z.b. D ra,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Analysis I. Vorlesung 9. Reihen

Analysis I. Vorlesung 9. Reihen Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen

Mehr

4 Konvergenz von Folgen und Reihen

4 Konvergenz von Folgen und Reihen 4 KONVERGENZ VON FOLGEN UND REIHEN 4 Konvergenz von Folgen und Reihen 4.1 Konvergenzkriterien für reelle Folgen Definition: Eine reelle Folge(a n ) n N heißt monoton wachsend streng monoton wachsend nach

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

Folgen und Reihen. Rainer Hauser. Februar 2011

Folgen und Reihen. Rainer Hauser. Februar 2011 Folgen und Reihen Rainer Hauser Februar 2011 1 Einleitung 1.1 Unendliche Prozesse und Approximationen Zählen ist ein unendlicher Prozess, der theoretisch von 1 über die Nachfolgerfunktion plus 1 jede natürlich

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Kapitel II. Konvergenz von Folgen und Reihen

Kapitel II. Konvergenz von Folgen und Reihen Kapitel II Konvergenz von Folgen und Reihen 7 Einführende Beispiele und Rechenregeln für konvergente Folgen 8 Konvergenzkriterien und Häufungswerte von Folgen in R 9 Konvergenz und absolute Konvergenz

Mehr

Mathematik I. Vorlesung 25. Der große Umordnungssatz

Mathematik I. Vorlesung 25. Der große Umordnungssatz Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 5 Der große Umordnungssatz Satz 5.1. (Großer Umordnungssatz) Es sei a i, i I, eine summierbare Familie von komplexen Zahlen mit der Summe

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

Regulär variierende Funktionen

Regulär variierende Funktionen KAPITEL 4 Regulär variierende Funktionen Unser nächstes Ziel ist es, die Max-Anziehungsbereiche der Extremwertverteilungen zu beschreiben. Dies wird im nächsten Kapitel geschehen. Wir haben bereits gesehen,

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch

Definition 4.2. Die Menge Q der rationalen Zahlen ist definiert durch. Wir führen jetzt auf Z eine Addition und eine Multiplikation ein durch Kapitel 4 Die rationalen Zahlen Wir haben gesehen, dass eine Gleichung a x = b mit a, b Z genau dann eine Lösung x Z besitzt, wenn a b. Zum Beispiel hat 2 x = 1 keine Lösung x Z. Wir wollen nun den Zahlbereich

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Folgen und Reihen. Petra Grell, WS 2004/05

Folgen und Reihen. Petra Grell, WS 2004/05 Folgen und Reihen Petra Grell, WS 2004/05 Folgen 1 Einführung Beispiel 1.1. Setze fort: 1, 2, 3,... 4, 5, 6,... natürliche Zahlen 5, 8, 13,... Fibonacci-Zahlen Wir können nicht eindeutig sagen, wie es

Mehr

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen

von und deren Werte in liegen, dabei ist wie bisher immer entweder oder. Verallgemeinerungen, etwa auf Abbildungen III Stetigkeit, Grenzwerte bei Funktionen Natura non facit saltus (Die Natur macht keine Sprünge), dieser Anspruch von Raoul Fournier (1627) galt lange bei der mathematischen Behandlung von Naturvorgängen

Mehr

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).

Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung). Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6

Mehr

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil

April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

n 1, n N \ {1}, 0 falls x = 0,

n 1, n N \ {1}, 0 falls x = 0, IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige

Mehr

Gleichmäßige Konvergenz und Funktionenräume

Gleichmäßige Konvergenz und Funktionenräume Gleichmäßige Konvergenz und Funktionenräume Isabella Lukasewitz und Andreas Brack 07.06.2010 Vortrag zum Proseminar zur Analysis Konvergenz und Funktionenräume INHALTSVERZEICHNIS Bereits in den Vorlesungen

Mehr

4 Das Riemann-Integral im R n

4 Das Riemann-Integral im R n $Id: nintegral.tex,v 1.11 2012/11/27 14:07:09 hk Exp hk $ 4 Das Riemann-Integral im R n 4.3 Jordan-meßbare engen In der letzten Sitzung hatten wir schließlich das n-dimensionale Riemann-Integral auch auf

Mehr

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit

Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Mathematik I für Wirtschaftsinformatiker

Mathematik I für Wirtschaftsinformatiker e von Folgen und Reihen 13.11.2008 Allgemeine Folgen Nullfolgen Allgemeine Folgen Erinnerung: Folgen Wird jeder natürlichen Zahl n eine reelle Zahl a n zugeordnet, so spricht man von einer Zahlenfolge

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Weitere Interessante Funktionen

Weitere Interessante Funktionen Weitere Interessante Funktionen Pascal Wagner Ausarbeitung zum Vortrag im PS Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Mathematischen Grundlagen und Notationen

Mathematischen Grundlagen und Notationen Mathematischen Grundlagen und Notationen Susanne Schimpf Juni 008 Es geht in dieser Lerneinheit darum, mathematische Notationen besser zu verstehen und auch selbst korrekt zu benutzen. Außerdem sollen

Mehr

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.

Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr