Physik für Pharmazeuten und Biologen WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

Größe: px
Ab Seite anzeigen:

Download "Physik für Pharmazeuten und Biologen WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität"

Transkript

1 Physik für Pharmazeuten und Biologen WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

2 Wärme wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt, wenn Gas einströmt? und warum ist der Kühlschrank kalt? wie baue ich ein perpetuum mobile? wieso wird Fleisch im Druckkochtopf schneller gar? Reaktionskinetik... 2

3 Wärme 3.1 Wärmeenergie und Temperatur Was ist Wärme? bis ~1800 Vorstellung eines "Wärmestoff" Thompson, Joule: ungeordnete Bewegung! z.b.: Gasmoleküle mit unterschiedlicher Einzelenergie Mechanisches Wärmeäquivalent (Versuch von Joule) 3

4 Wärme Wärmeenergie und Temperatur Was ist Wärme? bis ~1800 Vorstellung eines "Wärmestoff" Thompson, Joule: ungeordnete Bewegung! z.b.: Gasmoleküle mit unterschiedlicher Einzelenergie in idealem Gas: Temperatur ist Maß für mittlere kinetische Energie E = mv = k T m...masse eines Gasmoleküls trans 2 2 B...quadratisch gemittelte Geschwindigkeit der Moleküle k B 2=1, JK Boltzmann-Konstante in v Festkörper: Bewegung um Ruhelage des Atoms, unabhängig von anderen Atomen. Absoluter Nullpunkt der Temperatur, wenn alle Moleküle v=0 4

5 Wärme Temperaturskala Einheit der Temperatur: 1K (Kelvin) ( Temperaturänderung von 1 C) 1/100 der Temperaturdifferenz zwischen Gefrierund Siedepunkt von Wasser bei 1,013 bar. Gefrierpunkt liegt dann bei 273,2 K definiere Fixpunkte zur Übertragung zwischen Meßbereichen Temperaturskalen Fixpunkt T in K Tripelpunkt von Wasserstoff 13,81 Siedepunkt von Wasserstoff 20,28 Tripelpunkt von Wasser 273,16 Siedepunkt von Wasser 373,15 Erstarrungspunkt von Gold 1337,58 Celsius: 0 C... Gefrierpunkt des Wassers 100 C... Siedepunkt des Wassers Fahrenheit: über Schmelzpunkt einer Salzmischung und, früher, Körpertemperatur 5

6 Wärme Thermische Ausdehnung lineare Ausdehnung Länge eines Festkörpers (für kleine Temperaturänderungen denn α auch temperaturabhängig!) ( T ) l = l +α 0 1 Eisenbahnschiene: 30 m TWinter-Sommer ~ 50 K l=1.8 cm früher Schienenstoß, heute verschweiste Schienen u. fixe Montage hoher Druck 6

7 Wärme lineare Ausdehnung Länge eines Festkörpers l = l ( 1 +αt 0 ) (für kleine Temperaturänderungen denn α auch temperaturabhängig!) Raumausdehnung: bei Festkörper durch Längenausdehnung in 3 Raumrichtungen, γ =3α, bei Flüssigkeiten wesentlich stärker Temperaturabhängigkeit der Dichte ( ) empirische Beobachtungen: ρ = m V = ρ0 1 + γt Volumenausdehnung bei Gasen linear mit Temperatur (bei konstantem Druck), bzw. umgekehrt prop. Druck (Gesetz von Boyle Mariotte) pv (Gesetz von Gay-Lussac) 0 0 = pv 1 1 =... = const. T = const V = V + γt p = const ( ) 0 1 7

8 Wärme Thermometer verwende Temperatureffekte zu deren Messung Längenausdehnung, Volumenausdehnung: Flüssigkeitsthermometer Gasthermomter Bimetallthermometer (Stab aus 2 verbundenen Metallen mit unterschiedlichem α verbiegt sich) elektrische Effekte: Änderung des Widerstands Änderung der Kontaktspanung zwischen unterschiedlichen metallischen Leitern Wärmestrahlung: Köper geben Energie an Umgebung in Form von Wärmestrahlung ab (Wärmebildkamera) 8

9 Wärme 3.2 Zustandsgleichung Zustandsgrößen werden zur Beschreibung der makroskopischen Eigenschaften verwendet Zustandsgröße Art Druck p intensiv Temperatur T intensiv Volumen V extensiv Entropie S extensiv Teilchenzahl n extensiv innere Energie U extensiv extensive Größen addieren sich beim Zusammenfügen (z.b.: V, S, N, U) intensive Größen bleiben gleich (P, T) sind nur für Gleichgewicht definiert 9

10 Wärme Zustandsgleichung empirische Beobachtungen: Volumenausdehnung bei Gasen linear mit Temperatur (bei konstantem Druck), bzw. umgekehrt prop. Druck pv (Gesetz von Boyle Mariotte) 0 0 = pv 1 1 =... = const. T = const V = V ( 1 + γ T ) p = const (Gesetz von Gay-Lussac) 0 bei konstantem Druck ist Vproportinal zu T (Gay-Lussac) bzw. p T bei V=const isotherme : Linien bei konst. Temperatur isobare: Linien bei gleichem Druck isochore Linien bei gleichem Volumen 10

11 Wärme kinetische Beschreibung mikroskopische Deutung der makroskopischen Eigenschaften große Zahl von Teilchen Mittelungen z.b.: Druck durch Stöße der Teilchen mit Wand: Teilchen i erfährt bei Stoß Impulsänderung, bzw. Kraft. Nach Reaktionsprinzip wirkt gleiche Kraft auf Wand. Fi = p& i = dpi dt 11

12 Wärme Annahmen: freie Bewegung, nur elastische Stöße zick-zack-bahnen Brownsche Bewegung; keine inneren Anregungen, Abstand der Teilchen groß relativ zur Größe der Teilchen (Punktteilchen) Menge eines Gases gegeben durch: molare Masse z.b.: M(H)=1, kg/mol = 1,008 g/mol M(H 2 O)=18,01 g/mol, M(N 2 )=28,013 g/mol Masse M aus Zahl der Teilchen (N) und m: M=N m Avogadro: unter Normalbedingungen ist molares Volumen V m,0 =22, m 3 /kmol ~ 22,41 l/mol N A =6, mol -1 Avogadro (Loschmidt-) Zahl, Zahl der Teilchen pro mol 12

13 Wärme Druck eines Gases: in Würfel fliegen n/6 Teilchen in Richtung einer Wand, innerhalb einer Zeit terreichen diejenigen Teilchen die Wand, die maximal N V N v t entfernt sind, das sind N = = Av t V 6 V Kraft: Impulsänderung/Zeit F = N p / t, p = 2mv Druck: Kraft/Fläche, Mittelung über alle Teilchen imp imp p = nmv = nk T B n=n/v 13

14 Wärme Druck eines Gases: in Würfel fliegen n/6 Teilchen in Richtung einer Wand, innerhalb einer Zeit terreichen diejenigen Teilchen die Wand, die maximal v t entfernt sind, das sind N V N N = = Av t Kraft: Impulsänderung/Zeit V 6 V, F = N pimp / t pimp = 2mv Druck: Kraft/Fläche, Mittelung über alle Teilchen 1 2 p = 3 nmv = nkbt Zustandsgleichung n=n/v pv = Nk T = νn k T = νrt ν...stoffmenge in mol B A B bei Normalbedingungen (T 0 =273,15 K, p 0 = Pa) R= p 0.V m,0 /T 0 = N A k B = 8,315 J/mol K... universelle Gaskonstante 14

15 Wärme Gasgemische verschieden Komponenten, reagieren nicht chemisch sei ν i Stoffmenge der i-ten Komponente mit m i, M i RT p i...partialdruck der i-ten Komponente pi =νi V Druck eines Gemisches ist gleich der Summe der Einzeldrucke (Dalton) RT p = p i i = ν i i V Luft: gleiches gilt für Partialvolumen V i und Stoffmenge x i Volumen in % Masse in % Partialdruck in Meereshöhe in Pa Stickstoff N2 78,09 75, Sauerstoff O2 20,95 23, Argon, Spuren von anderen Edelgasen, H2 0,93 1, Kohlendioxid 0,03 0,

16 Wärme reale Gase: bei großen Gasdichten (gesättigeter Dampf) bewirkt Ausdehnung der Moleküle, bzw. Wechselwirkung zwischen Ihnen Abweichungen. Bei van der Waals Kräften (innerer Druck a/v 2 m, Eigenvolumen der Teilchen Kovolumen b) Energie ( p a ( V 2 ) m )( m ) + V b = RT mit Ekin = pro Teilchen folgt 2mv = 2kBT p = nmv = n2 E / N = E 3 E = νrt mittlere Energie der Translation! kin, ges 2 3 Translationsrichtungen 3 3 kin, ges 3 V kin, ges Energie pro Translationsfreiheitsgrad pro Teilchen E = RT = k T kin 1 ν 1 2 N 2 B 16

17 Wärme Freiheitsgrad: Möglichkeit der Bewegung 3 Raumrichtungen Kugel hätte im Prinzip noch Möglichkeit der Rotation. Diese hat aber keinen Einfluss auf Translationsbewegung, d.h. auf Temperatur. Moleküle: Rotation koppelt mit Translation + 2 Fgr für 2 atomige Moleküle + 3 Fgr für 3 und mehratomige Moleküle zusätzlich noch Schwingungsfreiheitsgrade etc. Gleichverteilungssatz im statistischen Gleichgewicht ist Energie im Mittel pro Freiheitsgrad ½k B T bei f Freiheitsgraden: 1 E kin = 2 fnrt 17

18 Wärme Geschwindigkeitsverteilung nicht alle Teilchen mit gleicher Geschwindigkeit Verteilungsfunktion beschreibt, welche Geschwindigkeiten mit größerer Wahrscheinlichkeit angetroffen werden als andere dn / N = f ( v ) dv Anteil der Teilchen mit Geschwindigkeit zwischen v und v+dv Maxwell-Boltzmann-Verteilung ( ) 2 m 2 mv /(2 kbt) mittlere Geschwindigkeit f( v) dv = π k, häufigste BT v e dv 8k z.b.: H m/s, N m/s, CO B T = m/s mittlere freie Weglänge Stoßquerschnitt σ mittlere Weglänge zwischen 2 Stößen l=1/nσ Querschnitt σ=π(r 1 +r 2 ) 2 3/2 2 v πm v ˆ = 2kBT m 18

19 Wärme Was ist Wärme? Temperatur: Maß für mittlere kinetische Energie E = mv = k T trans Temperaturskala: T=0 alles in Ruhe, 1 Kelvin, (Celsius-, Fahrenheitskala) Längen-, Volumenausdehnung -> Thermometer Zustandsgrößen Zustandsgleichung mikroskopisches Modell B pv = Nk T = νn k T = νrt B A B Gasgemische: Summe über Partialdrücke Gleichverteilungssatz im statistischen Gleichgewicht ist Energie im Mittel pro Freiheitsgrad ½k B T, bei f Freiheitsgraden: Geschwindigkeiten verteilt Ekin = 1 2 fnrt 19

20 Wärme 3.3 Wärmemenge Wärmekapazität um Temperatur eines Körper zu erhöhen (senken) muß Wärmemenge zugeführt (entzogen) werden. Mit T 1 (T 2 ) Anfangs-(End-) Temperatur Wärmemenge ( ) Q = cm T T = cm T 2 1 Einheit: 1J = 1 Nm = 1 Ws M...Gesamtmasse früher: Kalorie (cal) 1cal th = 4,184 J (thermochemische Kalorie) Wärmemenge, um 1g Wasser von 14,5 C auf 15,5 C zu erwärmen. spezifische Wärmekapazität c Einheit: J / kg K temperaturabhängig c = Q ( M T )! ebenso abhängig von Art der Erwärmung c p bei konst. Druck (Volumen wird größer, d.h. zusätzlich zur Erwärmung Arbeit gegen äußeren Luftdruck notwendig c V bei konst. Volumen (zugeführte Energie allein zur Erhöhung der Temperatur) c p > c V 20

21 Wärme cvon Atommasse abhängig: c Q C = = cm T Wärmekapazität = = = Q NfkB T 1 fk M T 2 M T 2m molare Wärmekapazität Wärmekapazitäten bei 0 C in Jkg -1 K -1, bzw. Jmol -1 K -1 C f = N 2k = 24,9Jmol K mol A B -1-1 Temperaturabhängigkeit von C mol Wärmekapazitäten nach kinetischer Gastheorie 21

22 Wärme Wärmekapazität von Wasser H 2 O Molekül gewinkelt sehr viele Freiheitsgrade (3x6) c = 4185 Jkg K = 75.3 Jmol K relativ H2O hoch! Kalorimetrie Bestimmung der Wärmekapazitäten Mischkalorimeter: Testkörper (m 2 ) wird in kochendem Wasser / im Wasserdampf (T 2 ) erwärmt, danach in Wasser (m 1, T 1 ). Aus Temperaturänderungen folgt c wegen Freiheitsgraden und geringer Masse c1m1 + Cw Tm T1 c = C W...Wärmekapazität m T T der Messaparatur, T m...mischtempertur 2 2 m 22

23 Aggregatzustände der Materie im atomistisches Bild Beispiel Wasser Eis Wasser Wasserdampf

24 Dynamik an der Wasser-Luft Grenzfläche im atomistisches Bild

25 Thermodynamik P,V,T Statistische Mechanik Wärmelehre Die Thermodynamik beschreibt Phänome die mit Wärme zu tun haben durch makroskopische Zustandsgrößen (Temperatur, Druck, Volumen,...) bzw. Prozeßgrößen (Wärme, Arbeit...) thermodyn. Gesetze beschreiben Zustände, Zustandsänderungen, Phasenübergänge etc. PV = T const. Wärme ist verknüpft mit ungeordneter Molekularbewegung von sehr vielen Teilchen. In einem atomistischen Bild können nur statistische Aussagen über Mittelwerte und Verteilungen der mechanischen Größen z.b. x i Orte, v i Geschwindigkeiten getroffen werden. Die Temperatur ist ein Maß für die mittlere kinetische Energie T 1 = k 2 3 m 2 v 2

26 Grundlagen für Messungen mit Abgeschlossenes System : Wärme - System, das mit keinem anderen System in Wechselwirkung steht - Kein Teilchen oder Wärmeaustausch Gleichgewichtszustand "Befinden sich zwei Körper mit einem dritten im thermischen Gleichgewicht, so sind sie auch untereinander im Gleichgewicht" Nullter Hauptsatz der Thermodynamik T 1 T 2 T 3 T 0 T 0 T 0

27 Celsiusskala und Fahrenheitskala 100 F=37 C Wasser/Ammoniumchlorid

28 Thermometer Messung der Temperatur über stark temperaturabhängige physikalische Größen Flüssigkeitsthermometer Volumenaus- Dehnung ~ T Thermoelement Thermospannung Bimetall-Thermometer Krümmung ~ T Pyrometer Wärmestrahlung

29 Thermische Ausdehnung fester und flüssiger Körper Erwärmung um T = T 2 T 1 führt zu einer linearen Längenzunahme L = α L T α: Längenausdehnungskoeffizient V = γ V L T 3α L T γ V : Volumenausdehnungskoeffizient

30 Thermische Kräfte Schätzen Sie die Kraft des Bolzensprengers ab! F = L = E A L E A α T Lager einer Eisenbrücke zur Vermeidung von thermischen Spannungen E : E-Modul ~ N/m 2 A : Fläche ~ cm 2 α: 10-5 K -1 T : 100K F ~ 10 4 N Versuch

31 Atomares Model der thermischen Ausdehnung Tabelle : Wärmeausdehnung bei 20 C Die Atome schwingen um ihre Gleichgewichtslage. Für große Auslenkungen (größere kinetische Energie=höhere Temperatur) ist das Wechselwirkungspotential asymmetrisch und der Mittelwert des atomaren Abstands vergrößert sich.

32 Wärmeausdehnung und Dichte Mit der thermischen Ausdehnung ändert sich auch die Dichte im Allgemeinen: ρ( T ) ρ0 = 1+ γ V ( T T ) 0 Berühmte Ausnahme: die Dichteanomalie des Wassers Höchste Dichte bei 3.9 C negativer Ausdehnungskoeffizient für 0<T<3.9 C

33 Thermische Ausdehnung von Gasen V ( T0 C 0 V TC + T ) = V ( T )(1 + γ ) 1. Gay-Lussac-Gesetz Isobare Zustandsänderung : Zustandsänderung findet bei konstantem Druck statt. V γ V 1 = T 0 = 1 273,15 -T 0 ϑ[ o C] Versuch : Gasthermometer

34 Erfahrungstatsache : Die thermische Ausdehnung verdünnter Gase ist (nahezu) unabhängig vom Stoff

35 Isochore Zustandsänderung Zustandsänderung findet bei konstantem Volumen statt. P ( T0 C 0 P TC + T ) = P( T )(1 + γ ) 2. Gay-Lussac-Gesetz (Gesetz von Charles) p γ P 1 = T 0 = 1 273,15 Gasthermometer mit Konstantem Volumen -T 0 ϑ[ o C]

36 Ideale Gase und die absolute Temperaturskala P ( T0 C 0 P C + T ) = P( T )(1 + γ T ) Triplepunkt des Wasser T K = 273, 16 K Bei -273,15 C hat ein Gas theoretisch keinen Druck und kein Volumen. Dieser natürlicher Fixpunkt wird als absoluter Nullpunkt einer absoluten Temperaturskala (der Kelvinskala) definiert. [ K] = 273, 15 + T [ C] T c Umrechnung von Celsius in die Kelvinskala Temperturdifferenzen in Kelvin und Celsius-Skala sind gleich. Es gibt keine negativen absoluten Temperaturen,T K =0 prinzipiell nie erreichbar.

37 Isotherme Zustandsänderung Zustandsänderung findet bei konstanter Temperatur statt. p V = p V Gesetz von Boyle-Mariotte: p T 1 T 2 T 3 p(v) = n R T const V V Versuch Boyle-Mariotte

38 Zustandsgleichung idealer Gase PV 1 T 1 1 = PV 2 T 2 2 = const Allgemeine Zustandsgleichung idealer Gase (Lord Kelvin) p 1 V1 = n R T n : Zahl der Mole R= 8,317 J/Mol K Allgemeine Gaskonstante Für ein ideales Gas ist unabhängig von der Gasart, bei einem Normaldruck von 1013,25 hpa und einer Normaltemperatur von 0, das molare Volume V m,0 =22,4 liter/mol

39 Zustandsänderungen des idealen Gases im p-v-diagramm p Isotherme : T=const Isobare : P=const Isochore : V=const V

40 Die molekulare Deutung der Temperatur : Kinetische Gastheorie Definition des idealen Gases: Moleküle verhalten sich wie harte Kugeln, d.h. sie führen nur elastische Stöße aus und zeigen keine Anziehung und kein Eigenvolmen. - bei Normalbedingungen ca. 3*10 19 Molküle pro cm 3 - mittlere freie Weglänge ca m. Demonstration : Rüttler

41 Der Gasdruck - mikroskopisch betrachtet Moleküle treten mit mittlerer Geschwindigkeit <v> in das Volumen dv ein dv = A v x dt V dv Anz. Moleküle, die pro Zeit auf die Wand treffen dn = 1 6 N dv V = 1 6 N A v V x dt N Kraft Druck = = Fläche Anz. Stöße Impulsübertrag Zeit Fläche x P = F A = dn dt 2mv 1 N 2mv = A v A 6 V A P = N V 1 2 m v = 2 3 N V E kin

42 Gleichverteilungssatz : Äquipartitionsgesetz Im statistischen Gleichgewicht ist die kinetische Energie eines Moleküls pro Freiheitsgrad im Mittel ½ k B T. Die mittlere Energie eines einatomigen Gases beträgt demnach E kin 3 = N k 2 B T Für mehratomige Moleküle können auch Rotationen und Schwingungen beitragen, dann gilt f N Ekin = kbt 2 Die Gesamtzahl der Freiheitsgrade, f, eines Gasmoleküls ist die Summe der Translations-, der Schwingungs- und der Rotationsfreiheitsgrade Die Boltzmannkonstante ist das Verhältnis aus Gaskonstante und Avogadrokonstante k B = R/N A = 1, J/K

43 Maxwellsche Geschwindigkeitsverteilung Gefragt ist nach der Anzahl Moleküle dn mit Geschwindigkeiten zwischen v und (v+dv) : dn = N f ( v) dv f(v) : die Verteilungsfunktion der Geschwindigkeiten f(v) X K m 300 K 900 K f v k T = 4 e ( v) π v m 2 π k T v[m/s]

44 Wärmemenge und Wärmekapazität - Wärme ist eine Form von Energie (wird also in Einheit Joule gemessen) - Die einem System zugeführte Wärme erhöht seinen Energieinhalt. - Q bezeichnet die einem System zugeführte oder entzogene Wärmemenge Die zugeführte Wärmemenge ist proportional zu Masse und Temperaturänderung Q = c m T = C T C [J/K] : Wärmekapazität c [J/kgK] : spezifische Wärmekapazität Neben der spezifischen Wärmekapazität wird auch häufig die molare Wärmekapazität c m [J/(Mol*K)] verwendet (Wärmekapazität pro Mol) c m = C n n : Anzahl Mol eines Stoffes

45 Messung des elektrischen und mechanischen Wärmeäquivalents Joulesches Experiment 1cal=4,18 Joule=4,18 Ws Versuch

46 Kalorimetrie Die spezifische Wärme c S eines Stoffes kann in einem Mischungskaloriemeter bestimmt werden. T 0S T 0w Tm T m : Mischungstemperatur c w m w ( Tm T w) = cs ms ( T0 T 0 S m )

47 Die Volumenarbeit eines idealen Gases Die Arbeit, dw, die ein Gas gegen eine äußere Kraft leistet, wird Volumenarbeit genannt. (Die Arbeit hat ein negatives Vorzeichen, weil dem System Energie entzogen wird) dw = PdV Gas P=F/A W isobar = P ( V ) 0 2 V1 W isotherm = PdV = nrt ln V V 2 1

48 Wärmemenge und Wärmekapazität - Wärme ist eine Form von Energie (wird also in Einheit Joule gemessen) - Die einem System zugeführte Wärme erhöht seinen Energieinhalt. - Q bezeichnet die einem System zugeführte oder entzogene Wärmemenge Die zugeführte Wärmemenge ist proportional zu Masse und Temperaturänderung Q = c m T = C T C [J/K] : Wärmekapazität c [J/kgK] : spezifische Wärmekapazität Neben der spezifischen Wärmekapazität wird auch häufig die molare Wärmekapazität c m [J/(Mol*K)] verwendet (Wärmekapazität pro Mol) c m = C n n : Anzahl Mol eines Stoffes

49 Kalorimetrie Die spezifische Wärme c S eines Stoffes kann in einem Mischungskaloriemeter bestimmt werden. T 0S T 0w Tm T m : Mischungstemperatur c w m w ( Tm T w) = cs ms ( T0 T 0 S m )

50 Messung des elektrischen und mechanischen Wärmeäquivalents Joulesches Experiment 1cal=4,18 Joule=4,18 Ws

51 Die Volumenarbeit eines idealen Gases Die Arbeit, dw, die ein Gas gegen eine äußere Kraft leistet, wird Volumenarbeit genannt. (Die Arbeit hat ein negatives Vorzeichen, weil dem System Energie entzogen wird) dw = PdV Gas P=F/A W isobar = P ( V ) 0 2 V1 W isotherm = PdV = nrt ln V V 2 1

52 Der erste Hauptsatz der Thermodynamik Verallgemeinerung der Energieerhaltung von makroskopischen Systemen auf mikroskopische Der erste Haupsatz der Thermodynamik (Energieerhaltungssatz): du = dq + dw ( innere Energie) = (zugeführte Wärme) + (mechanische Arbeit) Die Summe der einem System von außen zugeführten Wärme und der zugeführten Arbeit ist gleich der Zunahme seiner inneren Energie (positive Vorzeichen bedeuten, dass die innere Energie zunimmt) Die Summe der inneren Energien in einem abgeschlossenen System ist konstant (Unmöglichkeit eines Perpetuum mobile 1.Art)

53 Adiabatische Zustandsänderung eines idealen Gases Bei der adiabatischen Zustandsänderung findet keine Wärmeaustausch mit der Umgebung statt. (z.b. weil der Prozess schneller abläuft als der Wärmeaustausch, bzw. der Prozess gut isoliert ist) Damit wird die bei der Kompression geleistete Arbeit vollständig zur Erhitzung des Gases verwendet PdV Alle Adiabaten schneiden jede Isotherme und umgekehrt = C V dt Es folgt daraus, dass die P-V Kurve steiler wird Adiabatengleichung κ PV = const κ=c p /C V : Adiabatenkoeffizient

54

55

56 Def. Entropie S P : Wahrscheinlichkeit = k ln P S : Maß für die Unordnung

57 Der Zweite Hauptsatz der Thermodynamik Es ist unmöglich, eine periodisch arbeitende Maschine zu bauen, die lediglich einem Körper Wärme entzieht und diese vollständig in Nutzarbeit umwandelt (Perpetuum Mobile 2. Art). nach Kelvin-Planck Wärme geht nie spontan, ohne Arbeitsaufwand, vom kälteren zum heißeren Körper über, sondern immer umgekehrt. Satz von Clausius Alle Zustandsänderungen in einem abgeschlossenen System bewirken eine Zunahme der Entropie S > 0 : irreversible Prozesse S = 0 : reversible Prozesse

58 P-T-Phasendiagramm (Zustandsdiagramm) mit fester, flüssiger und gasförmiger Phase Am Tripelpunkt liegen im Gleichgewicht allen drei Phasen gleichzeitig vor. Der Tripelpunkt des Wassers liegt bei 273,16 K und 6,1 mbar.

59 Zum Phasendiagramm von Wasser : - Die Dichte von Eis ist kleiner als die von Wasser unterhalb 4 ºC. - Eis sublimiert bei Drücken p<6.1hpa und T<273 (Gefriertrocknung) - Die Schmelzdruckkurve hat eine negative Steigung. Wasser läßt sich durch äußeren Druck verflüssigen. (Schlittschuhläufer nutzen diesen Effekt aus) Prinzip vom kleinsten Zwang (Le Chatellier-Brown) : Jedes System reagiert auf eine äußere Einwirkung in der Richtung, dass es die primäre Ursache zu vermindern sucht

60 Dampfdruckkurve und Sättigungsdruck Q = D p( T ) p0 exp RT im Gleichgewicht : Sättigungsdampfdruck Im dynamischen Geichgewichtszustand zwischen Flüssigkeit und Dampf stellt sich über einer Flüssigkeit der Sättigungsdampfdruck ein. Er hängt allein von der Art der Flüssigkeit und der Temperatur ab und steigt mit der Temperatur an.

61 Nicht-Gleichgewichtszustände Verdunsten Sieden - Kondensation Verdunstung : Langsame Verdampfung durch die freie Flüssigkeitsoberfläche Sieden: Eine Flüssigkeit siedet, wenn der Sättigungsdampfdruck bei der gegebenen Temperatur dem Druck über der Flüssigkeit entspricht. Die Siedetemperatur ist druckabhängig. Kondensation: Ausbildung von Flüssigkeitströpfchen aus der Dampfphase bei Abkühlung Für Wasser in Luft gilt insbesondere Absolute Feuchtigkeit: Menge von Wasserdampf in der Luft in g/m 3. Die absolute Luftfeuchtigkeit kann bei jeder Temperatur den Wert beim Sättigungsdampfdruck nicht übersteigen. Daher definiert man die relative Feuchtigkeit als Partialdruck des Wasserdampfs geteilt durch den Sättigungsdampfdruck mal 100 in %. Versuch : Siedepunkt

62 Flüssige Mischungen und Lösungen Echte Lösungen, im Gegensatz zu Emulsionen, kolloidalen Lösungen sind molekulardisperse Mischungen. Eine ideale Lösung (z.b. Ethanol/Methanol) zeigt keine Volumenänderung und keine Lösungswärme beim Lösungsvorgang Reale Lösungen haben folgende Merkmale Darstellung der Solvatation (in Wasser Hydratation) eines Festkörpers in einem Lösungsmittel. Lösungswärme (z.b. Schwefelsäure + Wasser) Dampfdruckerniedrigung Gefrierpunktserniedrigung T c m = 1,83 K /( mol / liter) Raoult'sche Gesetz

63 Methoden zur Erzeugung tiefer Temperaturen Verdampfung (z.b. Chlorethan, C 2 H 5 Cl ) Kältemischung (Eis + Salz) entziehen der Umgebung Schmelz, bzw. Lösungswärme tiefste erreichbare Temperatur (eutektischer Punkt) Eine Mischung 23 % NaCl + 77% Wasser erzielt eine Temperaturerniedrigung von C Adiabatische Expansion dt = p dv C V Ideales Gas verrichtet Arbeit gegen äußeren Druck Joule-Thomson Effekt

64 Boltzmannverteilung Verteilungssatz von Boltzmann: Wenn die Moleküle eines Systems bei der Temperatur T zwei verschiedene Energiezustände U 1,2 einnehmen können, dann ist das Verhältnis der Besetzungszahlen an den n n 2 1 = E exp kbt E th = k B T E = U 2 U 1 Thermische Energie Differenz der potentiellen Energie

65 Brownsche Bewegung Die thermische Bewegung der Atome eines Gases oder einer Flüssigkeit lässt sich indirekt durch die Zitterbewegung eines kleinen (aber im Vergleich zum Atom makroskopischen) Teilchens nachweisen. Aus der kinetischen Gastheorie lässt sich nach A. Einstein für das mittleres Verschiebungsquadrat des Brownschen Teilchens ableiten : x 2 = 6D t D : Diffusionskoeffizient η : Viskosität, R : Radius D = kt 6πηR Versuch

66 Diffusion DIFFUSION : Nettotransport von Teilchen aus Gebiet hoher Konzentration in Gebiet niedriger Konzentration. dn j N = Teilchenstromdichte = A dt Teilchen pro Fläche und Zeiteinheit 1. Fick sches Gesetz Transportgleichung der Diffusion j N = D dn dx Der diffusive Teilchenstrom ist proportional zum Konzentrationsgefälle dn/dx

67 Diffusion ist temperaturabhängig Tintentropfen in Wasser D = kt 6π η( T ) R Diffusionskoeffizient Eines kolloidalen Partikels

68

69

70

71 Konvektion : Wärmetransport durch Massentransport Bei schlechten Wärmeleitern (Flüssigkeiten und Gasen) spielt der Wärmetransport durch Transport heisser Substanz die dominante Rolle. Da erwärmte Substanzen eine geringere Dichte besitzen, setzt von selber ein Materialfluss ein, wenn Temperaturunterschiede bestehen. Beispiel: Raumheizung, Wind- und Meeresströmungen. (Freie Konvektion) Kaffee abkühlen durch Pusten. (erzwungene Konvektion) Versuch Konvektion

72 Wärmetransport durch Strahlung Wärmestrahlung sind elektromagnetische Wellen, welche reflektiert, transmittiert und absorbiert werden kann. Die abgegebene Strahlungsleistung eines Körpers wächst mit der 4. Potenz der absoluten Temperatur P = σ A ( 4 4 T 1 T ) T 1 T 2 σ : Stefan Boltzmann Konstante A : Oberfläche T 1 : Körpertemperatur T 2 : Umgebungstemperatur Infrarotbild eines Jungen mit Hund

73 Wärmeisolierung Vakuum : keine Wärmeleitung keine Konvektion Verspiegelte Innenwände : keine Verluste durch Wärmestrahlung Thermosflasche Dewar

Vorlesung Physik für Pharmazeuten PPh Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild

Mehr

Vorlesung Physik für Pharmazeuten PPh - 08

Vorlesung Physik für Pharmazeuten PPh - 08 Vorlesung Physik für Pharmazeuten PPh - 08 Wärmelehre 18.12. 2006 Der erste Hauptsatz der Thermodynamik Verallgemeinerung der Energieerhaltung von makroskopischen Systemen auf mikroskopische Der erste

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität

WÄRME I. Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität Physik für Pharmazeuten WÄRME I Wärmeenergie und Temperatur Beschreibung des Zustands von Gasen Wärmekapazität wozu Wärmelehre? Temperatur bin ich mittags größer als am morgen? wieso wird Sodaflasche kalt,

Mehr

Vorlesung Physik für Pharmazeuten PPh Mechanische Wellen Akustik Wärmelehre

Vorlesung Physik für Pharmazeuten PPh Mechanische Wellen Akustik Wärmelehre Vorlesung Physik für Pharmazeuten PPh - 07 Mechanische Wellen Akustik Wärmelehre 11.06.2007 Ausbreitung von Störungen A( x = 0, t) = A0 sin(2π f t) Am Ort x=0 führt das Seil eine harmonische Schwingung

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen!

1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! 1. Klausur ist am 5.12.! (für Vets sowie Bonuspunkte für Zahni-Praktikum) Jetzt lernen! http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ****** Druck und Volumen Gesetz von Boyle-Mariotte:

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Zwei neue Basisgrössen in der Physik

Zwei neue Basisgrössen in der Physik Nachtrag zur orlesung am vergangenen Montag Zwei neue Basisgrössen in der Physik 9. Wärmelehre, kinetische Gastheorie Temperatur T: Wärme ist verknüpft mit ungeordneter Bewegung der Atome oder Moleküle.

Mehr

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen

Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen von verschiedenen Metallen 14. Vorlesung EP II. Wärmelehre 1. Temperatur und Stoffmenge 11. Ideale Gasgleichung 1. Gaskinetik 13. Wärmekapazität Versuche: Brownsche Bewegung pneumatisches Feuerzeug Wärmekapazität gleicher Massen

Mehr

1. Wärmelehre 1.1. Temperatur Wiederholung

1. Wärmelehre 1.1. Temperatur Wiederholung 1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik

(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

NTB Druckdatum: DWW

NTB Druckdatum: DWW WÄRMELEHRE Der Begriff der Thermisches Gleichgewicht und - Mass für den Wärmezustand eines Körpers - Bewegung der Atome starke Schwingung schwache Schwingung gleichgewicht (Thermisches Gleichgewicht) -

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 11: Wärmelehre Dr. Daniel Bick 13. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 13. Dezember 2017 1 / 36 Übersicht 1 Wellen 2 Wärmelehre

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen:

Der Magnus-Effekt. Rotierender Körper in äußerer Strömung: Anwendungen: Der Magnus-Effekt Rotierender Körper in äußerer Strömung: Ohne Strömung: Körper führt umgebendes Medium an seinen Oberflächen mit Keine resultierende Gesamtkraft. ω Mit Strömung: Geschwindigkeiten der

Mehr

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen!

1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! 1. Klausur ist am 5.12.! Jetzt lernen! Klausuranmeldung: Bitte heute in Listen eintragen! Aggregatzustände Fest, flüssig, gasförmig Schmelz -wärme Kondensations -wärme Die Umwandlung von Aggregatzuständen

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester

Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg

2. Fluide Phasen. 2.1 Die thermischen Zustandsgrößen Masse m [m] = kg 2. Fluide Phasen 2.1 Die thermischen Zustandsgrößen 2.1.1 Masse m [m] = kg bestimmbar aus: Newtonscher Bewegungsgleichung (träge Masse): Kraft = träge Masse x Beschleunigung oder (schwere Masse) Gewichtskraft

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius Physik I Mechanik der Kontinua und Wärmelehre Thomas Universität Hamburg Wintersemester 2014/15 ORGANISATORISCHES Thomas : Wissenschaftler (Teilchenphysik) am Deutschen Elektronen-Synchrotron (DESY) Kontakt:

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Grund- und Angleichungsvorlesung Physik der Wärme.

Grund- und Angleichungsvorlesung Physik der Wärme. 2 Grund- und Angleichungsvorlesung Physik. Physik der Wärme. WS 17/18 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Wärme und Wärmekapazität c) Das ideale Gas - makroskopisch d) Das reale Gas / Phasenübergänge e) Das ideale Gas mikroskopisch f) Hauptsätze und

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Diese sind in Oktaven gegliedert, wobei sich die Frequenzen des tiefsten und höchsten Tons einer Oktave um den Faktor zwei unterscheiden.

Diese sind in Oktaven gegliedert, wobei sich die Frequenzen des tiefsten und höchsten Tons einer Oktave um den Faktor zwei unterscheiden. Diese sind in Oktaven gegliedert, wobei sich die Frequenzen des tiefsten und höchsten Tons einer Oktave um den Faktor zwei unterscheiden. Innerhalb der Oktave unterteilt man die Töne in 12 Halbtonschritte,

Mehr

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit

Flüssigkeitsthermometer Bimetallthermometer Gasthermometer Celsius Fahrenheit Wärme Ob etwas warm oder kalt ist können wir fühlen. Wenn etwas wärmer ist, so hat es eine höhere Temperatur. Temperaturen können wir im Bereich von etwa 15 Grad Celsius bis etwa 45 Grad Celsius recht

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Thermodynamik (Wärmelehre) I Die Temperatur

Thermodynamik (Wärmelehre) I Die Temperatur Physik A VL24 (04.12.2012) hermodynamik (Wärmelehre) I Die emperatur emperatur thermische Ausdehnung Festkörper und Flüssigkeiten Gase Das ideale Gas 1 Die emperatur Der Wärmezustand ist nicht mit bisherigen

Mehr

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome

Grundlagen der Allgemeinen und Anorganischen Chemie. Atome Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 361 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

13.Wärmekapazität. EP Vorlesung 15. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 15. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 15 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Wärmekapazität von Festkörpern

Mehr

11. Wärmetransport. und Stoffmischung. Q t. b) Wärmeleitung (ohne Materietransport)

11. Wärmetransport. und Stoffmischung. Q t. b) Wärmeleitung (ohne Materietransport) 11. Wärmetransport und Stoffmischung b) Wärmeleitung (ohne Materietransport) Wärme(energie) Q wird durch einen Wärmeleiter (Metall) der Querschnittsfläche A vom wärmeren zum kälteren transportiert, also

Mehr

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

II. Der nullte Hauptsatz

II. Der nullte Hauptsatz II. Der nullte Hauptsatz Hauptsätze... - sind thermodyn. Gesetzmäßigkeiten, die als Axiome (Erfahrungssätze) formuliert wurden - sind mathematisch nicht beweisbar, basieren auf Beobachtungen und Erfahrungen

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Musso: Physik I Teil 17 Temperatur Seite 1

Musso: Physik I Teil 17 Temperatur Seite 1 Musso: Physik I Teil 17 Temperatur Seite 1 Tipler-Mosca THERMODYNAMIK 17. Temperatur und kinetische Gastheorie (Temperature and the kinetic theory of gases) 17.1 Thermisches Gleichgewicht und Temperatur

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

Versuch 6: Spezifische Wärme der Luft und Gasthermometer

Versuch 6: Spezifische Wärme der Luft und Gasthermometer Versuch 6: Spezifische Wärme der Luft und Gasthermometer Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Temperatur................................... 3 2.2 Die Allgemeine Gasgleichung..........................

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Carnotscher Kreisprozess

Carnotscher Kreisprozess Carnotscher Kreisprozess (idealisierter Kreisprozess) 2 p 1, V 1, T 1 p(v) dv > 0 p 2, V 2, T 1 Expansionsarbeit wird geleistet dq fließt aus Wärmebad zu dq > 0 p 2, V 2, T 1 p(v) dv > 0 p 3, V 3, T 2

Mehr

Studium Technik. Physik. Grundlagen für das Ingenieurstudium - kurz und prägnant. Bearbeitet von Jürgen Eichler

Studium Technik. Physik. Grundlagen für das Ingenieurstudium - kurz und prägnant. Bearbeitet von Jürgen Eichler Studium Technik Physik Grundlagen für das Ingenieurstudium - kurz und prägnant Bearbeitet von Jürgen Eichler 1. Auflage 004. Taschenbuch. XI, 33 S. Paperback ISBN 978 3 58 14933 8 Format (B x L): 17 x

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 21. 05. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 21. 05.

Mehr

Thermodynamik der Atmosphäre II

Thermodynamik der Atmosphäre II Einführung in die Meteorologie Teil I Thermodynamik der Atmosphäre II Der erste Hauptsatz der Thermodynamik Die Gesamtenergie in einem geschlossenen System bleibt erhalten. geschlossen steht hier für thermisch

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität Zur Erinnerung Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung Grenzflächenspannung Kapillarität Makroskopische Gastheorie: Gesetz on Boyle-Mariotte Luftdruck Barometrische

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Temperatur Der nullte Hauptsatz der Thermodynamik: Thermoskop und Thermometer Kelvin, Celsius- und der Fahrenheit-Skala Wärmeausdehnung

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 2 Themen für die Poster-Session Entwicklung der Atommodelle Von der Fadenstrahlröhre zum Beschleuniger Franck-Hertz-Versuch Radioaktivität: Strahlenarten und

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr