Projektarbeit zur Schwarzkörperstrahlung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Projektarbeit zur Schwarzkörperstrahlung"

Transkript

1 Projektarbeit zur Schwarzkörperstrahlung Quantenmechanik SS 004 Gruppe 9 Gruppenmitglieder Simon Außerlechner Florian Hebenstreit Martin Horn Alexander Reinmüller Christoph Stieb

2 Inhaltverzeichnis. Einleitung.... Strahlung.... Schwarzer Körper Theoretische Ansätze Planck sches Gesetz Praktischer Nutzen Herleitungen Quellenangaben... 0

3 . Einleitung Zu Anfang des 9. Jahrhunderts glaubte man die Physik sei eine annähernd abgeschlossene Wissenschaft. Die Physiker waren überzeugt, dass es möglich ist die physikalische Wirklichkeit mit den zwei klassischen Theorien, der Maxwellschen Elektrodynamik und der Newtonschen Mechanik, vollständig beschreiben zu können. Die Klassische Physik konnte nur mehr wenige Phänomene nicht erklären. Ein Beispiel hierfür ist die Schwarzkörperstrahlung. Um sie verstehen zu können werden nun Begriffe eingeführt und Gesetzte hergeleitet.. Strahlung Allgemein bezeichnet der Begriff Strahlung einen Strom von Energie. Das sogenannte Strahlungsfeld ist gegeben durch die räumliche Verteilung der Energiestromdichte, welche auch Intensität genannt wird. Im Speziellen versteht man unter Strahlung die elektromagnetische, zu der unter anderem die infrarote, die des sichtbaren Lichtes, UV-, Röntgen- und γ- Strahlung zählen. Die Ausbreitung elektromagnetischer Strahlung im Raum lässt sich anhand des Modells der Wellenausbreitung beschreiben. Auf dem Prinzip der elektromagnetischen Induktion aufbauend besagt es, dass ein elektrisches und ein magnetisches Feld orthogonal zueinander mit einer Phasenverschiebung von 90 harmonisch oszillieren ohne ein Trägermedium zu benötigen. Dieses Modell stößt jedoch bei der Erklärung der Absorption und der Emission von Strahlung durch Materie an seine Grenzen. In der klassischen Physik kann langwellige Strahlung durch sich periodisch ändernde elektrische oder magnetische Felder erzeugt werden. Dies ist beispielsweise im elektrischen Schwingkreis realisiert oder einer Abwandlung davon: Dem Hertzschen Dipol. Dieser besteht nur noch aus einem leitfähigen Stab, in welchem nach einer äußeren Anregung die Ladungsträger hin- und herfließen. Die damit verbundene periodische Änderung des elektrischen Feldes in der Umgebung induziert ein entsprechendes magnetisches Feld. Die Feldlinien schnüren sich ab und breiten sich als elektromagnetische Welle im Raum aus. Die Wellenlänge der Strahlung hängt von Parametern wie zum Beispiel der Dipollänge, der Driftgeschwindigkeit der Ladungsträger und dem den Dipol umgebenden Stoff ab. Durch die Abstrahlung geht dem Dipol Energie verloren. Der Schwingungsvorgang ist also gedämpft und kommt irgendwann zum Erliegen. Man könnte nun versucht sein, Atome als mikroskopische Hertzsche Dipole aufzufassen, in denen die Elektronen schwingen. Diese könnten einfallende Strahlung beliebiger E- nergie absorbieren und einen Zustand größerer Anregung einnehmen; ebenso könnten sie

4 durch ihr Schwingungsverhalten abstrahlen. Dies führt jedoch zu eben jenem Widerspruch, der erst von Niels Bohr im Jahre 9 durch die Bohrschen Postulate aufgelöst wurde: Wäre das Atom ein Hertzscher Dipol, würde es ständig Energie abstrahlen, sodass das Elektron nach Nanosekunden in den Kern stürzte. Dies ist offensichtlich nicht der Fall. Gemäß Bohr können die Elektronen im Atom nur eine Reihe von diskreten Energiezuständen einnehmen, in welchen sie nicht abstrahlen. Lediglich bei einer Änderung des Energieniveaus kann ein Elektron Strahlung absorbieren oder emittieren. Dabei besitzt die absorbierte oder emittierte Strahlung entsprechende diskrete Energiewerte. Das Zutreffen dieser Bohrschen Postulate zeigt sich am deutlichsten im Spektrum isolierter, das heißt im gasförmigen Zustand vorliegender Atome. Dieses besteht aus diskreten Linien. Handelt es sich um ein Molekülgas, so sind die Linien verschmiert, und es ergeben sich Molekülbanden. Das Spektrum von Flüssigkeiten und Feststoffen ist kontinuierlich, das heißt es enthält jeden beliebigen Energiewert aus dem zulässigen Energiebereich. Allgemein gilt: Je dichter die untersuchte Materie ist, umso stärker beeinflussen sich die Teilchen gegenseitig, sodass die Linien umso verschmierter sind.. Schwarzer Körper Das Modell des schwarzen Körpers beschreibt mit dem dazugehörenden Planckschen Strahlungsgesetz quantitativ die Energieverteilung der Strahlung eines idealisierten Körpers mit kontinuierlichem Spektrum über der Körpertemperatur und der Strahlungsfrequenz. Dabei werden keine Angaben über die Mechanismen von Absorption und Emission gemacht. Dieses Konzept wurde von Max Planck im Jahre 900 vorgestellt und ging somit den Bohrschen Postulaten zeitlich voraus. Davon ausgehend, dass ein Körper ein natürliches Vermögen besitzt, Strahlung zu absorbieren und Strahlung zu emittieren, stellt sich die Frage, unter welchen Umständen und in welchem Maße er dies tut. Die Emission kann nur von den Eigenschaften des Körpers selbst, insbesondere der Temperatur, abhängen und nicht von denen der Umgebung, sodass ein Körper ständig strahlt, sofern seine Temperatur T > 0 K ist. Welche Energie er jedoch dabei effektiv abgibt oder aufnimmt, hängt außerdem noch von seiner Absorption ab. Befinden sich also zwei Körper im thermischen Gleichgewicht, so ist dieses kein statisches, sondern ein dynamisches, da beide gleichviel Strahlung emittieren wie absorbieren. Von der einfallenden Strahlung wird ein Teil absorbiert, der Rest wird reflektiert. Der Anteil der absorbierten Strahlung relativ zur insgesamt einfallenden wird als Absorptionsgrad ε bezeichnet. Der Reflexionsgrad beträgt demzu-

5 folge ε. Der Absorptionsgrad ist im Allgemeinen stoff- und frequenzabhängig. Wird die gesamte einfallende Strahlung absorbiert, so beträgt der Absorptionsgrad ε = für alle Frequenzen und man bezeichnet den Körper als schwarz. Die Schwärze eines Körpers ist eine ideale Eigenschaft, welche nur näherungsweise erreicht wird. Die beste technische Realisierung stellt ein Hohlraum mit lamellenartigen Unterteilungen und einer kleinen Öffnung dar: Einfallendes Licht wird so lange reflektiert, bis es fast vollständig von der großen schwarzen Oberfläche absorbiert worden ist. Selbst das Universum stellt keinen schwarzen Körper dar, es existiert die diffuse kosmische Hintergrundstrahlung, die ein äquivalenter schwarzer Körper der Temperatur T = Kelvin emittierte. Der Begriff des Schwarzen Körpers ist eine wichtige Abstraktion und Approximation, um das Absorptions- und Emissionsverhalten realer Körper zu beschreiben. Zum Begriff des Emissionsgrades gelangt man über folgendes Gedankenexperiment: Man denke sich zwei einander gegenüberliegende Platten unterschiedlichen Absorptionsgrades. Der dazwischen liegende Raum sei seitlich durch ideale Spiegel (ε = 0) begrenzt. Die Flächen mögen die Leistungen P und P abstrahlen. Somit absorbiert die erste Fläche die Leistung P ε, die zweite die Leistung P ε. Idealerweise stellt sich irgendwann ein thermisches Gleichgewicht ein, sodass effektiv keine Energie mehr verschoben wird. Dann gilt: P ε = P ε, woraus allgemein folgt, dass ε P = const bzw. P ~ ε. Also ist die abgestrahlte Leistung proportional dem Absorptionsgrad, weshalb dieser auch als Emissionsgrad bezeichnet wird. Dies bedeutet, dass ein schwarzer Körper nicht nur am besten absorbiert, sondern auch am besten emittiert. Seine Strahlungsleistung sei P S. Dann gilt für einen beliebigen Strahler das Kirchhoff sche Strahlungsgesetz: P = ε P. S 4

6 4. Theoretische Ansätze Abb. Gegen Ende des 9. Jahrhunderts waren schon genaue Messungen der Strahlung des schwarzen Körpers ausgeführt worden (Abb. grüne Kurve). Mit zunehmender Temperatur T verschiebt sich das Maximum der Strahlungsenergie zu kürzeren Wellenlängen λ, das Licht wird blauer. Wilhelm Wien (864-98) erfasste 89 den Zusammenhang: λ MAX =,898 0 T m Diese Beziehung wird als Wiensches Verschiebungsgesetz bezeichnet. Je größer die Temperatur des schwarzer Körpers, desto weiter verschiebt sich das Maximum zu kleineren Wellenlängen hin. Planck gelang es drei Jahre später, diese halbempirisch gewonnene Strahlungsgleichung theoretisch abzuleiten. Allerdings zeigten schon bald Präzisionsmessungen, dass im Bereich langer Wellen erhebliche Abweichungen auftraten. Allerdings stimmten die neuen Messergebnisse mit einer Strahlungsformel überein, die kurz zuvor die englischen Physiker Lord Rayleigh und Sir James Jeans publiziert hatte (Abb. blaue Kurve): u 8π k T λ ( λ, T ) = 4 5

7 Man sieht, dass diese Beziehung nur bei großen Wellenlängen halbwegs vernünftig mit der Spektralfunktion übereinstimmt. P strebt gegen Unendlich, wenn λ gegen 0 geht, was man auch als Ultraviolettkatastrophe bezeichnet hat. Abb. Die theoretische Ansätze von Wien beziehungsweise von Rayleigh und Jeans waren nur in eingeschränkten Bereichen gültig (nur bei großen beziehungsweise kleinen Frequenzen). Das wichtigste theoretische Problem war nun die Ableitung des Strahlungsgesetzes, das heißt die Strahlungsdichte im Hohlraum als Funktion der Wellenlänge beziehungsweise Frequenz und der Temperatur zu bekommen. Nach den damals für gültig gehaltenen Gesetzen hätte ein heißer Körper elektromagnetische Wellen in gleichbleibenden Maße abgeben müssen, unabhängig von ihrer Frequenz. Dies würde allerdings bedeuten, dass die abgestrahlte Gesamtenergie unendlich wäre. Aber der vorausgesagte stetige Anstieg der Strahlungsenergie in Abhängigkeit der Frequenz (bis hin zur Ultraviolettkatastrophe) findet nicht statt. 6

8 5. Planck sches Gesetz Die Abhängigkeit des Energie- und Wellenlängen-Spektrums von der Temperatur beschreibt das Planck sche Strahlungsgesetz. Abb. Max Planck (Abb. ) versuchte die Herleitung der Verteilungsfunktion über den gesamten Wellenlängenbereich. Er suchte zuerst eine Korrekturrechnung der klassischen Theorie und gelangte schließlich im Oktober 900 zum Erfolg, als er sich entschloss, die Energie des schwarzen Körpers nicht als eine kontinuierlich verteilte Größe zu verstehen, sondern anzunehmen, dass sie in winzigen Paketen - den sogenannten Quanten - abgestrahlt und absorbiert wird. Mit anderen Worten: Energie wird immer nur in einzelnen Paketen abgegeben oder aufgenommen. Planck fand, dass die Energie eines Quantums dabei proportional ist zur Frequenz ν der Strahlung. E = h ν Der Proportionalitätsfaktor ist die Naturkonstante h. Sie wird nach Planck auch Planck sche Konstante oder Planck sches Wirkungsquantum genannt. Ihre Einheit ist eine Wirkung [J s] Diese Entdeckung Plancks gilt als Geburtsstunde der Quantenmechanik. Allerdings fehlte noch eine theoretische Begründung für die glücklich erratene Interpretationsformel. Planck selbst wollte eigentlich nicht von der klassischen Physik abweichen und versuchte mehrere Jahre lang, das Phänomen der Schwarzkörperstrahlung mit rein klassischen Vorstellungen zu beschreiben, hatte jedoch keinen Erfolg. Die fundamentale Bedeutung dieser Gleichung erkannte man erst, als Einstein auf ihrer Grundlage den fotoelektrischen Effekt erklären konnte. Dabei ging Einstein noch über Plancks Vorstellung hinaus und zeigte, dass die Energiequantisierung nicht nur eine formale Hilfskonstruktion ist, sondern eine fundamentale Eigenschaft der elektromagnetischen Strahlen überhaupt. Planck konnte also mit seiner Annahme, dass die Energie quantisiert ist, fol- 7

9 gende Beziehung herleiten (wobei u ( ν,t ) beziehungsweise u (,T ) λ die spektrale Energiedichte ist): u u ( ν, T ) ( λ, T ) 8hπν = c exp ( hν kt ) 8hπc = 5 λ exp( hc λkt ) 6. Praktischer Nutzen Folgerungen des Planck schen Strahlungsgesetzes sind das Wien sche Verschiebungsgesetz, welches das Emissionsmaximum des schwarzen Körpers bestimmt, das Stefan- Boltzmann-Gesetz, welches die gesamte abgestrahlte Energie eines schwarzen Körpers angibt und das Rayleigh-Jeans sche Strahlungsgesetz, welches die Strahlungsabhängigkeit für große Wellenlängen beschreibt und das Wien sche Strahlungsgesetz, welches die Strahlungsabhängigkeit für kleine Wellenlängen beschreibt. In der Astronomie werden Sterne oft durch schwarze Körper angenähert. Der Unterschied zwischen der ideellen Kurve und dem Sternspektrum gibt Aufschluss über die chemische Zusammensetzung und Eigenschaften wie das Magnetfeld des Sterns. Die Kosmische Hintergrundstrahlung zeigt Eigenschaften einer Schwarzkörperstrahlung einer Temperatur von,75 ± 0,00 K. 7. Herleitungen Um die Lage des Maximums von u ( λ,t ) als Funktion von λ bei konstantem T zu finden, setzen wir die Ableitung von u ( λ,t ) nach λ gleich Null und lösen die erhaltene Gleichung. Auf diese Weise gelangen wir zu: λ 0,04hc T = k MAX = const Diese Beziehung entspricht dem Wien schen Verschiebungsgesetz. Da λ MAX und T einfach gemessen werden können und c bekannt ist, können wir dann mit Hilfe obiger Gleichung h k experimentell bestimmen. 8

10 Im folgenden Bild sieht man diese Energieverteilungen für drei verschiedene Temperaturen eingezeichnet (Wien sches Verschiebungsgesetz): Je höher die Temperatur, desto weiter ist das Maximum der Funktion zu kurzen Wellenlängen verschoben. Um aus dem Planck schen Strahlungsgesetz u ( ν T ) 8hπν = c, exp( hν kt ) das Rayleigh-Jeans sche Strahlungsgesetz und das Wien sche Strahlungsgesetz zu erhalten, kann man folgende Überlegung vornehmen: Für kleine Frequenzen kann der Planck sche Interpolationsterm entwickelt werden und es folgt das Rayleich-Jeans sche Strahlungsgesetz: e hν kbt hν + + O k T B 8πν ( ν ) u( ν, T ) = c k B T Für große Frequenzen kann man (-) im Nenner vernachlässigen und es folgt das Wien sche Gesetz: 9

11 e hν kbt e hν kbt u 8πhν c hν kbt T ( ν, T ) = e = αν e βν 8. Quellenangaben H. Vogel: Gerthsen Physik, 0. Auflage W. Greiner: Quantum Mechanics, An Introduction; Second Corrected Edition, Springer H. Haken, H. Wolf: Atom und Quantenphysik, Einführung in die experimentellen und theoretischen Grundlagen; 4. Auflage, Springer W. Demtröder: Experimentalphysik, Atome, Moleküle und Festkörper;. Auflage, Springer Abbildungen gefunden in 0

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Max Planck: Das plancksche Wirkungsquantum

Max Planck: Das plancksche Wirkungsquantum Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um

Mehr

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums

Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Grundbausteine des Mikrokosmos (5) Die Entdeckung des Wirkungsquantums Ein weiterer Zugang zur Physik der Atome, der sich als fundamental erweisen sollte, ergab sich aus der Analyse der elektromagnetischen

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

2. Max Planck und das Wirkungsquantum h

2. Max Planck und das Wirkungsquantum h 2. Max Planck und das Wirkungsquantum h Frequenzverteilung eines schwarzen Strahlers Am 6. Dezember 1900, dem 'Geburtsdatum' der modernen Physik, hatte Max Planck endlich die Antwort auf eine Frage gefunden,

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Praktikumsvorbereitung Wärmestrahlung

Praktikumsvorbereitung Wärmestrahlung Praktikumsvorbereitung Wärmestrahlung André Schendel, Silas Kraus Gruppe DO-20 14. Juni 2012 I. Allgemein Schwarzer Körper Ein schwarzer Körper ist ein idealisiertes Objekt, das jede elektromagnetische

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #16 am 0.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Strahlungsgesetze. Stefan-Boltzmann Gesetz. Wiensches Verschiebungsgesetz. Plancksches Strahlungsgesetz

Strahlungsgesetze. Stefan-Boltzmann Gesetz. Wiensches Verschiebungsgesetz. Plancksches Strahlungsgesetz Tell me, I will forget Show me, I may remember Involve me, and I will understand Chinesisches Sprichwort Strahlungsgesetze Stefan-Boltzmann Gesetz Wiensches Verschiebungsgesetz Plancksches Strahlungsgesetz

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Strahlungsgesetze - Beginn einer neuen Ära

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Strahlungsgesetze - Beginn einer neuen Ära Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Strahlungsgesetze - Beginn einer neuen Ära Das komplette Material finden Sie hier: Download bei School-Scout.de 5. Die Strahlungsgesetze

Mehr

Versuch A06: Stefan-Boltzmannsches Strahlungsgesetz

Versuch A06: Stefan-Boltzmannsches Strahlungsgesetz Versuch A06: Stefan-Boltzmannsches Strahlungsgesetz 14. März 2014 I Lernziele Plancksche Strahlungsformel Stefan-Boltzmannsches Strahlungsgesetz Wiensches Verschiebungsgesetz II Physikalische Grundlagen

Mehr

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der

Mehr

Wellenlängenspektrum der elektromagnetischen Strahlung

Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängen- / Frequenzabhängigkeit Richtungsabhängigkeit Eigenschaften der von Oberflächen emittierten Strahlung Einfallende Strahlung α+ ρ+ τ=

Mehr

Wind/Strömung September Wind und Strömung... 2

Wind/Strömung September Wind und Strömung... 2 Wind/Strömung Inhalt Wind und Strömung... 2 Strömung... 2 Strömungsfeld, stationäre Strömung... 2 Reibungsfreie Strömung... 2 Laminare Strömung... 2 Beaufort... 2 Temperaturstrahlung... 3 Strahlungsgesetze...

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre?

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Spektren 1 Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Der UV- und höherenergetische Anteil wird fast

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

V Abbildung 1: Versuchsanordnung. Wärmestrahlung

V Abbildung 1: Versuchsanordnung. Wärmestrahlung 7.4.9 ****** 1 Motivation Die von Objekten mit unterschiedlicher Oberfläche und Temperatur wird gemessen. 2 Experiment Abbildung 1: Versuchsanordnung Wir betrachten drei Gläser: das erste ist schwarz,

Mehr

Abbildung 1: Versuchsanordnung

Abbildung 1: Versuchsanordnung 7.4.1 ****** 1 Motivation Dieses Experiment verdeutlicht das Kirchhoffsche Gesetz auf äusserst anschauliche Weise. Es wird die Wärmestrahlung eines mit kochend heissem Wasser gefüllten Würfels gemessen,

Mehr

Vorbereitung. Wärmestrahlung. Versuchsdatum:

Vorbereitung. Wärmestrahlung. Versuchsdatum: Vorbereitung Wärmestrahlung Carsten Röttele Stefan Schierle Versuchsdatum: 15.5.212 Inhaltsverzeichnis Theoretische Grundlagen 2.1 Wärmestrahlung................................ 2.2 Plancksches Strahlungsgesetz.........................

Mehr

7.4.4 Drei schwarze Körper ****** 1 Motivation. 2 Experiment

7.4.4 Drei schwarze Körper ****** 1 Motivation. 2 Experiment 7.4.4 ****** 1 Motivation Drei mit unterschiedlichen Materialien ausgekleidete Würfel sind mit kleinen Öffnungen versehen. Die aus diesen Öffnungen austretende Strahlung entspricht recht gut der Strahlung

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #15 am 01.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte

Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Vorlesung: Stellarphysik II Was wird behandelt? Schwarzkörperstrahlung Raumwinkel und Intensität Eektivtemperatur Photometrische

Mehr

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell

Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10.

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10. 10.5 Wärmetransport Inhalt 10.5 Wärmetransport 10.5.1 Wämeleitung 10.5.2 Konvektion 10.5.3 Wärmestrahlung 10.5.4 Der Treibhauseffekt 10.5.1 Wärmeleitung 10.5 Wärmetransport an unterscheidet: Wärmeleitung

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

7.4.5 Schwarzer und glänzender Körper im Ofen ****** 1 Motivation. 2 Experiment

7.4.5 Schwarzer und glänzender Körper im Ofen ****** 1 Motivation. 2 Experiment 7.4.5 ****** 1 Motivation Das unterschiedliche Reflexions, Absorptions und Emissionsvermögen eines metallisch glänzenden und eines matten Körpers wird bei einer Temperatur von 750 C vorgeführt. Dies ist

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12

Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12 Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12 - System Erde- Sonne - Strahlungsgesetze - Eigenschaften strahlender Körper - Strahlungsbilanz der Erde - Albedo der Erde - Globale Strahlungsbilanz

Mehr

9. Wärmelehre. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Wärmelehre Physik für Informatiker

9. Wärmelehre. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Wärmelehre Physik für Informatiker 9. Wärmelehre 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Energietransport durch Wechselwirkung

Mehr

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Was ist Wärmestrahlung?

Was ist Wärmestrahlung? Was ist Wärmestrahlung? pohlig@kit.edu Quelle: Herrmann, Was ist Wärmestrahlung?, PdN-PhiS. 5/54 Jg 2005 Die durch elektromagnetische Strahlung transportierte Wärme Versuch einer begrifflichen Festlegung

Mehr

4 Wärmeübertragung durch Temperaturstrahlung

4 Wärmeübertragung durch Temperaturstrahlung Als Wärmestrahlung bezeichnet man die in einem bestimmten Bereich der Wellenlängen und Temperaturen auftretende Energiestrahlung (elektromagnetische trahlung). Nach den Wellenlängen unterscheidet man:

Mehr

Was ist Wärmestrahlung? Michael Pohlig

Was ist Wärmestrahlung? Michael Pohlig Was ist Wärmestrahlung? Michael Pohlig pohlig@kit.edu Quelle: Herrmann, Was ist Wärmestrahlung?, PdN-PhiS. 5/5 Jg 2005 Zur Fragestellung Was ist Wärmestrahlung? Wie viel Wärme transportiert Wärmestrahlung?

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Physik / Wärmelehre 2. Klasse Wärmetransport

Physik / Wärmelehre 2. Klasse Wärmetransport Wärmetransport Wärmetransport bedeutet, dass innere Energie von einem Ort zum anderen Ort gelangt. Wärmeübertragung kann auf drei Arten erfolgen: zusammen mit der Substanz, in der sie gespeichert ist (Wärmeströmung),

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Die Geschichte der Quantenmechanik

Die Geschichte der Quantenmechanik Die Geschichte der Quantenmechanik Kurt Bräuer Institut für Theoretische Physik 5.04.006 www.kbraeuer.de 1 'Urväter' 5.04.006 www.kbraeuer.de Strahlung schwarzer Körper: Max Plank 1900 Plank'sches Strahlungsgesetz:

Mehr

Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre

Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre Was ist Strahlung Strahlung besteht aus elektromagnetischen Welle Strahlungsarten unterscheiden sich durch die Wellenlänge https://de.wikipedia.org/wiki/elektromagnetisches_spektrum

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

6.2 Schwarzer Strahler, Plancksche Strahlungsformel

6.2 Schwarzer Strahler, Plancksche Strahlungsformel 6. Schwarzer Strahler, Plancsche Strahlungsformel Sehr nappe Herleitung der Plancschen Strahlungsformel Ziel: Berechnung der Energieverteilung der Strahlung im thermischen Gleichgewicht bei der Temperatur

Mehr

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung

Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung Seminar: Quantenoptik und nichtlineare Optik Quantisierung des elektromagnetischen Strahlungsfeldes und die Dipolnäherung 10. November 2010 Physik Institut für Angewandte Physik Jörg Hoppe 1 Inhalt Motivation

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Klimawandel. Inhalt. CO 2 (ppm)

Klimawandel. Inhalt. CO 2 (ppm) Klimawandel CO 2 (ppm) Sommersemester '07 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Inhalt 1. Überblick 2. Grundlagen 3. Klimawandel heute: Beobachtungen 4. CO 2 5. Andere Treibhausgase

Mehr

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen.

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen. Dieter Suter - 404 - Physik B3 8.2 Aufbau der Atome 8.2.1 Grundlagen Wenn man Atome als Bausteine der Materie i- dentifiziert hat stellt sich sofort die Frage, woraus denn die Atome bestehen. Dabei besteht

Mehr

10.6. Röntgenstrahlung

10.6. Röntgenstrahlung 10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.

Mehr

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch Q1 Äußerer Photoeffekt Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni WS2013

Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni WS2013 Die Welt der Quanten Murmeln oder Wellen? Max Camenzind Senioren Uni Würzburg @ WS2013 Die Krise des mechanischen Weltbildes und die Gründerväter der modernen Physik. Elektromagnetische Strahlung Maxwell,

Mehr

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007

Einführung Grundlagen Die Theorie der Ratengleichungen Verfeinerte Theorien. Der Laser. Florentin Reiter. 23. Mai 2007 Der Laser Florentin Reiter 23. Mai 2007 Die Idee des Lasers A. Einstein (1916): Formulierung der stimulierten Emission von Licht als Umkehrprozess der Absorption Vorschlag zur Nutzung dieses Effektes zur

Mehr

Der Photoelektrische Effekt

Der Photoelektrische Effekt Der Photoelektrische Effekt Anna-Maria Klingenböck und Sarah Langer 16.10.2012 Inhaltsverzeichnis 1 Das Licht Welle oder Teilchen? 1 2 Eine einfache Variante 2 3 Versuchsaufbau 3 3.1 1. Versuch...............................

Mehr

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Studiengang Neurobiologie/Neurowissenschaften Otto-von-Guericke Universität Magdeburg Sommersemester 2008 Reinhard König

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Inhaltsverzeichnis. Einleitung 1

Inhaltsverzeichnis. Einleitung 1 Inhaltsverzeichnis Einleitung 1 1 Licht und Materie 7 Was ist eigentlich Licht? 8 Aber was schwingt da wie? 9 Was sind Frequenz und Wellenlänge des Lichts? 11 Was ist eigentlich Materie? 12 Woraus besteht

Mehr

Spektren von Himmelskörpern

Spektren von Himmelskörpern Spektren von Himmelskörpern Inkohärente Lichtquellen Tobias Schulte 25.05.2016 1 Gliederung Schwarzkörperstrahlung Spektrum der Sonne Spektralklassen Hertzsprung Russell Diagramm Scheinbare und absolute

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger

P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger P H Y S I K - Spektroskopie - Helene Plank Stephan Giglberger Warum Spektroskopie auf dem Mars? Befindet sich Wasser auf dem Mars? Gibt es eine Atmosphäre? Aus welchen Elemente besteht sie? Gibt es Leben?

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

Physik für Naturwissenschaften. Dr. Andreas Reichert

Physik für Naturwissenschaften. Dr. Andreas Reichert Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,

Mehr

Plancksches Strahlungsgesetz

Plancksches Strahlungsgesetz Plancksches Strahlungsgesetz Frank Essenberger FU Berlin 226 Inhaltsverzeichnis Klassische Betrachtung Spektrale Energiedichte 2 Mittlere Energie einer Eigenmode 2 2 Quantisierte Betrachtung 3 3 Spezialfälle

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05. Hella Berlemann Nora Obermann

Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05. Hella Berlemann Nora Obermann Mößbauer-Spektroskopie Vortrag zum apparativen Praktikum SS 05 Hella Berlemann Nora Obermann Übersicht: Mößbauer (1958): rückstoßfreie Kernresonanzabsorption von γ-strahlen γ-strahlung: kurzwellige, hochenergetische,

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Examensaufgaben QUANTENPHYSIK

Examensaufgaben QUANTENPHYSIK Examensaufgaben QUANTENPHYSIK Aufgabe 1 (Juni 2006) Bei einem Versuch wurden folgende Messwerte ermittelt : Wellenlänge des Lichtes (nm) Gegenspannung (V) 436 0,83 578 0,13 a) Berechne aus diesen Werten

Mehr

Übersicht. 1 Klimasystem und Klimawandel. 2 Emissionen von Treibhausgasen. 3 Impacts von Klimawandel. Vorlesung 2: Grundlagen 1/33

Übersicht. 1 Klimasystem und Klimawandel. 2 Emissionen von Treibhausgasen. 3 Impacts von Klimawandel. Vorlesung 2: Grundlagen 1/33 Vorlesung 2: Grundlagen 1/33 Übersicht 1 Klimasystem und Klimawandel 2 Emissionen von Treibhausgasen 3 Impacts von Klimawandel Vorlesung 2: Grundlagen 2/33 Strahlungshaushalt der Erde Alle Körper mit einer

Mehr

Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik

Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik Inhaltsverzeichnis Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik v xv l 1 Grundlagen 3 1.1 Einheiten, Größenordnungen, Zahlenwerte 4 1.2 Impuls 7 1.3 Kraft und die Newton'schen Gesetze

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)

Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht) Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten

Mehr

VORANSICHT II/D. Die Strahlungsgesetze Beginn einer neuen Ära. Vom Planck schen Strahlungsgesetz bis zum Treibhaus-Effekt! Der Beitrag im Überblick

VORANSICHT II/D. Die Strahlungsgesetze Beginn einer neuen Ära. Vom Planck schen Strahlungsgesetz bis zum Treibhaus-Effekt! Der Beitrag im Überblick 5. Die Strahlungsgesetze 1 von 4 Die Strahlungsgesetze Beginn einer neuen Ära Ael Donges, Isny im Allgäu Das Planck sche Strahlungsgesetz ist eine der wichtigsten Formeln der modernen Physik. Seine Herleitung

Mehr