Modulformen, Teil 1. 1 Schwach modulare Funktionen

Größe: px
Ab Seite anzeigen:

Download "Modulformen, Teil 1. 1 Schwach modulare Funktionen"

Transkript

1 Vortrag zum Seminar zur Funktionentheorie, Robin Blöhm Dieser Vortrag führt uns zur Definition von Modulformen. Gemeinsam mit einem ersten Beispiel, den bereits bekannten Eisenstein-Reihen, ist sie im letzten der drei Abschnitte dieser Ausarbeitung zu finden. Schwach modulare Funktionen Einige Eigenschaften von Modulformen gelten schon für eine größere Klasse von Funktionen, die hier definierten schwach modularen Funktionen. (.) Definition (Schwach modulare Funktion) Sei k Z sowie f eine meromorphe Funktion auf H. Dann heißt f schwach modular vom Gewicht k, falls ( ) az + b f = (cz + d) k f (z) () cz + d für jedes z H sowie für alle ( a b c d ) SL 2 (Z) gilt. Als einfache Folgerung aus der Definition erhalten wir sofort folgendes (.2) Lemma Sei f = schwach modular vom Gewicht k. Dann ist k gerade. Wir wissen, dass ( ) SL 2 (Z) gilt. Einsetzen in die Definition (.) liefert ( ) ( ) z + f = ( z ) k f (z) z

2 Schwach modulare Funktionen für alle z H und somit f (z) = ( ) k f (z). Wählen wir z so, dass f (z) = ist, erhalten wir die Behauptung. Um die schwach modularen Funktionen leichter charakterisieren zu können, benötigen wir noch einige Vorbetrachtungen, die eingeleitet werden durch die nächste (.3) Definition Seien k Z sowie σ = ( ) a b c d Γ = SL2 (Z). Ist nun f meromorph auf H, dann definieren wir die durch σ induzierte Abbildung σ σz := az + b cz + d sowie ( ) az + b f k σ(z) := (cz + d) k f cz + d für alle z H. (.4) Lemma Seien σ, τ Γ sowie k Z. Dann ist die durch (.3) definierte Abbildung f f k σ eine lineare Rechtsoperation der Gruppe Γ auf dem Raum der komplexen Funktionen f auf der oberen Halbebene. Mit anderen Worten:. Die Abbildung f f k σ ist linear und 2. es gilt f k = f sowie f k (στ) = ( f k σ) k τ. Wir bezeichnen den Faktor (cz + d) mit j(σ, z), falls σ = ( a b c d ). Sei außerdem z H.. Die Linearität ist klarerweise erfüllt, da sich j(σ, z) k als Faktor nicht ändert, ebensowenig wie das Argument σz der Funktion. 2. Die Rechnung ( ) z + f k (z) = ( z + ) k f = f (z) z + impliziert bereits die erste Voraussetzung für die Gruppenoperation. Die zweite ist für k = wegen 2

3 Schwach modulare Funktionen f (στ)(z) = f (στz) = f σ(τz) = ( f σ) τ(z) (2) ebenfalls schnell gezeigt. Sind nun σ = ( ) a b c d und τ = ( r s t u ), dann ist ( ) ar + bt as + bu στ =, cr + dt cs + du woraus folgt. j(στ, z) = (cr + dt) z + (cs + du) = c (rz + s) + d (tz + u) = (c rz + s + d) (tz + u) tz + u = (c τz + d) (tz + u) = j(σ, τz) j(τ, z) (3) Für allgemeines k Z erhalten wir mit f k σ(z) = j(σ, z) k f σ(z) unser gewünschtes Ergebnis f k (στ)(z) = j(στ, z) k f (στ)(z) (2),(3) = j(σ, τz) k j(τ, z) k ( f σ) τ(z) = ( f k σ) k τ(z). Diese Gruppenoperation benutzen wir nun, um eine Charakterisierung der schwach modularen Funktionen anzugeben. (.5) Lemma (Charakterisierung schwach modularer Funktionen) Sei k 2Z. Dann ist eine auf H meromorphe Funktion f genau dann schwach modular, wenn f (z + ) = f (z) und f ( z ) = zk f (z) für alle z H gilt. Per Definition ist eine meromorphe Funktion f genau dann schwach modular, wenn ( ) az + b (cz + d) k f = f (z) cz + d 3

4 für alle σ = ( ) a b c d Γ = SL2 (Z) und alle z H gilt. Dies ist aber gleichbedeutend mit der Invarianz von f unter der Gruppenoperation aus Definition (.3). Das heißt, dass f k σ = f für alle σ Γ erfüllt sein muss. Uns ist bereits bekannt, dass die Modulgruppe Γ von den Elementen S = ( ) und T = ( ) erzeugt wird. Aus diesem Grund genügt es für eine schwach modulare Funktion die Invarianz von f lediglich unter S und T zu zeigen. Die zu zeigende Charakterisierung schwach modularer Funktionen vom Gewicht k entspricht den beiden Gleichungen aus Lemma (.5), denn f k S(z) = f (z) bedeutet per Definition ( z + ) k f ( ) z = f (z), z + was äquivalent zu f ( z ) = zk f (z), also der zweiten Gleichung ist. Die erste Gleichung f (z + ) = f (z) erhalten wir analog aus f k T(z) = f (z), also ( ) z + ( z + ) k f = f (z), z + da k gerade ist. In diesem Abschnitt werden wir uns nun dem Verhalten der Fourier-Entwicklung einer schwach modularen Funktion widmen, was uns die Definition der Modulformen ermöglicht, unser ursprüngliches Ziel. Im weiteren Verlauf fassen wir C (R/Z) als die Menge der unendlich oft stetig differenzierbaren komplexwertigen Funktionen auf R auf, die periodisch sind mit Periode. Zunächst werden wir die Eigenschaften der Fourier-Entwicklung einer solchen Funktion betrachten, um dies dann für allgemeine schwach modulare Funktionen zu verwenden. Zuvor noch folgende (2.) Definition (Schnell fallende Folge) Eine Folge {d n } C heißt schnell fallend, falls für jedes k N die Folge {n k d n } beschränkt ist. 4

5 (2.2) Satz (Fourier-Entwicklung) Sei g C (R/Z) und sei c n (g) := g(t)e 2πint dt. Dann erhalten wir die Gleichung g(x) = c n (g)e 2πinx (4) und die Reihe auf der rechten Seite konvergiert gleichmäßig. Weiterhin sind die Fourier-Koeffizienten c n (g) schnell fallend. Da die Bedingung für schnelles Fallen Beschränktheit einer Folge fordert, brauchen wir nur alle bis auf endlich viele Glieder dieser Folge zu betrachten. Sei hier also n =. Partielle Integration liefert beispielsweise für k = 2 c n (g) = g(t)e 2πint dt = g (t)e 2πint dt 2πin = 4π 2 n 2 g (t)e 2πint dt 4π 2 n 2 g (t) dt. Offensichtlich können wir durch Iteration der partiellen Integration eine beliebige Potenz von n im Nenner des Bruches erzeugen, da der Exponent bei jedem Schritt der partiellen Integration um wächst. Allgemein erhalten wir c n (g) n k C k := (2π) k g (k) (t) dt, sodass die Koeffizientenfolge tatsächlich schnell fallend ist. Hieraus folgt mit dem Majorantenkriterium auch direkt die Konvergenz der Reihe c n (g), da beispielsweise die Reihe über C 2 n 2 konvergiert und eine Majorante von c n (g) ist. Weiter ist e 2πinx = für alle x R, also konvergiert auch c n (g)e 2πinx, und dies sogar gleichmäßig, weil die Schranken C k nicht von x abhängen. Da aus absoluter Konvergenz dieser Reihe aber Konvergenz folgt, haben wir die Behauptungen bezüglich der Reihe auf der rechten Seite von (4) bewiesen. Nun bleibt also noch zu zeigen, dass diese Reihe für jedes x R genau gegen g(x) konvergiert, also die Fourierentwicklung von g ist. 5

