3.2 Analyse von Drehstromwicklungen Seite 1. Die Fourierschen Koeffizienten sind durch folgende Integrale bestimmt:

Größe: px
Ab Seite anzeigen:

Download "3.2 Analyse von Drehstromwicklungen Seite 1. Die Fourierschen Koeffizienten sind durch folgende Integrale bestimmt:"

Transkript

1 3. Analyse von Drehstromwicklungen Seite 1 Srungstellenverfahren Jede Funktion f ( x)mit der Periode kann durch die unendliche Fourier-Reihe 10 f ( x) = a + acosx + b sin x (3.-1) dargestellt werden. = 1 = 1 Die Fourierschen Koeffizienten sind durch folgende Integrale bestimmt: 0 1z a = f ( x) dx, (3.-) 0 z 1 a = f ( x)cos( x) dx, (3.-3) 0 z 1 b = f ( x)sin( x) dx. (3.-4) 0 Für die Berechnung von elektrischen Maschinen hat es sich als vorteilhaft erwiesen, komlexe Fourierreihen einzuführen: ± = 0, ± 1 f ( x) = c ex j[ x], (3.-5) mit f ( x) Re f ( x) = l q und c = R S T 0 a, = 0 1c a j bh, > 0. (3.-6) 1 c a + j bh, < 0 Bei den zu untersuchenden Felderregerkurven von Wicklungen ist er Definition der Mittelwert 0 a nach Gleichung (3.-) immer Null.

2 3. Analyse von Drehstromwicklungen Seite Die Integrale für a und b lassen sich für treenförmige Funktionen in endliche Summen überführen: Z 1 a = Ss sin xs, (3.-7) S = 1 Z 1 b = + Ss cos xs. (3.-8) S = 1 S s ist die Srunghöhe des Funktionswertes an der Stelle x s, Z die Zahl der Srungstellen innerhalb der Periode. Luftsaltfeld einer Sule Der Strang k einer symmetrischen, m = 3 strängigen Drehstromwicklung wird von dem Strom I 1, k = I 1 ex j ωt ( k 1) m (3.-9) durchflossen ( : Umfang der Maschine). Der Augenblickswert ergibt sich durch Bildung des Realteils. Unter der Annahme eines glatten, um den Carterfaktor und Sättigungsfaktor vergrößerten Luftsalts erzeugt eine Sule dieses Stranges ein Luftsaltfeld gemäß Bild y τ x B y y τ τ Bild 3.-1: Luftsaltfeld einer gesehnten Sule

3 3. Analyse von Drehstromwicklungen Seite 3 Das Feld nach Bild 3.-1 lässt sich als komlexe Fourier-Reihe darstellen: ± =± 1 [ jx] B ( x) = c ex (3.-10) Die Fourier-Koeffizienten ergeben sich mit dem Srungstellenverfahren zu B y c = sin, (3.-11) τ worin die Srunghöhe B der Flussdichte 0 0 L O B = NI1 k = NI1 j ωt k 1 δ δ NM, ex ( ). (3.-1) m QP beträgt. Der Term y ks = sin (3.-13) τ wird Sehnungsfaktor genannt und beschreibt den Einfluss der Sulensehnung auf die Amlituden der Feldwellen. Bei Durchmesserwicklungen ist der Sehnungsfaktor für alle gleich eins. Durch Einsetzen der Gleichungen (3.-11,1,13) in (3.-10) ergibt sich für die -te Feldwelle einer Sule im Strang k=1 das Drehfeld 0N ks BSule = I 1 ex j ω t x. (3.-14) δ Die Ordnungszahlen treten aarweise ositiv und negativ auf, d. h. es existiert zu jedem ositiv umlaufenden Drehfeld immer auch ein negativ umlaufendes Drehfeld mit gleicher Amlitude. Die Summation dieser beiden Drehfelder ergibt ein Wechselfeld. Die Feldwelle mit der Ordnungszahl hat Perioden am Umfang. Sie wirkt also wie eine Wicklung mit der Polaarzahl. Aus diesem Grund wird die Ordnungszahl der Fourierreihe auch als Polaarzahl der Wicklungsoberwelle bezeichnet. Es ist unmittelbar einsichtig, dass Oberwellen nur als Vielfache der Grundwelle = auftreten können, also = ± 1, ±, ± 3,... (3.-15)

4 3. Analyse von Drehstromwicklungen Seite 4 Luftsaltfeld einer Sulengrue Werden die Windungen einer Sule auf q Sulen in q Nuten verteilt (Sulengrue mit q Sulen), so müssen die Feldanteile geometrisch addiert werden (Bild 3.-). Bild 3.-: Verteilung der Windungen einer Sule auf q Sulen und geometrische Addition der Einzelfelder Die Anwendung der Formel für die endliche geometrische Reihe α n sinn [ + ] = α ex j β ξα ex j β + ( n + 1) (3.-16) ξ = 1,,3,... α sin ergibt die -te Feldwelle einer Sulengrue mit q Sulen: 0N kw BGrue( x1) = q I 1 ex j ω t x 1. (3.-17) δ Der Ursrung des Koordinatensystems x 1 liegt nun im Schwerunkt der Sulengrue. Der sogenannte Wicklungsfaktor k k w = S kz ergibt sich als Produkt aus Sehnungsfaktor k s und Zonenfaktor sin m kz =. (3.-18) q sin mq Der Zonenfaktor beschreibt den Einfluss der Verteilung der Sulen ro Grue auf die Amlituden der Feldwellen.

5 3. Analyse von Drehstromwicklungen Seite 5 Luftsaltfeld eines Stranges Eine Wicklung eines Stranges einer Drehstromwicklung besteht aus Sulengruen (Zweischichtwicklung), die räumlich jeweils um eine Polteilung versetzt sind. Alle Oberwellen sind nach Gleichung (3.-15) eriodisch mit der Polaarteilung der Maschine. Berücksichtigt man jedoch, dass die um eine Polteilung verschobene Sulengrue bei der Zweischichtwicklung negativ geschaltet ist, so kann die Summe der Felder der einzelnen Sulengruen nur dann von null verschieden sein, wenn die Feldwelle nicht eriodisch mit der Polteilung ist. Es muss also für die möglichen Polaarzahlen der Feldwellen gelten: = ± 1, ± 3, ± 5,... (3.-19) Die Summation aller Einzelfelder der Sulengruen eines Stranges kann mit dieser Bedingung algebraisch erfolgen. Für die -te Oberwelle des Feldes des Stranges k=1 ergibt sich dann 0N kw Bk = 1( x1) = q I 1 ex j ω t x 1 (3.-0) δ Noch immer treten aarweise ositiv und negativ umlaufende Drehfelder ± mit gleicher Amlitude auf. Die Feldwellen eines Stranges einer Drehstromwicklung sind also reine Wechselfelder! Die Einschichtwicklung ( Sulengruen ro Strang) kann mit Gleichung (3.-0) beschrieben werden, wenn sie als Zweischichtwicklung mit halber Windungszahl ro Sule interretiert wird.

6 3. Analyse von Drehstromwicklungen Seite 6 Luftsaltfeld einer Drehstromwicklung Das Gesamtfeld einer Drehstromwicklung ergibt sich aus der geometrischen Summation der drei Einzelstränge. Es ist hierbei die zeitliche Phasenlage der Strangströme nach Gleichung (3.-9) und der räumliche Versatz der Stränge um 10 elektrisch zu berücksichtigen: m L B1 x1 Bk 1 x1 j k 1 k 1 O ( ) = = ( )ex ( ) ( ) (3.-1) k = 1 NM m mqp Die Anwendung der Formel für die endliche Geometrische Reihe ergibt für die -te Welle des Feldes einer symmetrischen Drehstromwicklung 0N kw B1( x1) = mq I 1 ex j ω t x 1 (3.-) δ oder B x m w k 0 w 1( 1) = I1 ex j ωt x1 (3.-3) δ mit der Bedingung 1 F I a mhg K J =, ±, ±, ±,... = (3.-4) und der Windungszahl aller in Reihe geschalteten Sulen eines Stranges (Zweischichtwicklung!) w = qn. (3.-5) Aus den Gleichungen (3.-4) und (3.-19) kann die allgemeine Wellenformel für eine symmetrische Drehstromwicklung (m=3) angeschrieben werden als = ( ma + 1), a = 0, ± 1, ±, ± 3,... (3.-6) Während jeder Strang für sich ein Wechselfeld, d. h. ein in der Amlitude veränderliches aber räumlich konstantes Feld erzeugt, ergibt die Summe der Stränge reine Drehfelder, d. h. räumlich umlaufende Felder mit zeitlich konstanter Amlitude. Die Amlituden der Drehfelder sind m/ mal größer als die Amlituden der zugehörigen Wechselfelder.

7 3. Analyse von Drehstromwicklungen Seite 7 Die auf die Grundwelle bezogene Polaarzahlen der Feldwellen sind = 1, 5, 7, 11, 13,... Die Umlaufgeschwindigkeiten ergeben sich zu ω = ω (3.-5) Wicklungsfaktor Zur qualitativen Beurteilung des Wicklungsaufbaus reicht es aus, die Amlituden der Oberwellen mit der Grundwelle = zu vergleichen. Dies wird mit der Funktion des Wicklungsfaktors sin m y kw = sin (3.-6) τ q sin mq beschrieben. Beisiel: =4 olige, m=3 strängige Wicklung: / ε = 0 1 q= 1 1 Z 1 = k w k w / k w k w / k w k w / k w k w /

8 3. Analyse von Drehstromwicklungen Seite 8 Der Wicklungsfaktor des "n-ten nutharmonischen Paares" mit den Ordnungszahlen = n Z1 ± (3.4/6) ist gleich dem der Grundwelle, d. h. der Einfluss der Nutharmonischen lässt sich nur durch eine möglichst hohe Nutzahl reduzieren. Meist müssen weitere Maßnahmen unternommen werden um eine brauchbare Maschine zu erhalten, z. B. Schrägung der Nuten (Kaitel Asynchronmaschine). Doelt verkettete Streuung Sollen die relativen Auswirkungen der Wicklungsoberwellen auf das Maschinenverhalten beurteilt werden, so ist weniger die Amlitude der Wellen als vielmehr die Energie W aller Wicklungsoberwellen W ~ B ~ L (3.-7) in Bezug auf die Grundwelle von entscheidender Bedeutung. In der klassischen Maschinenberechnung wird hierfür der Koeffizient der doelt verketteten Streuung eingeführt. σ d = F HG F HG k k w wi KJ I KJ = L L 1, ρ 1, ρ. (3.-8) Im Gegensatz zur üblichen Definition von Streuung (nur einmal mit der erzeugenden Sule verkettet) sind die Luftsaltfelder der Wicklungsoberwellen mit den Wicklungen von Stator und Rotor verkettet (doelt verkettet). Der Begriff Streuung wird hier im Sinne "nicht nutzbringend" verwendet.

9 3. Analyse von Drehstromwicklungen Seite 9 Bild 3.-3: Erläuterungen zur hysikalischen Bedeutung der doelt verketteten Streuung.

10 3. Analyse von Drehstromwicklungen Seite 10 Bild 3.-4: Koeffizient der doelt verketteten Streuung d σ als Funktion der relativen Sulenweite y/τ.

Erzeugung eines Kreisdrehfeldes

Erzeugung eines Kreisdrehfeldes 3.1 Aufbau von symmetrischen dreisträngigen Drehfeldwicklungen Seite 1 Erzeugung eines Kreisdrehfeldes Kreisdrehfeld: Ein mit konstanter Amlitude im Luftsalt räumlich umlaufendes magnetisches Feld. Damit

Mehr

Elektrische Maschinen und Antriebe

Elektrische Maschinen und Antriebe Elektrische Maschinen und Antriebe Vorlesungsinhalt 1. Einleitung. Drehfelder in elektrischen Maschinen. Mathematische Analyse von Luftsaltfeldern 4. Sannungsinduktion in Drehstrommaschinen 5. Die Schleifringläufer-Asynchronmaschine

Mehr

5. Allgemeine Grundlagen der Drehstrommaschinen

5. Allgemeine Grundlagen der Drehstrommaschinen 5. Allgemeine Grundlagen der Drehstrommaschinen Die asynchronen und synchronen Drehstrommaschinen besitzen im Ständer denselben prinzipiellen Aufbau. Dies gilt besonders für den allgemeinen Aufbau der

Mehr

Grundsätzlicher Aufbau einer dreisträngigen Drehfeldwicklung:

Grundsätzlicher Aufbau einer dreisträngigen Drehfeldwicklung: . Asynchronmotor: Wirungsweise Seite Grundsätzlicher Aufbau einer dreisträngigen Drehfeldwiclung: +c a -b - a +a c b +b -c Wiclungsschema mit Nutenplan Einschichtwiclung: Eine Spulenseite pro Nut c a N

Mehr

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Übungsaufgaben Übung Raumzeiger: Gegeben ist folgende Durchflutung für die Wicklung a einer dreiphasigen Maschine. F a (θ mech, t) = α =

Mehr

Erzeugung von drei Phasen verschobenen Wechselspannungen

Erzeugung von drei Phasen verschobenen Wechselspannungen Erzeugung von drei Phasen verschobenen Wechselspannungen Werden in einem Generator nicht nur eine, sondern drei Spulen im Winkel von 120 versetzt angebracht, so bekommt man in jeder der drei Spulen einen

Mehr

2. Wicklungen für Drehfelder in elektrischen Maschinen

2. Wicklungen für Drehfelder in elektrischen Maschinen 2. Wicklungen für Drehfelder in elektrischen Maschinen Aufgabe A2.1: Felderregerkurve einer Drehstrom- Ganzlochwicklung Drehstrom-Ganzlochwicklung mit den folgenden Daten für ein Polpaar: Zweischichtwicklung,

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx.

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx. 86 5 Fouriertheorie Für gerades f ist f (x) sin nx ungerade, somit b n = f (x) sin nx dx =. Für ungerades f ist dagegen f cos nx ungerade, also a n = f (x) cos nx dx =..Ò Beispiel Die Sägezahnfunktion

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Asynchronmaschine: Grundlagen

Asynchronmaschine: Grundlagen Asynchronmaschine: Grundlagen Lösung Asynchronmaschine: Grundlagen I. Koordinatensysteme und Raumzeiger: I. Welche real vorhandenen Koordinatensysteme gibt es bei der Asynchronmaschine AS? Zeichnen Sie

Mehr

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:

Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

2.4 Spaltpolmotoren Seite 1

2.4 Spaltpolmotoren Seite 1 2.4 Spaltpolmotoren Seite 1 Spaltpolmotoren Spaltpolmotoren haben, im Gegensatz zu den Drehstrom- bzw. Kondensatormotoren, konzentrierte Wicklungen mit ausgeprägten Polen. Ein Teil des Pols trägt eine

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z)

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z) Elektromagnetische Felder Lösung zur Klausur om 9. März 22. a) δ(r) = für r und f(r) δ(r) dr = f() b) Normalkomponenten on D für σ = sowie on B Tangentialkomponenten on H für K = sowie on E c) Richtungsableitung:

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Signale und Systeme I

Signale und Systeme I TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Signale und Systeme I Formelsammlung v.5 Inhaltsverzeichnis Mathematische Formeln. Trigonometrische

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

6.3 GSM: Luftspaltfelder und Spannungsinduktion Seite 1

6.3 GSM: Luftspaltfelder und Spannungsinduktion Seite 1 6.3 GSM: Luftspaltfelder und Spannungsinduktion Seite 1 Hauptfeld Bild 6.3-1: Feldbild des Erregerfeldes (Hauptfeld) und zugehörige Feldkurve. Dargestellt ist die Normalkomponente der Flussdichte in bhängigkeit

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

Zeilenstufenform eines Gleichungssystems

Zeilenstufenform eines Gleichungssystems Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik

Gerade, ungerade oder weder noch? Algebraische und graphische Beweise. 4-E1 Vorkurs, Mathematik Gerade, ungerade oder weder noch? Algebraische und graphische Beweise 4-E1 Symmetrie einer Funktion: Aufgabe 3 Bestimmen Sie algebraisch und graphisch, ob die Funktionen gerade oder ungerade sind, oder

Mehr

Analyse des Luftspaltfeldes von Geschalteten Reluktanzmaschinen

Analyse des Luftspaltfeldes von Geschalteten Reluktanzmaschinen Analyse des Luftspaltfeldes von Geschalteten Reluktanzmaschinen Berthold Schinnerl, Dieter Gerling Institut für Elektrische Antriebstechnik und Aktorik Universität der Bundeswehr München Werner-Heisenberg-Weg

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Freie Universität Berlin Wintersemester / Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Musterlösung zum. Übungsblatt zur Vorlesung Mathematik für Physiker I Differenzierbarkeit,

Mehr

Elektrotechnik II Formelsammlung

Elektrotechnik II Formelsammlung Elektrotechnik II Formelsammlung Achim Enthaler 20.03.2007 Gleichungen Allgemeine Gleichungen aus Elektrotechnik I siehe Formelsammlung Elektrotechnik I, SS2006 Maxwell Gleichungen in Integralform Durchutungsgesetz

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 9 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Gruppenübungen Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani 6..4 Aufgabe 4. (schriftlich

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3

SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 3 SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 3 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

5 Die Asynchronmaschine

5 Die Asynchronmaschine Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Beispiel: Fahrmotoren des ICE 3 5 Die Asynchronmaschine 5.1 Einführung 5.1.1 Anwendung und

Mehr

Ankerwicklungen für Gleich- und Wechselstrommaschinen

Ankerwicklungen für Gleich- und Wechselstrommaschinen Ankerwicklungen für Gleich- und Wechselstrommaschinen Ein Lehrbuch von Rudolf Richter Professor an der Technischen Hochschule Fridericiana zu Karlsruhe Direktor des Elektrotechnischen Instituts Mit 377

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Berechnungsgrundsätze

Berechnungsgrundsätze .9 Berechnungsgrundsätze Seite 1 Berechnungsgrundsätze Jede rotierende elektrische Maschine besteht aus zwei konzentrisch zueinander angeordneten und gegeneinander verdrehbaren Bauteilen (Bild.9-1a). Die

Mehr

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Übungsaufgaben Übung Raumzeiger: Gegeben ist folgende Durchflutung für die Wicklung a einer dreiphasigen Maschine. F a (θ mech, t) = α =

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9 8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position

Mehr

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +. Mathematik für Informatiker B, SS 202 Dienstag 2.6 $Id: reihen.tex,v.8 202/06/2 0:59:50 hk Exp $ 7 Reihen Eine Reihe ist eine unendliche Summe a + a 2 + a 3 +. Die Summanden a i können dabei reell oder

Mehr

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale Peychyn Lai 10. Oktober 2007 1 Einleitung Wir haben im letzten Vortrag die Weierstrass sche -Funktion kennengelernt, die

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz Leistungselektronik und Antriebstechnik Laborberichte Christian Burri Tobias Plüss Pascal Schwarz 26. April 2013 Inhaltsverzeichnis 1 Asynchronmaschine am Netz 3 1.1 Versuchsaufbau......................................

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Mechatronik und elektrische Antriebe

Mechatronik und elektrische Antriebe Prof. Dr. Ing. Joachim Böcker Mechatronik und elektrische Antriebe 03.09.2014 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (30) 2 (18) 3 (22) Gesamt (60) Note Bearbeitungszeit: 120 Minuten

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie

Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie Übungsblatt zur Vorlesung EP (Prof. Grüner) im SS 0 0. Mai 00 Aufgabe : Feldlinien a) Richtig oder falsch? Das elektrische Feld einer Punktladung zeigt immer von der Ladung weg. Falsch! Bei negativen Ladungen

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

1 Formen und äußeres Differential

1 Formen und äußeres Differential 1 Formen und äußeres Differential Wir betrachten den n-dimensionalen reellen Raum R n = { x = x 1,...,x n ) : x i R für i = 1,...,n }. Definition 1.1 Ein Tangentialvektor an R n im Punkt x R n ist ein

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

Tutorium V: Musterlösung

Tutorium V: Musterlösung Tutorium V: Musterlösung 1 Fragen zur Synchronmaschine 1. Bei der Synchronmaschine wird wie bei der Asynchronmaschiene im Ständer ein Drehfeld erzeugt. Der Läufer besteht nun aus einem elektrisch oder

Mehr

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )= Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Blockbetrieb. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München

Blockbetrieb. Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik. Arcisstraße 21 D München Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 80333 München Email: eat@ei.tum.de Internet: http://www.eat.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

EDV für Chemiker: MAPLE - KURS

EDV für Chemiker: MAPLE - KURS EDV für Chemiker: MAPLE - KURS Vorlesung 4 Polynomenschar mit indizierten Koeffizienten > f:=x->a[0]+a[1]*x+a[2]*x^2+a[3]*x^3+a[4]*x^4; f := x a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 i) An der Stelle

Mehr