Vorbereitung: elektrische Messverfahren

Größe: px
Ab Seite anzeigen:

Download "Vorbereitung: elektrische Messverfahren"

Transkript

1 Vorbereitung: elektrische Messverfahren Marcel Köpke

2 Inhaltsverzeichnis 1 Ohmscher Widerstand Innenwiderstand des µa Multizets Innenwiderstand des AVΩ Multizets nbekannter Widerstand Wheatstone'sche Brückenschaltung Ohmmeter Kompensationsschaltung Innenwiderstand der Trockenbatterie Spule und Kondensator Gleichstromwiderstand einer Spule Induktivität und Verlustwiderstand einer Spule bei kleiner Frequenz Resonanzverhalten eines Parallelschwingkreises Wechselstromwiderstand von Spule und Kondensator Innenwiderstand des Sinusgenerators

3 1 Ohmscher Widerstand 1.1 Innenwiderstand des µa Multizets m den Innenwiderstand des µa Multizets zu messen wird ein 1kΩ Widerstand R und einen 10kΩ Regelwiderstand R(reg) mit dem µa Multizets in Reihe geschaltet. Zudem wird ein weiteres AVΩ Multizets parallel zum µa Multizets geschaltet. Die äuÿere Spannungsquelle liefert 6V. Abbildung 1.1: Innenwiderstand des µa Multizets Nun soll mit Hilfe des Regelwiderstandes ein Strom von I i = 1mA am µa Multizets eingestellt werden. Das Voltmeter zeigt dabei die am µa Multizets anliegende Spannung an. Der Innenwiderstand Ri I berechnet sich dann wie folgt: R I i = I i 1.2 Innenwiderstand des AVΩ Multizets Hier soll der Innenwiderstand des AVΩ Multizets mit den zuvor in 1.1 gemessenen Werten berechnet werden. Dabei wird angenommen, dass die Parallelschaltung des AVΩ Multizets den Gesamtstrom nur vernachlässigbar ändert. Der Innenwiderstand Ri des AVΩ 3

4 Multizets berechnet sich dann zuerst aus: R i = I I 0 mit I 0 dem Strom ohne AV Ω Multizet In einem zweiten Schritt wird dieser Wert nun verbessert. Dafür berechnet man zuerst den neuen Gesamtwiderstand R ges = R + R(reg) + RI i R i R I i + R i und berechnet mit diesen nun einen neuen Wert für den Gesamtstrom I i+1 = R ges sodass sich der Innenwiderstand jetzt wie folgt ergibt: R i = I i+1 I i = R + R(reg) + RI i R i R I i +R i I i Dieser Vorgang kann beliebig oft wiederholt werden. 1.3 nbekannter Widerstand m einen nbekannten Widerstand R x zu messen wird dieser mit einem weiteren 10kΩ Widerstand R in eine Messschaltung (siehe Abbildung 1.2 und 1.3) eingefügt. Abbildung 1.2: Spannungsrichtige Schaltung 4

5 Abbildung 1.3: Stromrichtige Schaltung Mann misst nun mit der spannungsrichtigen Schaltung und mit der stromrichtigen Schaltung. Dabei ergibt sich der Widerstand R x wie folgt: Spannungsrichtige Schaltung: I = R x = 1 1 R x + 1 R i 1 I 1 R i Stromrichtige Schaltung: I = R x + R I i R x = I RI i Damit man den Innenwiderstand des Spannungsmessgeräts vernachlässigen kann sollte dieser also möglichst groÿ sein. Entsprechend sollte der Innenwiderstand des Strommessgeräts möglichst klein sein. Vernachlässigt man diese beiden Werte so berechnet sich der gesuchte Widerstand für beide Messschaltungen einfach wie folgt: R x = I 5

6 1.4 Wheatstone'sche Brückenschaltung Abbildung 1.4: Wheatstone'sche Brückenschaltung Bei diesem Versuch wird der gesuchte Widerstand R x mit Hilfe einer Wheatstone'schen Brückenschaltung gemessen. Dabei wird zudem ein Strombegrenzungswiderstand R = 220kΩ zugeschaltet. m mit der Brückenschaltung zu messen müssen drei von vier Widerständen bekannt sein. Hier sind es R 1, R 2 und R 3 = 1kΩ, wobeir 1 und R 2 über ein lineares 1kΩ Potentiometer realisiert sind. Zudem muss der Strom I durch das Strommessgerät exakt Null sein! Dabei verhalten sich nun die Widerstände wie folgt: R x R 3 = R 2 R 1 mit R 1 oben und R 2 unten in der Schaltung R x = R 3 R2 R 1 Das Verhältnis R 2 R 1 lässt sich aus dem Längenverhältnis am Potentiometer bestimmen. Der Vorteil dieser Messmethode liegt in der stromlosen Messung. Dadurch spielt der Innenwiderstand des Messgeräts keine Rolle. Auÿerdem kann das eben angesprochen Verhältnis aus R 2 R 1 gut bestimmt werden und R 3 ist laut Aufgabentext ebenfalls gut bekannt, sodass das Messergebnis wohl eine entsprechende Genauigkeit zeigen wird. 1.5 Ohmmeter In diesem Versuch wird mit dem µa Multizet direkt ein Widerstand R gemessen. Dabei legt das Multizet eine Spannung an den Widerstand an und misst den resultierenden Strom I. Der Ausschlag ist damit proportional zu I. Mit Hilfe R x = I wird dann der Widerstand angegeben. So sieht man leicht ein, dass die Skala also proportional zu 1 R x sein muss. 6

7 Ein Ohmmeter mit linearer Skala verwendet zur Messung eine Wheatstone'sche Brückenschaltung mit einem linearen Potentiometer wie in 1.4! 1.6 Kompensationsschaltung Abbildung 1.5: Potentiometer m mit Hilfe einer konstanten Spannungsquelle s eine regelbare Spannung H zu realisieren kann man wie in Abbildung 1.5 gezeigt ein Potentiometer verwenden. Dabei berechnet sich die Klemmenspannung dieser Ersatzquelle wie folgt: H = R 2 R 1 + R 2 S Für den Versuch wird nun diese Ersatzquelle entgegengesetzt gepolt mit einer zu messenden Spannungsquelle 0 (hier die Trockenbatterie) in Reihe geschaltet. Abbildung 1.6: Kompensationsschaltung 7

8 Man regelt nun H so, dass die gemessene Dierenzspannung Null wird. Damit sind H und 0 gerade betragsmäÿig gleich groÿ. Tatsächlich existieren in der Realität keine wirklich konstanten Spannungsquellen, sondern die Spannung jeder Quelle nimmt bei einer Belastung (also Stromuss) meist auf Grund des Innenwiderstands ab. Der Vorteil an dieser Messmethode ist wiederum, dass hier stromlos gemessen wird, da eben keine Potentialdierenz zwischen den Anschlüssen der Quellen vorliegt. Somit erweist sich dieses Messverfahren bei Spannungsquellen, deren Innenwiderstand nicht vernachlässigbar klein ist, als sehr nützlich! 1.7 Innenwiderstand der Trockenbatterie m nun den Innenwiderstand R i der Trockenbatterie zu messen wird zusätzlich in die Schaltung aus Abbildung 1.6 eine Lastwiderstand R parallel zur Trockenbatterie ( 0 ) geschaltet, nachdem zuvor H und 0 abgeglichen wurden. Dadurch stellt sich eine gewissen Spannungsdierenz ein, sodass gilt: = R i I 0 = R I nd damit: R i = 0 R 8

9 2 Spule und Kondensator 2.1 Gleichstromwiderstand einer Spule Mit Hilfe des µa Multizets wird nun nach dem in 1.5 eingeführten Prinzip der Gleichstromwiderstand einer Spule gemessen. 2.2 Induktivität und Verlustwiderstand einer Spule bei kleiner Frequenz Abbildung 2.1: Spule in Reihe mit einem Widerstand Zur Messung der Induktivität L und des Verlustwiderstandes R L einer Spule werden wie in Abbildung 2.1 gezeigt eine Spule und eine Vorwiderstand R 1 (bzw. R V ) in Reihe geschaltet. Der Spannungsgenerator liefert einen sinusförmigen Wechselstrom mit f = 30Hz. Durch die Messung aller drei Spannungen 1 an Generator ( 0 ), Spule ( S ) und Vorwiderstand ( V ) kann nun die Induktivität und der Verlustwiderstand bestimmt werden. Das Zeigerdiagramm 2 in der komplexen Ebene sieht dann wie folgt aus (Abbildung 2.2): 1 Mit Spannung ist hier die Eektivspannung gemeint. 2 Zu nden auf: 9

10 Abbildung 2.2: Zeigerdiagramm (Quelle: Musterprotokoll Tobias Abzieher) Es liefert folgenden Zusammenhang (Kosinussatz): 2 S = V 2 0 V cos(ϕ) Auÿerdem gilt: cos(ϕ) = V 2 S 2 0 V (2.1) I = V R V (2.2) und cos(ϕ) = V + RL = V + R L I (2.3) 0 0 Damit erhält man mit Gleichungen (2.1), (2.2) und (2.3): R L = 0 2 V 2 S 2 2 V 2 R V Der Betrag der Impedanz der Spule ist gegeben durch: Z S = RL 2 + X2 L mit X L = ωl = 2πf L X L = ZS 2 R2 L mit Z S = S I = S R V V Hierbei ist X L die Impedanz der idealisierten Spule ohne Vorwiderstand. Damit folgt für die Induktivität: R V L = S 2 2πf ( 0 2 V 2 S 2)2 V 4 V 2 10

11 2.3 Resonanzverhalten eines Parallelschwingkreises Abbildung 2.3: Parallelschwingkreis (Quelle: Aufgabenblatt) In diesem Versuch wird das Resonanzverhalten eines LCR-Schwingkreises wie er in Abbildung 2.3 zu sehen ist untersucht. Dabei sollen die Eigenfrequenz ω 0, die Halbwertsbreite ω und der Resonanzwiderstand R r bestimmt werden. Resonanz tritt genau dann auf, wenn Spule und Kondensator gleiche Impedanz haben, da dann die Gesamtimpedanz des Schwingkreises vollständig (reell) durch die Impedanz des Widerstandes R gegeben ist und damit sich der Blindwiderstand vollkommen aufhebt. Für einen Wirkwiderstand = 0 und Blindwiderstand > 0 sperrt der Stromkreis, umgekehrt ist er oen und es tritt Resonanz auf. Anders ausgedrückt tritt genau dann Resonanz auf, wenn und I in Phase sind. ω 0 L = ω 0 = 1 ω 0 C 1 LC Die Halbwertsbreite ω ist genau derjenige Frequenzabstand zweier Frequenzen ω 1 und ω 2 bei denen die Hälfte der im Resonanzfall gemessen Spannung auftritt. Sie ist gegeben durch: ω = 3 R L Der Resonanzwiderstand ist derjenige Widerstand, der als Scheinwiderstand beim Anlegen der Resonanzfrequenz auftritt. Er ist endlich für normale Bauteil, da durch Wärmeverlustleistung der Bauteile der Schwingkreis einen Dämpfungsfaktor besitzt. Für 11

12 idealisierte Bauteile strebt er jedoch gegen unendlich. Es gilt: Damit erhält man schlussendlich: R r = r I R r = L RC = r R V 0 R = ω L 3 = ω2 R r 3 ω 2 0 L = 1 ω 2 0 C = ω R r 3 ω 2 0 C = 3 ω R r 2.4 Wechselstromwiderstand von Spule und Kondensator Nun soll mit direkter Messung von Spannung und Stromstärke I jeweils der Wechselstromwiderstand von Spule (R W S ) und Kondensator (R W K ) bei Resonanzfrequenz bestimmt werden. Hierbei gilt für die Spule: Z S = R 2 + ω0 2 L2 = R W S = I nd für den Kondensator: Z K = 1 ω 0 C = R W K = I Damit lassen sich Induktivität und Kapazität wie folgt bestimmen: RW 2 S L = R2 C = 1 ω 0 ω 0 R W K Es wird nicht das Verfahren wie in Abschnitt 2.2 gewählt, da die Frequenz nicht im Bereich von 30Hz sondern höher liegt. Dadurch kann der Verlustwiderstand der Bauteile vernachlässigt werden. 12

13 2.5 Innenwiderstand des Sinusgenerators Abbildung 2.4: Innenwiderstand des Sinusgenerators m den Innenwiderstand R i des Generators zu bestimmen wird das Potentiometer so eingestellt, dass an ihm gerade die Hälfte der Maximalspannung anliegt, denn dann ist der Widerstand des Generators gleich groÿ wie der des Potentiometers. Allgemein gilt für die Ausgangsleistung: P = G I = G R p + R i = ( R i I) R p + R i = ( R i ) R p + R i R p + R i = R p 2 (R p + R i ) 2 Damit die Ausgangsleistung maximal wird muss P R p P = 2 R i R p R p (R p + R i ) 3! 0 = = 0 gelten! Also gilt für die Maximalleistung: R i = R p P max = 2 4 R i 13

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Auswertung Elektrische Messverfahren. Marcel Köpke & Axel Müller

Auswertung Elektrische Messverfahren. Marcel Köpke & Axel Müller Auswertung Elektrische Messverfahren Marcel Köpke & Axel Müller 01.11.2011 Inhaltsverzeichnis 1 Ohmscher Widerstand 2 1.1 Innenwiderstand des µa-multizets................. 2 1.2 Innenwiderstand des AV

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV

AUSWERTUNG: ELEKTRISCHE MESSMETHODEN. Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 0 = 7, 15V. 114mV AUSWERTUNG: ELEKTRISCHE MESSMETHODEN TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. MESSUNGEN BEI GLEICHSTROM Unser Generator liefert anders als auf dem Aufgabenblatt angegeben U 7, 15V. 1.1. Innenwiderstand

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-81 Elektrische Messverfahren - Vorbereitung - Vorbemerkung In diesem Versuch geht es um das Kennenlernen

Mehr

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010

Versuch P1-70,71,81 Elektrische Messverfahren. Auswertung. Von Ingo Medebach und Jan Oertlin. 26. Januar 2010 Versuch P1-70,71,81 Elektrische Messverfahren Auswertung Von Ingo Medebach und Jan Oertlin 26. Januar 2010 Inhaltsverzeichnis 1. Aufgabe...2 I 1.1. Messung des Innenwiderstandes R i des µa-multizets im

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Auswertung Elektrische Messverfahren Stefan Schierle Carsten Röttele 20. Dezember 20 Inhaltsverzeichnis Messungen bei Gleichstrom 2. Innenwiderstand des µa-multizets...................... 2.2 Innenwiderstand

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Stefan Schierle Versuchsdatum: 20. 12. 2011 Inhaltsverzeichnis 1 Widerstandsmessung 2 1.1 Messung des Innenwiderstands Ri I des µa-multizets............ 2 1.2 Berechnung

Mehr

Protokoll zum Versuch

Protokoll zum Versuch Protokoll zum Versuch Elektronische Messverfahren Kirstin Hübner Armin Burgmeier Gruppe 15 3. Dezember 2007 1 Messungen mit Gleichstrom 1.1 Innenwiderstand des µa-multizets Zunächst haben wir in einem

Mehr

Versuch P1-70, 71, 81 Elektrische Messverfahren Auswertung

Versuch P1-70, 71, 81 Elektrische Messverfahren Auswertung Versuch P - 70, 7, 8 Elektrische Messverfahren Auswertung Gruppe Mo-9 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: 4.. Inhaltsverzeichnis Versuchsergebnisse zu 3. Innenwiderstand des µa-multizets.......................

Mehr

Elektrische Messverfahren Versuchsauswertung

Elektrische Messverfahren Versuchsauswertung Versuche P1-70,71,81 Elektrische Messverfahren Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 22.11.2010 1 1 Wechselstromwiderstände

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Jens Küchenmeister (25380) Versuch: P-8 Elektrische Messverfahren - Vorbereitung - Inhaltsverzeichnis Aufgabenteil 2. Innenwiderstand

Mehr

ffi N{IT (#to tr ) (Mo/DitMim Gruppe-Nr: Versuch:...g(g.htrlt.'.h.q.. Y*.tv!r.l"r.h*... (ncit&bne) Fehlerrechnung 'v2

ffi N{IT (#to tr ) (Mo/DitMim Gruppe-Nr: Versuch:...g(g.htrlt.'.h.q.. Y*.tv!r.lr.h*... (ncit&bne) Fehlerrechnung 'v2 ffi FAKULTAT FUR FHYSf K, Uniuersität Kar"lsruhe {fh} Praktikurn Klassi*che Physik N{T Praktikum: @}Fa) (Mo/DitMim Gruppe-Nr: 'v2 Name:...Ltlln.* vorname:...lj.qr.?:r$... Versuch:...g(g.htrlt.'.h.q.. Y*.tv!r.l"r.h*...

Mehr

1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt?

1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 1. Welche Zeitkonstante hat eine Drosselspule von 8,5 H, die einen Widerstand von 300 W besitzt? 2. Welchen Wert hat der Strom eine halbe Sekunde nach dem Einschalten, wenn die Induktivität einer Drosselspule

Mehr

NflT. , fo4u,ajae e,,tu\ i** ffi-* \ u* iuo * Gruppe-Nr: 1...o. SSIWS 20..i,.'r,./..,'. r,o o. pffi=

NflT. , fo4u,ajae e,,tu\ i** ffi-* \ u* iuo * Gruppe-Nr: 1...o. SSIWS 20..i,.'r,./..,'. r,o o. pffi= FAKULTAT FUR PHY$IK, Unluersität Kartsruhe {fh) Praktikum Klassisshe Physik NflT Praktikum: @P2) (Mo/DuMi@ SSIWS 20..i,.'r,./..,'. r,o o Gruppe-Nr: 1...o t u* iuo * pffi=, fo4u,ajae e,,tu\ i** ffi-* \

Mehr

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2.

/U Wie groß ist den beiden unter 6. genannten Fällen der von der Spannungsquelle U 1 gelieferte Strom? als Formel. 1 + jωc = R 2. Aufgabe Ü6 Gegeben ist die angegebene Schaltung:. Berechnen Sie allgemein (als Formel) /. 2. Wie groß ist der Betrag von /? R 3. Um welchen Winkel ist gegenüber phasenverschoben? 4. Skizzieren Sie die

Mehr

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann. Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische

Mehr

4. Versuche zur Elektrizitätslehre

4. Versuche zur Elektrizitätslehre 4. Versuche zur Elektrizitätslehre Einführung in die Elektrizitätslehre Nach Abschluss der Mechanikversuche und vor Beginn der Elektroversuche findet eine Einführung in die Elektrizitätslehre mit praktischen

Mehr

RE Elektrische Resonanz

RE Elektrische Resonanz RE Elektrische Resonanz Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Impedanz...................................... 2 1.2 Phasenresonanz...................................

Mehr

Referat: Innenwiderstand

Referat: Innenwiderstand Referat: Innenwiderstand Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Referat: Innenwiderstand 1 1.1 Referatsthema...................... 1 1.2 Überblick......................... 2 1.2.1 Innenwiderstand

Mehr

Bestimmung des elektrischen Widerstands durch Strom- und Spannungsmessung. oder: Ach ihr da Ohm, macht Watt ihr Volt!

Bestimmung des elektrischen Widerstands durch Strom- und Spannungsmessung. oder: Ach ihr da Ohm, macht Watt ihr Volt! Bestimmung des elektrischen Widerstands durch Strom- und Spannungsmessung oder: Ach ihr da Ohm, macht Watt ihr olt! 20. März 2013 1 orbereitung Erste Themen der orbereitung sd die kirchhoffschen Gesetze

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug

a) In einer Reihenschaltung gilt: R g = R 1 + R 2 + R 3 = 11, 01 MΩ Der Gesamtstrom ist dann nach dem Ohm schen Gesetz (U g = R g I g ): I g = Ug Aufgabe 1: Die Abbildung zeigt eine Reihenschaltung a) und eine Parallelschaltung b) der Widerstände R 1 = 10 MΩ, R 2 = 10 kω und = 1 MΩ an einer konstant Spannungsquelle mit U g = 5 V (Batterie). (5)

Mehr

= 16 V geschaltet. Bei einer Frequenz f 0

= 16 V geschaltet. Bei einer Frequenz f 0 Augaben Wechselstromwiderstände 6. Ein Kondensator mit der Kapazität 4,0 µf und ein Drahtwiderstand von, kohm sind in eihe geschaltet und an eine Wechselspannungsquelle mit konstanter Eektivspannung sowie

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Anwendungen zu komplexen Zahlen

Anwendungen zu komplexen Zahlen HM an der HWS. Hj 08/9 Dr. Timo Essig, Dr. Marinela Wong timo.essig@kit.edu, wong@hw-schule.de Aufgabenblatt 7 Anwendungen zu komplexen Zahlen Achtung: Auf diesem Blatt schreiben wir die komplexe Einheit

Mehr

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an!

Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. Daten: U AB. der Induktivität L! und I 2. , wenn Z L. = j40 Ω ist? an! Grundlagen der Elektrotechnik I Aufgabe K4 Gegeben ist die dargestellte Schaltung mit nebenstehenden Werten. R 1 A R 2 Daten R 1 30 Ω R 3 L R 2 20 Ω B R 3 30 Ω L 40 mh 1500 V f 159,15 Hz 1. Berechnen Sie

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Physikalisches A-Praktikum Versuch 14 Wechselstromwiderstände Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 18.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

Patrick Christ und Daniel Biedermann

Patrick Christ und Daniel Biedermann TECHNISCHE UNIVERSITÄT MÜNCHEN Brückenschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 10.10.2009 0. INHALTSVERZEICHNIS 0. INHALTSVERZEICHNIS... 2 1. EINLEITUNG... 2 2. BESCHREIBUNG DER VERWENDETEN

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen

Mehr

3.5. Prüfungsaufgaben zur Wechselstromtechnik

3.5. Prüfungsaufgaben zur Wechselstromtechnik 3.5. Prüfungsaufgaben zur Wechselstromtechnik Aufgabe : Impedanz (4) Erkläre die Formel C i C und leite sie aus der Formel C Q für die Kapazität eines Kondensators her. ösung: (4) Betrachtet man die Wechselspannung

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

1 Messungen mit Drehspulinstrumenten

1 Messungen mit Drehspulinstrumenten Labor Elektrische Messtechnik, Versuch 1, Gruppe B1, 16. Okt 2003 1 1 Messungen mit Drehspulinstrumenten 1.1 Spannungsrichtige Schaltung Bei der spannungsrichtigen Schaltung, auch Stromfehlerschaltung

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 3 - Übungsblatt 7 Wechselstrom In der Zeichnung ist ein Stromkreis mit reellen (Ohmschen) sowie

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E Wheatstonesche Brücke Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 7..000 INHALTSVEZEICHNIS. Einleitung. Theoretische Grundlagen. Die Wheatstonesche Brücke. Gleichstrombrücke

Mehr

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Umdruck zum Versuch Basis 1 Eigenschaften einfacher Bauelemente und Anwendung von Messgeräten Bitte bringen Sie zur Versuchsdurchführung

Mehr

Übungsaufgaben Elektrotechnik

Übungsaufgaben Elektrotechnik Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den Gesamtwiderstand

Mehr

1 Elektrische Stromkreise und lineare Netzwerke /20

1 Elektrische Stromkreise und lineare Netzwerke /20 Elektrische Stromkreise und lineare Netzwerke /20 Zwei Batterien G und G2 mit unterschiedlichen elektrischen Eigenschaften wurden polrichtig parallel geschaltet und an den Anschlussklemmen A, B mit einem

Mehr

RLC-Schaltungen Kompensation

RLC-Schaltungen Kompensation EST ELEKTRISCHE SYSTEMTECHNIK Kapitel 16 RLC-Schaltungen Kompensation Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das

Mehr

14 Elektrische Messtechnik

14 Elektrische Messtechnik für Maschinenbau und Mechatronik Carl Hanser Verlag München 14 Elektrische Messtechnik Aufgabe 14.1 Der Strom einer linearen Quelle wird mit einem Amperemeter gemessen, das in jedem Messbereich bei Vollausschlag

Mehr

Aufgaben B Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt?

Aufgaben B Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt? 1. Wie gross ist der Widerstand eines CU-Drahtes zwischen seinen Enden, wenn die Länge 50 m und der Durchmesser 2mm beträgt? 2. R2 = 7 kw und R3= 7 kw liegen parallel zueinander in Serie dazu liegt R4.=

Mehr

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 1. Klausur Hannover, arei LK 2. Semester Bearbeitungszeit: 90 min Abitur 009 hysik Klausur Hannover, 0403008 arei K Semester Bearbeitungszeit: 90 min Thema: Spule, Kondensator und Ohmscher Widerstand im Wechselstromkreis Aufgabe eite begründet her: Für den Gesamtwiderstand

Mehr

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Sven Köppel Matr.-Nr Physik Bachelor 2.

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Sven Köppel Matr.-Nr Physik Bachelor 2. Physikalisches Anfängerpraktikum Teil Elektrizitätslehre Protokoll Versuch 1 Bestimmung eines unbekannten Ohm'schen Wiederstandes durch Strom- und Spannungsmessung Sven Köppel Matr.-Nr. 3793686 Physik

Mehr

Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Gleichstromtechnik. Vorlesung 11: Strom- und Spannungsteilung. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Gleichstromtechnik Vorlesung 11: Strom- und Spannungsteilung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Motivation Auf der Basis der Kirchhoffschen Gesetze wurden Methoden zur Zusammenfassung

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (894) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Aufnahme von Kennlinien eines liniaren Bauelementes

Aufnahme von Kennlinien eines liniaren Bauelementes TFH Berlin Messtechnik Labor Seite1 von 6 Aufnahme von Kennlinien eines liniaren Bauelementes Ort: TFH Berlin Datum: 29.09.03 Uhrzeit: von 8.00h bis 11.30h Dozent: Arbeitsgruppe: Prof. Dr.-Ing. Klaus Metzger

Mehr

Protokoll E 3 - Wheatstonesche Messbrücke

Protokoll E 3 - Wheatstonesche Messbrücke Protokoll E 3 - Wheatstonesche Messbrücke Martin Braunschweig 10.06.2004 Andreas Bück 1 Aufgabenstellung 1. Der ohmsche Widerstand einer Widerstandskombination ist in einer Wheatstoneschen Brückenschaltung

Mehr

Vorbereitung: Vierpole und Leitungen

Vorbereitung: Vierpole und Leitungen Vorbereitung: Vierpole und Leitungen Marcel Köpke Gruppe 7 27..20 Inhaltsverzeichnis Aufgabe 3. Vierpole..................................... 3.2 RC-Spannungsteiler............................... 3.2.

Mehr

Elektrischer Widerstand

Elektrischer Widerstand Dr Angela Fösel & Dipl Phys Tom Michler Revision: 21092018 Abbildung 1: Ohms Drehwage, mit der er den Stromfluss in Drähten messen und daraus ihren Widerstand bestimmen konnte Die elektrische Ladung war

Mehr

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung Elektrizitätslehre und Schaltungen Versuch 14 ELS-14-1 Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre.

Mehr

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2005 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

Praktikumsteam: Von der Studentin bzw. dem Studenten auszufüllen. Name / Vorname. Matrikelnummer. Unterschrift

Praktikumsteam: Von der Studentin bzw. dem Studenten auszufüllen. Name / Vorname. Matrikelnummer. Unterschrift Praktikumsteam: Dr.-rer.nat. Michael Pongs Dipl.-Ing. Aline Kamp B. Eng. B.Eng. Alphonsine Bindzi Effa Von der Studentin bzw. dem Studenten auszufüllen Name / Vorname Matrikelnummer Unterschrift Von einem

Mehr

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments.

Musterlösung zur. Klausur Grundlagen der Elektrotechnik I im SoSe 18. Aufgabe 1. Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Musterlösung zur Klausur Grundlagen der Elektrotechnik I im SoSe 18 Aufgabe 1 Die Lösungen zu Aufgabe 1 folgen zum Ende des Dokuments. Aufgabe 2 1. R 1 = R a und R b = R 2 R L R 2 +R L 2. R 1 + R 2 = 1

Mehr

Spule mit und ohne ferromagnetischen Kern

Spule mit und ohne ferromagnetischen Kern Spule mit und ohne ferromagnetischen Kern Auf Basis der in der Vorlesung gelernten theoretischen Grundlagen sollen nun die Eigenschaften einer Luftspule und einer Spule mit ferromagnetischem Kern untersucht

Mehr

Grundlagen der Elektrotechnik 2 Seminaraufgaben

Grundlagen der Elektrotechnik 2 Seminaraufgaben ampus Duisburg Grundlagen der Elektrotechnik 2 Allgemeine und Theoretische Elektrotechnik Prof. Dr. sc. techn. Daniel Erni Version 2005.10 Trotz sorgfältiger Durchsicht können diese Unterlagen noch Fehler

Mehr

TR - Transformator Blockpraktikum - Herbst 2005

TR - Transformator Blockpraktikum - Herbst 2005 TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort

Mehr

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung

Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.3 RLC-Netzwerke und komplexe Leistung Aufgabe 1. Komplexe Impedanz von Zweipolen Bestimmen Sie für die nachfolgenden Schaltungen

Mehr

E 4 Spule und Kondensator im Wechselstromkreis

E 4 Spule und Kondensator im Wechselstromkreis E 4 Spule und Kondensator im Wechselstromkreis 1. Aufgaben 1. Die Scheinwiderstände einer Spule und eines Kondensators sind in Abhängigkeit von der Frequenz zu bestimmen und gemeinsam in einem Diagramm

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Elektrizitätslehre und Schaltungen Versuch 29 ELS-29-1 Wechselstromwiderstände 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre 1.2 Wechselspannung, Wechselstrom, Frequenz,

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Repetitionen. Schwingkreis

Repetitionen. Schwingkreis Kapitel 16.2 Repetitionen Schwingkreis Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Oktober 2011 Ich bin das Blitzli. Ich begleite Dich durch

Mehr

Praktikum II RE: Elektrische Resonanz

Praktikum II RE: Elektrische Resonanz Praktikum II E: Elektrische esonanz Betreuer: Dr. Torsten Hehl Hanno ein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 29. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Versuch B2/3: Parallelschwingkreis

Versuch B2/3: Parallelschwingkreis Versuch B2/3: Parallelschwingkreis 3. Einleitung Als realer Parallelschwingkreis wird die Parallelschaltung einer realen Kapazität (physikalisch als kapazitive Admittanz darstellbar) und einer realen Induktivität

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 1. Oktober 2015 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und L

Mehr

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation

Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation 15. September 2017 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.4 Ersatzzweipole, Resonanz und Blindleistungskompensation Aufgabe 1. Ersatzzweipole a) Berechnen Sie die Bauteilwerte für R r und

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators

Mehr

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005

RE - Elektrische Resonanz Blockpraktikum - Herbst 2005 E - Elektrische esonanz, Blockpraktikum - Herbst 25 13. Oktober 25 E - Elektrische esonanz Blockpraktikum - Herbst 25 Tobias Müller,Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 13. Oktober

Mehr

Elektrische Messinstrumente

Elektrische Messinstrumente Grundpraktikum Elektrische Messinstrumente /5 Übungsdatum: 20..2000 bgabetermin: 27..2000 Grundpraktikum Elektrische Messinstrumente stephan@fundus.org Mittendorfer Stephan Matr. r. 9956335 Grundpraktikum

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

Grundlagen der Elektrotechnik. Übungsaufgaben

Grundlagen der Elektrotechnik. Übungsaufgaben Grundlagen der Elektrotechnik Sönke Carstens-Behrens Wintersemester 2009/2010 RheinAhrCampus 1 Grundlagen der Elektrotechnik, WiSe 2009/2010 Aufgabe 1: Beantworten Sie folgende Fragen: a) Wie viele Elektronen

Mehr

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik

Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen

Mehr

Grundpraktikum Physik. Poggendorf sche Kompensationsmethode und Wheatstone sche Brückenschaltung

Grundpraktikum Physik. Poggendorf sche Kompensationsmethode und Wheatstone sche Brückenschaltung Grundpraktikum Physik Anleitung zum Versuch Nr. 23 Poggendorf sche Kompensationsmethode und Wheatstone sche Brückenschaltung Stand: 02.11.2017 Versuchsziel: Stromlose Messung ohmscher Widerstände und Kapazitiver

Mehr

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~)

WECHSELSTROM. 1. Messung von Wechselspannungen, Blindwiderstand. a) Maximalspannung. Geräte: Netzgerät Ossi Spannungsmessgerät (~) WECHSELSTROM 1. Messung von Wechselspannungen, Blindwiderstand a) Maximalspannung Spannungsmessgerät (~) Miss 3 unterschiedliche Spannungen der Wechselspannungsquelle (

Mehr

Wechselstrombrücken. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Wechselstrombrücken. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines Praktikum Grundlagen der Elektrotechnik Versuch: Wechselstrombrücken Versuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf dem jeweiligen Stoffgebiet

Mehr

E 12 Gedämpfter Schwingkreis

E 12 Gedämpfter Schwingkreis Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E Gedämpfter Schwingkreis Aufgaben. Messen Sie die frequenzabhängige Stromaufnahme eines L-Serienresonanzkreises für drei verschiedene

Mehr

Versuch 15 Wechselstromwiderstände

Versuch 15 Wechselstromwiderstände Physikalisches Praktikum Versuch 15 Wechselstromwiderstände Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 06.02.2007 Katharina Rabe Assistent: Tobias Liese

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

Fachhochschule Dortmund FB Informations- und Elektrotechnik FVT - GP

Fachhochschule Dortmund FB Informations- und Elektrotechnik FVT - GP 1. Allgemeines Spannungsquellen gehören zu den Grundelementen der Elektrotechnik. Sie werden eindeutig beschrieben durch den Innenwiderstand ( Quellenwiderstand) und die Leerlaufspannung. 1.1 Ideale Spannungsquelle:

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Grundpraktikum Wechselstromwiderstände 1/7 Übungsdatum: 15.05.001 Abgabetermin:.05.001 Grundpraktikum Wechselstromwiderstände Gabath Gerhild Matr. Nr. 98054 Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Grundpraktikum II E4 Wechselstromwiderstände

Grundpraktikum II E4 Wechselstromwiderstände Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum II E4 Wechselstromwiderstände Julien Kluge 15. Januar 2016 Student: Julien Kluge (564513) julien@physik.hu-berlin.de Partner:

Mehr

Physik Klausur

Physik Klausur Physik Klausur 2.2 2 30. April 2003 Aufgae Ein Birnchen mit dem ohmschen Widerstand, eine Spule mit der Eigeninduktivität L (ohmscher Widerstand vernachlässigar) und ein Kondensator mit der Kapazität C

Mehr

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Harald Meixner, Sven Köppel

Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre. Protokollant: Harald Meixner, Sven Köppel Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Protokoll Versuch 9 & 10 Kondensator und Spule im Wechselstromkreis Resonanzkreise (manuell und rechnergesteuert) Harald Meixner Sven Köppel Matr.-Nr.

Mehr

Reihenresonanz - C8/ C8/9.2 -

Reihenresonanz - C8/ C8/9.2 - Versuch C8/9: - C8/9. - Wechselstromwiderstände und Reihenresonanz - C8/9.2 - Wechselstromkreis mit induktiven und kapazitiven Elementen Spannung und Strom im allgemeinen nicht die gleiche Phase haben

Mehr

Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden.

Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden. Netzwerke berechnen mit der Ersatzspannungsquelle von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials zum Impressum Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses

Mehr