6 Nehmen wir an, wir hätten dies für x = gezeigt. Dann wären wir bereits fertig, denn sei g x (t) := g(x + t), so gilt g(x) = g x () = c n (g x ) e} 2πin {{} = c n (g x ) = für alle x. Mit der Definition unserer Koeffizienten c n folgt c n (g x ) = = = e 2πinx Integrand periodisch = e 2πinx g x (t)e 2πint dt = e 2πinx c n (g) g(x + t)e 2πint dt und somit auch die Behauptung, falls sie für x = gilt. g(x + t)e 2πin(x+t) dt g(s)e 2πin(s) ds Um Letzteres zu beweisen, betrachten wir auch hier wieder nur einen Spezialfall, nämlich g() =. Sei ansonsten h(x) = g(x) g(). Dann erhalten wir für die Koeffizienten im Falle von n = c n (h) = = und für n = noch einfacher h(t)e 2πint dt g(t)e 2πint dt g() e 2πint dt = c n (g) + g() ( ) e 2πin = c n (g) 2πin }{{} = c (h) = = c n (g) g() e 2πint }{{} = dt = c n (g) g(). 6

7 Da wir bereits gezeigt hätten, dass die Behauptung für h gilt, da h() = ist, wäre ( ) g() = h() + g() = wie gewünscht. c n (h) + g() = c n (g) g() + g() = c n (g), Nun bleibt also nur noch für g() = zu zeigen, dass c n (g) = ist. Dazu nehmen wir die Hilfsfunktion h(x) = g(x) e 2πix. Sowohl Nenner als auch Zähler sind von der Periode und wegen g(z) = {} ist h in C (R/Z). Wir berechnen weiter c n (g) = h(t)(e 2πit )e 2πint dt = c n (h) c n (h), sodass wir aus h C (R/Z) und der daraus resultierenden, zu Beginn des es gezeigten absoluten Konvergenz der Reihe c n (h) die Reihe c n (g) wie folgt auftrennen dürfen, was die Behauptung liefert: c n (g) = (c n (h) c n (h)) = c n (h) c n (h) =. Wir wollen nun die Brücke zu den im ersten Abschnitt betrachteten schwach modularen Funktionen schlagen. Diese sind zwar auf der oberen Halbebene der komplexen Zahlen definiert, jedoch können wir sie für festes y H als Funktion der Form f (y) : R C, x f (x + iy) auffassen, solange kein Pol auf der Geraden {z H Im(z) = y} vorliegt. Da außerdem nach Lemma (.5) f (y) (x) = f (y) (x + ) gilt, erhalten wir in diesem Fall f (y) C (R/Z). Aufgrund dieser Konstruktion können wir Satz (2.2) anwenden, sodass wir f wie folgt in eine Fourier-Reihe entwickeln können, falls auf der Geraden Im(z) = y kein Pol vorliegt: f (x + iy) = c n (y)e 2πinx. Wir wissen ebenfalls bereits, dass die Folge c n (y) schnell fallend ist. Mit diesen Bezeichungen erhalten wir das folgende 7

8 (2.3) Lemma (Fourier-Entwicklung schwach modularer Funktionen) Für jedes n Z gilt c n (y) = a n e 2πny für eine Konstante a n C. Also lässt sich f schreiben als f (z) = a n e 2πinz, (5) wobei die Folge {a n e a n } für alle a > schnell fallend ist. Sei y > so, dass auf der Geraden Im(z) = y kein Pol von f liegt. Dort wo f holomorph ist, gilt bekanntlich f x (x + iy) + i f y (x + iy) =. Dies führt uns zu der Differentialgleichung = = die zu ( f x (x + iy) + i f y (x + iy))e 2πinx dx f x (x + iy)e 2πinx dx + i = [ f (x + iy)e 2πinx ] }{{} =, da f -periodisch ist = 2πinc n (y) + ic n(y), +2πin f y (x + iy)e 2πinx dx f (x + iy)e 2πinx dx + i y c n(y) = 2πnc n (y) äquivalent ist. Diese Differentialgleichung hat die bekannten Lösungen für alle a n C. Weiter gilt für a > c n (y) = a n e 2πny a n e a n an e an = a n e 2πn 2π a = ( a ) c n, 2π f (x + iy)e 2πinx dx sodass die Folge {a n e a n } schnell fallend ist, da dies für {c n ( 2π a )} wegen > bereits aus Lemma (2.2) bekannt ist. a 2π 8

9 3 Modulformen 3 Modulformen Die im letzten Abschnitt bewiesene Darstellung schwach modularer Funktionen ermöglicht es uns, sie als Funktion abhängig von q := e 2πiz zu schreiben. Im weiteren Verlauf werden wir diese Bezeichnung beibehalten. (3.) Definition (Modulare Funktionen, Modulformen, Spitzenformen) Mit den Bezeichnungen aus Lemma (2.3) heißt eine schwach modulare Funktion f, für die ein M existiert, sodass f im Bereich Im(z) > M keine Polstelle besitzt, modulare Funktion, falls sie meromorph in ist, d.h., dass es ein n Z gibt mit a n = für n < n. Ist f zusätzlich holomorph auf H und holomorph in, d.h. a n = für jedes n <, dann heißt f Modulform. Gilt zusätzlich noch a =, so heißt f Spitzenform. Man sagt dann auch, dass f in verschwindet. Die Einschränkung bei den modularen Funktionen sorgt dafür, dass wir keinen Häufungspunkt von Polstellen in erhalten, da f dann nicht mehr meromorph in ergänzbar wäre. Da z H ist, folgt für Modulformen q B ()\{}, also lässt f sich auffassen als Verkettung von z q und einer Funktion auf dem Einheitskreis, die in holomorph fortsetzbar ist. Die uns bereits bekannten Eisensteinreihen G k dienen hier für gerade k 4 als Beispiele für Modulformen, was wir hier gleich zeigen werden. Wir erinnern uns, dass die Eisensteinreihen G k dann schwach modular vom Gewicht k sind, wie in einem der vorherigen Vorträge gezeigt wurde, auch wenn diese Eigenschaft dort noch nicht die erst in diesem Vortrag eingeführte Bezeichnung hatte. (3.2) Proposition (Eisenstein-Reihen) Sei k 4 gerade. Dann gilt mit σ k (n) := d n d k, der k-ten Teilerpotenzsumme: G k (z) = 2ζ(k) + 2 (2πi)k σ k (n)q n. (6) n= 9

10 3 Modulformen Zunächst leiten wir uns eine Identität her, die wir im weiteren Verlauf des es benötigen werden. Dazu verwenden wir zwei verschiedene Darstellungen des Cotangens. Die erste ist uns bereits bekannt als die Partialbruchzerlegung des Cotangens πcot(πz) = z + m= Die zweite Darstellung ergibt sich aus πcot(πz) = π cos(πz) eπiz+e πiz sin(πz) = π 2 e πiz e πiz = πi q + q 2i ( z + m + ). z m = πi eπiz + e πiz e πiz e πiz = πi e2πiz + e 2πiz 2πi = πi q = πi 2πi q d. d= Wir differenzieren hier (k )-fach nach z und erhalten ( d k ( dz k z + z + m + z m m= ) ) = ( ) k m Z (z + m) k, da die letzte Reihe für k 4 absolut konvergiert, also unabhängig von der Reihenfolge der Summation ist. Die zweite Darstellung führt zu ( ) d k dz k πi 2πi e 2dπiz = (2πi) k d k e 2dπiz. d= Gleichsetzen liefert uns m Z d= (z + m) k = (2πi)k d k e 2dπiz, (7) d= da k gerade ist. Diese Identität werden wir nach kurzer Umformung in die Definition der Eisenstein-Reihe einsetzen. Hierbei erinnern wir uns, dass und somit ζ(k) = m= m k

11 3 Modulformen G k (z) = (nz + m) (n,m) Z 2 \{(,)} k = 2ζ(k) + 2 n= m Z (7) = 2ζ(k) + 2 (2πi)k = 2ζ(k) + 2 (2πi)k (nz + m) k n= n= d= d= d k e 2dπinz d k q nd. Wir sortieren nun die Doppelsumme nach dem Exponenten a := nd von q. Für jedes solche a N erhalten wir dann gerade so viele Summanden wie es Teiler d von a gibt, sodass der Koeffizient von q a die Teilerpotenzsumme σ k (a) ist:... = 2ζ(k) + 2 (2πi)k a= d k q a d a = 2ζ(k) + 2 (2πi)k σ k (a)q a. a=

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz

Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 10. f(z) f(z) dz UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Musterlösung zu Blatt 0 Aufgabe. Berechnen Sie

Mehr

Die Thetafunktion. Björn Walker und ϑ(τ, z) ist in z sowie in τ eine analytische Funktion, denn:

Die Thetafunktion. Björn Walker und ϑ(τ, z) ist in z sowie in τ eine analytische Funktion, denn: Die Thetafunktion Björn Walker.0.006 und 9.0.006 Definition der Thetafunktion Folgende Reihe wird als Thetafunktion bezeichnet: ϑ(τ, z) : e πi(n τ+nz) ϑ(τ, z) ist in z sowie in τ eine analytische Funktion,

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

86 Klassifizierung der isolierten Singularitäten holomorpher

86 Klassifizierung der isolierten Singularitäten holomorpher 86 Klassifizierung der isolierten Singularitäten holomorpher Funktionen 86. Isolierte Singulariäten holomorpher Funktionen 86.3 Klassifizierung der isolirerten Singularitäten 86.5 Charakterisierung hebbarer

Mehr

4 Anwendungen des Cauchyschen Integralsatzes

4 Anwendungen des Cauchyschen Integralsatzes 4 Anwendungen des Cauchyschen Integralsatzes Satz 4. (Cauchysche Integralformel) Es sei f : U C komplex differenzierbar und a {z C; z z 0 r} U. Dann gilt f(a) = z z 0 =r z a dz. a z 0 9 Beweis. Aus dem

Mehr

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai

Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale. Peychyn Lai Das Additionstheorem für die Weierstrass sche -Funktion und elliptische Integrale Peychyn Lai 10. Oktober 2007 1 Einleitung Wir haben im letzten Vortrag die Weierstrass sche -Funktion kennengelernt, die

Mehr

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev

Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Begleittext zum Vortrag Der Körper der elliptischen Funktionen Seminar Funktionentheorie bei Prof. Dr. Janko Latschev Christian Offen 27.11.2013 Inhaltsverzeichnis 1 Die Struktur der Menge der elliptischen

Mehr

2. Klausur zur Funktionentheorie SS 2009

2. Klausur zur Funktionentheorie SS 2009 Aufgabe : Finden Sie ein Beispiel für eine meromorphe Funktion f M(C), die auf den Kreisringen A 0, (0) und A,2 (0) unterschiedliche Laurentreihenentwicklungen besitzt. Beweisen Sie, dass Ihr Beispiel

Mehr

L-Funktionen

L-Funktionen Sabrina Vorwerk (287774) 28..2 Ausarbeitung zum Vortrag zum Seminar zur Funktionentheorie beim Herrn Prof. Dr. A. Krieg Lehrstuhl A für Mathematik, RWTH Aachen Inhaltsverzeichnis Inhaltsverzeichnis Grundlegende

Mehr

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen

Doppel-periodische Funktionen und die Weierstraßsche -Funktion. 1 Doppelt-periodische Funktionen Doppel-periodische Funktionen und die Weierstraßsche -Funktion Vortrag zum Seminar zur Funktionentheorie, 30.03.2009 Stefanie Kessler Die komplexen Zahlen als Erweiterung der reellen Zahlen ermöglichen

Mehr

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen;

Kapitel 24. Entwicklungen holomorpher Funktionen Taylor-Reihen (Potenzreihen und holomorphe Funktionen; Kapitel 24 Entwicklungen holomorpher Funktionen Reihenentwicklungen spielen in der Funktionentheorie eine ganz besodere Rolle. Im Reellen wurden Potenzreihen in Kapitel 5.2 besprochen, das komplexe Gegenstück

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Transformationsverhalten der Sigma-Funktion und Existenz sowie Darstellung von elliptischen Funktionen

Transformationsverhalten der Sigma-Funktion und Existenz sowie Darstellung von elliptischen Funktionen Transformationsverhalten der Sigma-Funktion und Existenz sowie Darstellung von elliptischen Funktionen Stefan Bleß Seminar zur Funktionentheorie II 07. Januar 013 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Elliptische Funktionen

Elliptische Funktionen Elliptische Funktionen Jeff Schomer Universität Freiburg (Schweiz) 27.09.2007 Einleitung In diesem Seminar werden wir über doppelt periodische und elliptische Funktionen sprechen. Nachdem wir grundlegende

Mehr

Fourier-Reihen: Definitionen und Beispiele

Fourier-Reihen: Definitionen und Beispiele Fourier-Reihen: Definitionen und Beispiele Die Fourieranalysis beschäftigt sich mit dem Problem Funktionen in Kosinus und Sinus zu entwickeln. Diese Darstellungen sind in der Mathematik sowie in der Physik

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

Analytische Zahlentheorie

Analytische Zahlentheorie 4. April 005. Übungsblatt Aufgabe (4 Punkte Sei k N. Beweisen Sie, dass f : N C mit f(n := n k streng multiplikativ ist. Sei τ die Funktion, die der natürlichen Zahl n die Anzahl der Teiler von n zuordnet

Mehr

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch

c r Addiert man nun beide Reihendarstellungen, so folgt f (ζ) Nach dem Cauchyschen Integralsatz gilt dann auch Residuen V Beweis Einsetzen in das Kurvenintegral über c r ergibt demnach f (ζ) 2πi ζ z dζ = f (ζ) 2πi (ζ z 0 ) c r k= c r k+ dζ Addiert man nun beide Reihendarstellungen, so folgt a k (z z 0 ) k, r z

Mehr

1 Die vier Sätze von LIOUVILLE

1 Die vier Sätze von LIOUVILLE Vortrag zum Seminar Elliptische Funktionen und elliptische Kurven, 3.06.005 Marcel Carduck Es sei stets Ω ein Gitter in C und (ω 1, ω ) eine Basis von Ω. Weiter bezeichne P := (u; ω 1, ω ) := {u + λ 1

Mehr

Komplexe Analysis D-ITET. Serie 8

Komplexe Analysis D-ITET. Serie 8 Dr. T. Bühler M. Wellershoff Frühlingssemester 206 Komplexe Analysis D-ITET Serie 8 ETH Zürich D-MATH Aufgabe 8. Umlaufzahlen Berechnen - Teil I Das Ziel der Aufgabe ist es die Umlaufzahlen in vier Zyklen

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw.

Funktionentheorie. Lösungsvorschläge zum 6. Übungsblatt. f (w) w z dw. Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 04 3.06.04 Funktionentheorie Lösungsvorschläge zum 6. Übungsblatt Aufgabe (K) a) Zeigen

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung Michael Winkler Johannes Lankeit 22.4.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Hausaufgabe : 2 Punkte Bei welchen der folgenden Funktionen u: G R kann es sich um den Realteil einer in G holomorphen

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

3 Windungszahlen und Cauchysche Integralformeln

3 Windungszahlen und Cauchysche Integralformeln 3 3 Windungszahlen und Cauchysche Integralformeln 3. Definition: Sei geschlossener Integrationsweg oder Zyklus mit z 0 C \ Sp. Dann heißt n(, z 0 ) := dz z z 0 Windungszahl (oder: Index, Umlaufszahl) von

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit 10 Aus der Analysis Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit Zahlenfolgen Ein unendliche Folge reeller Zahlen heißt Zahlenfolge. Im Beispiel 2, 3, 2, 2 2, 2

Mehr

Einige Standard-Aufgabentypen der Funktionentheorie I

Einige Standard-Aufgabentypen der Funktionentheorie I Matthias Stemmler SS 6 stemmler@mathematik.uni-marburg.de Einige Standard-Aufgabentypen der Funktionentheorie I I. Untersuchung von Funktionen auf komplexe Differenzierbarkeit/Holomorphie gegeben: gesucht:

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Michael Winkler Johannes Lankeit 8.4.2014 Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Präsenzaufgabe 1: Rufe dir die folgenden Definitionen wieder in Erinnerung: C = {(x, y); x R, y R} bildet

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Komplexe Funktionen für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 214 Dr K Rothe Komplexe Funktionen für Studierende der Ingenieurwissenschaften Aufgaben und Theoriehinweise zu Blatt 6 Komplexe Funktionen, K Rothe,

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C

Kapitel 5. Die trigonometrischen Funktionen Die komplexen Zahlen Folgen und Reihen in C Kapitel 5. Die trigonometrischen Funktionen 5.1. Die komplexen Zahlen 5.. Folgen und Reihen in C 5.10. Definition. Eine Folge (c n n N komplexer Zahlen heißt konvergent gegen c C, falls zu jedem ε > 0

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Lösungen zur Klausur Funktionentheorie I SS 2005

Lösungen zur Klausur Funktionentheorie I SS 2005 Universität Karlsruhe 29 September 25 Mathematisches Institut I Prof Dr M von Renteln Dr C Kaiser Aufgabe en zur Klausur Funktionentheorie I SS 25 Sei S die Möbiustransformation, die durch S(z) = i i z

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Analysis II - 1. Klausur

Analysis II - 1. Klausur Analysis II -. Klausur Sommersemester 25 Vorname: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Analysis II -. Klausur 2.5.25 Aufgabe 2 Punkte Berechnen

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

1 Das Additionstheorem und Folgerungen

1 Das Additionstheorem und Folgerungen Das Additionstheorem der -Funktion und elliptische Kurven Vortrag zum Seminar zur Funktionentheorie, 05.11.2007 Cornelia Wirtz Ziel dieses Vortrages ist es, das Additionstheorem der Weierstraß schen -Funktion

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss

13. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Fachbereich Mathematik Prof. Dr. H.-D. Alber Dr. N. Kraynyukova Dipl.-Ing. A. Böttcher WS / 3. Januar 3. Übungsblatt zur Mathematik III für ETiT, WI(ET), IST, CE, LaB-ET, Sport-Wiss Gruppenübung Aufgabe

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Funktionentheorie I : WS Die Γ Funktion

Funktionentheorie I : WS Die Γ Funktion Funktionentheorie I : WS -5 Die Γ Funktion Dr. Rolf Busam Materialien zur Vorlesung Funktionentheorie I, WS -5. Eine kleine Formelsammlung zur Γ Funktion. Definition: Ist H r := { z C ; Re z > } die rechte

Mehr

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion

Residuen II. Residuen III. Beispiel. Beispiel. f (z) = 1 + z 2. gilt nach 2) , Res (f ; i) = Res (f ; i) = 1 = 1. Die Funktion Residuen II Komplexe Partialbruchzerlegung, Residuensatz Für gilt nach 2) Res (f ; i) = 1 2z = 1 z=i 2i f (z) = 1 1 + z 2, Res (f ; i) = 1 2z = 1 z= i 2i Reiner Lauterbach (Universität Hamburg) Komplexe

Mehr

2. Übungsblatt zur Differentialgeometrie

2. Übungsblatt zur Differentialgeometrie Institut für Mathematik Prof. Dr. Helge Glöckner Dipl. Math. Rafael Dahmen SoSe 11 15.04.2011 2. Übungsblatt zur Differentialgeometrie (Aufgaben und Lösungen) Gruppenübung Aufgabe G3 (Atlanten) (a) In

Mehr

23 Laurentreihen und Residuen

23 Laurentreihen und Residuen 23 Laurentreihen und Residuen 23. Laurentreihen Ist eine Funktion f in einem Punkt z nicht holomorph (oder nicht einmal definiert), so läßt sich f nicht durch eine Potenzreihe mit Entwicklungspunkt z darstellen.

Mehr

Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende

Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende Ein Fundamentalbereich der Modulgruppe Vortrag zum Seminar zur Funktionentheorie,.04.009 Kerstin Küpper Im Vortrag wird die Modulgruppe und ihre Erzeuger untersucht und ein exakter Fundamentalbeich der

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Examenskurs Analysis Probeklausur I

Examenskurs Analysis Probeklausur I Georg Tamme Sommersemester 14 Examenskurs Analysis Probeklausur I 5.6.14 F1II1. Sei f : C C eine ganze Funktion. Entscheiden Sie, ob die folgenden Behauptungen wahr sind. Begründen Sie Ihre Antwort jeweils

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Korrekturen zum Buch Automorphe Formen Anton Deitmar 2010

Korrekturen zum Buch Automorphe Formen Anton Deitmar 2010 Korrekturen zum Buch Automorphe Formen Anton Deitmar 00 Ich bedanke mich ganz herzlich bei allen, die mich auf Fehler aufmerksam gemacht haben, ganz besonders bei Eberhard Freitag und Stefan Kühnlein.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

4 Isolierte Singularitäten und Laurentreihen

4 Isolierte Singularitäten und Laurentreihen 35 4 Isolierte Singularitäten und Laurentreihen Wir beginnen mit einer lokalen Beschreibung der Nullstellen holomorpher Funktionen. 4. Lokale Beschreibung von Nullstellen. Sei U C offen, f : U C holomorph

Mehr

Lösungen zum 9. Übungsblatt Funktionentheorie I

Lösungen zum 9. Übungsblatt Funktionentheorie I Universität Karlsruhe SS 25 Mathematisches Institut I Prof Dr M von nteln Dr C Kaiser Lösungen zum 9 Übungsblatt Funktionentheorie I Aufgabe 9 K a) Wir verwenden bei diesem Integranden die Partialbruchzerlegung

Mehr

3.4 Analytische Fortsetzung

3.4 Analytische Fortsetzung 3.4 Analytische Fortsetzung 3.4. Analytische Fortsetzung 49 Es kann vorkommen, dass eine holomorphe Funktion f, definiert durch eine Potenzreihe um den Punkt z 0 mit Konvergenzradius R, über den Rand der

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

5. Die Liouville'schen Sätze

5. Die Liouville'schen Sätze 5. Die Liouville'schen Sätze In diesem Vortrag wird eine Unterklasse der meromorphen Funktionen betrachtet, die Menge der elliptischen Funktionen. Diese werden zunächst formal eingeführt, es folgen die

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1

Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. z z + m 1 f(z +m+1) = ( 1)m 1 23 3 Die Γ-Funktion Gesucht ist eine holomorphe oder meromorphe Funktion, die die Fakultäten interpoliert. f(n) = (n )! für n N. Das wird durch die Funktionalgleichung erreicht. Bemerkungen. f(z + ) =

Mehr

9 Höhere partielle Ableitungen und die Taylorformel

9 Höhere partielle Ableitungen und die Taylorformel Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff 9 Höhere partielle Ableitungen und die Talorformel Definition 91 Sei U R n offen, f : U R m eine Funktion Dann heißt f 2-mal partiell differenzierbar,

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Die Riemannsche Zetafunktion. 1 Einführung

Die Riemannsche Zetafunktion. 1 Einführung Die Riemannsche Zetafunktion Vortrag zum Seminar zur Funktionentheorie,..8 Michael Hoschek Mit meinem Vortrag möchte ich die wichtigste Dirichletsche Reihe, die Riemannsche Zetafunktion mit einigen besonderen

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen 114 Kapitel 2 Konforme Abbildungen 6 Julia-Mengen Sei G C ein Gebiet. Eine holomorphe Abbildung f : G G kann eine holomorphe oder eine meromorphe Funktion auf G sein. Definition. Zwei holomorphe Abbildungen

Mehr

3 Meromorphe Funktionen und der Residuenkalkül

3 Meromorphe Funktionen und der Residuenkalkül $Id: mero.tex,v.5 203/05/4 3:0:42 hk Exp hk $ 3 Meromorphe Funktionen und der Residuenkalkül 3.2 Isolierte Singularitäten In der letzten Sitzung hatten wir die drei Typen isolierter Singularitäten und

Mehr

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken Fachbereich Mathematik SS 0 J. Latschev Analysis II Fourierreihen In diesem Kapitel der Vorlesung widmen wir uns der Frage, inwieweit man jede periodische Funktion als Reihe in gewissen Standardfunktionen

Mehr

1 Reihen von Zahlen. Inhalt:

1 Reihen von Zahlen. Inhalt: 5 Kapitel 3 Reihen Reihen von Zahlen Inhalt: Konvergenz und Divergenz von Reihen reeller oder komplexer Zahlen, geometrische Reihe, harmonische Reihe, alternierende Reihen. Cauchy-Kriterium, absolute Konvergenz,

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr