CLUB APOLLO 13, 12. Wettbewerb Aufgabe 2

Größe: px
Ab Seite anzeigen:

Download "CLUB APOLLO 13, 12. Wettbewerb Aufgabe 2"

Transkript

1 CLUB APOLLO 3,. Wettbewerb Aufgabe Der gar nicht so freie Fall Die zweite Apollo-Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt. Weitere Informationen zum Studiengang der Physik findet ihr unter Der Fallschirm Ein Fallschirm sorgt dafür, dass Gegenstände (oder Personen), die an ihm hängen, nicht so schnell fallen. Die folgende Aufgabe soll euch mit einigen Aspekten der Fallschirmphysik vertraut machen. Natürlich gehören wieder zahlreiche Experimente und deren Auswertung dazu. Ein seltsamer Fallschirm aber er funktioniert Der komplizierte Fallschirm der Pusteblume sieht zwar schön aus, ist aber physikalisch sehr schwer zugänglich. Deshalb nehmen wir hier ein einfaches Modell. Abb. zeigt euch diesen Fallschirm, der in der Aufgabe untersucht werden soll: Aus Papier wird ein trichterförmiges Schirmchen gebastelt, das mit der Spitze nach unten gleichmäßig fällt. Lässt man derartige Schirmchen fallen, trudeln sie manchmal zuerst ein wenig, fallen dann schön gleichmäßig weiter. Dazu müssen beim Bau der Schirmchen Grenzen der Abmessung eingehalten werden. Der Samenfallschirm einer Pusteblume Quelle: Archiv DRS publishing Eure Aufgabe besteht nun darin, aus genauer Beobachtung und Vermessung der Fallbewegung solcher Schirmchen die Größe der Erdbeschleunigung und den Einfluss der Trichterform auf die Größe des Luftwiderstandes zu bestimmen und schließlich zu prüfen, welchen Einfluss die Oberflächenstruktur des Trichtermaterials auf die Fallbewegung hat. Ein Trichter-Fallschirm (oben offen) Club Apollo 3 Aufgabe /.0.0

2 Die Aufgaben a) Grundlagenteil (0 Punkte): Fallgeschwindigkeit der Trichterschirmchen Aufbau: Bastelt nach nebenstehender Skizze für α 40, 50 und 60 jeweils fünf möglichst gleichartige Trichterschirmchen aus stabilem Papier (ca. 0-g-Papier); S = 6 cm. Als Starthilfe eignet sich eine Drahtschlinge am Ende eines Besenstiels. In diese Schlinge wird das Schirmchen gesetzt. Zieht man die Schlinge schnell weg, fällt das Schirmchen ohne wesentliche Störung. Berechnet für Eure Schirmchen aus S und α den Radius R und die Größe A = π R der Grundfläche und das Maß des Öffnungswinkels β. Qualitativ für die drei Winkel α durchführen: Untersucht und beschreibt die Fallbewegung der Schirmchen in Abhängigkeit vom Winkel α. Die Anfangsphase der Fallbewegung ist leichter erkennbar, wenn ihr die Schirmchen z. B. mit ein bis zwei Kugellagerkugeln beschwert. Zeichnet eine Skizze v = v(x), die qualitativ die Fallgeschwindigkeit v in Abhängigkeit vom Fallweg x darstellt. Wie wirkt sich α auf v aus? 3 Bastelanleitung für die Fallschirme Quantitativ für die drei Winkel α durchführen: Mit Metermaß und Stoppuhr (oder für die technisch entsprechend ausgestatteten mit Digitalkamera, Computer und Videoanalysesoftware) messt ihr den Ort des Schirmchens nach dem Start als Funktion der Zeit x = x(t). Fertigt ein Diagramm. Die Messpunkte für große Messzeiten liegen praktisch auf einer Geraden (stimmt das?). Die Grenzgeschwindigkeit v s könnt ihr also aus zwei benachbarten Punkten (t x ) und (t x ) berechnen x x vs =. t t Führt dies für drei Punktenachbarn aus und bestimmt so v s. Schirmchen mit größerem Öffnungswinkel fallen langsamer. Für die Grenzgeschwindigkeit sollte gelten v S /R ( heißt ist proportional zu ). Messt dies für die drei unterschiedlichen Schirmchenwinkel aus. Könnt ihr die Vorhersage bestätigen? Wo liegen die schlimmsten Quellen von Messunsicherheiten? Schickt uns einige aussagekräftige Fotos von eurem Experimentieren. b) Mittlerer Teil (0 Punkte): Jetzt zum Einfluss der Erdbeschleunigung g Im ersten Teil haben eure Messungen ergeben, dass die Geschwindigkeit des Schirmchens mit zunehmender Fallzeit schnell konstant wird (Grenzgeschwindigkeit v S ) und die Kurve x = x(t) sich damit schließlich an eine Gerade anschmiegt: x t v t x. ( ) S 0. Aus einer linearen Regression dieses geraden Teils eurer Messkurven (also für große Messzeiten) bestimmt ihr v s als Steigung der Kurve x = x(t) und x 0 als Achsenabschnitt. Club Apollo 3 Aufgabe /.0.0

3 . Vergleicht das Ergebnis für v s mit dem Ergebnis aus dem Grundlagenteil. 3. Aus der Theorie lässt sich ableiten, dass v S /( x 0 ) = g = 9,8 m/s. Überprüft dies für eure Messungen. Dabei sollte das Ergebnis für die unterschiedlichen Schirmchen (unterschiedliche Winkel α) immer gleich sein. Auch wenn ihr mehrere Schirmchen ineinander steckt, es sollte immer v S /( x 0 ) = g = 9,8 m/s herauskommen. Natürlich gibt es Abweichungen, sind diese systematisch? c) Für Profis (0 Punkte): Der ewige Gegenwind Der Fall der Trichter in Luft wird von deren Gewichtskraft F G = m g und von der Reibungskraft F R bestimmt. Mit guter Näherung kann man für letztere schreiben: FR = ρ A cw v. () v ist die Geschwindigkeit des Schirmchens, ρ =,9 kg/m 3 ist die Dichte der Luft, A = A = πr die Grundfläche; der c W -Wert beschreibt den Einfluss der Trichterform und der Materialoberfläche. Die Gewichtskraft ist konstant: F G = m g. Für sehr kleine Geschwindigkeiten ist F R < F G. Der Trichter wird beschleunigt. Schließlich ist v so groß, dass gilt F R = F G. Leitet aus dieser Bedingung eine Formel für die Endgeschwindigkeit v S her. Es sollte herauskommen: v S m. Überprüft dies, indem ihr nach und nach die fünf 40 -Schirmchen ineinand er steckt. Mit einer genauen Waage bestimmt ihr die Massen von jeweils fünf Schirmchen und daraus m(40 ), m(50 ), m(60 ). Die Formel für den Fallweg x(t) lässt sich aus den Regeln der Newtonschen Mechanik berechnen. Da diese Rechnung deutlich über Schulmathematik hinausgeht, geben wir hier das Ergebnis ohne Beweis an. ( ) ( 0 ) t T S x t = v t x mit T 0,69 m g ρ A c W m und x0 = ρ A c Die Kurve nach Gleichung () schmiegt sich für große Zeiten an x(t) = v s t x 0 an, zeigt das. Aus einer linearen Regression der Messwerte x(t) für große t könnt ihr nun v s und x 0 bestimmen und daraus c W (40 ), c W (50 ) und c W (60 ) für die verschiedenen Schirmchenöffnungen. B erechnet daraus jeweils die Relaxationszeit τ, ab der die Geschwindigkeit praktisch konstant ist (τ = x 0 /v s ). Passen diese Zeiten zu euren Experimenten? W () Außerhalb der Bewertung: Ein bisschen Spielen zum erholsamen Abschluss? Wie wirkt es sich auf die Fallgeschwindigkeit v S aus, wenn durch einige kleine Flügelklappen am Trichterrand (einfach einschneiden und etwas abknicken) der Trichter beim Fall in Rotation versetzt wird? Wird er schneller oder langsamer? Was passiert, wenn die Oberfläche außen etwas aufgeraut wird? Viel Erfolg bei der zweiten Aufgabe! Club Apollo 3 Aufgabe /.0.0

4 Allgemeine Hinweise Einsendeschluss: Sonntag, 5. November 0, 9:59 Uhr. Gebt eure Lösungen über das Portal von unikik ab: Zulässige Dateiformate sind: PDF für die zusammengeschriebene Lösung (mit eingebetteten Bildern), sowie unter Windows gängige Videoformate, die sich ohne Installation von zusätzlicher Software abspielen lassen. (Denkt bitte an die Korrektoren/innen und deren Rechner.) Die Dateien sollten nicht größer als 7,5 MB sein (Die Dateien können gezippt sein)! Bitte gebt auch euren Teamnamen, die Namen der Gruppenmitglieder sowie deren Schulen an. Bitte benennt eure angehängten Dateien nach dem Gruppennamen. ACHTUNG bei Zip-Dateien! Um sicher zu gehen, dass eure Dateien wirklich fehlerfrei, und für die Korrektoren/innen zu öffnen sind, solltet ihr eure Zip-Dateien etc. noch mal von eurem Account runterladen und öffnen. Dateien die sich nicht öffnen lassen, können nicht bewertet werden! Ihr könnt und solltet eure Lösung auch dann abgeben, wenn ihr nicht alle Fragen beantworten konntet, insbesondere die letzte Teilaufgabe (die Profi-Aufgabe) nicht gelöst habt! Vielleicht gelingt euch das ja bei den kommenden Aufgaben. Die Teilnahmebedingungen und weitere Informationen findet ihr unter: Der Rechtsweg ist ausgeschlossen. Club Apollo 3 Aufgabe /.0.0

5 Anhang: Woher kommt das v -Gesetz? Ein Gegenstand mit der Querschnittsfläche A habe die Geschwindigkeit v. Legt der Gegenstand die Strecke s zurück, schiebt er also dabei das Luftvolumen V = A s = A v t zur Seite. Die Luft erhält dabei die mittlere Strömungsgeschwindigkeit u. Die Energie W L, die dem Luftvolumen dabei zugeführt wird hängt offenbar davon ab, wie viel Luftmasse m zur Seite geschoben wird und natürlich, wie groß die Strömungsgeschwindigkeit u wird: WL = ml u = ρl V u = ρla s u = ρla v t u. Je nach Form des Gegenstandes unterscheidet sich die mittlere Strömungsgeschwindigkeit mehr oder weniger von der Geschwindigkeit des Gegenstandes:. u = cw v also WL = cw ρl A v t v. Je windschnittiger der Gegenstand ist, desto kleiner ist der c W -Wert. Gute Pkw bringen es heute auf c W < 0,4. Zur Beschleunigung der Luft muss eine Leistung aufgebracht werden: WL 3 PL = = cw ρl A v. t Der Bewegung des Gegenstandes wir diese Leistung entzogen. Er wird abgebremst, muss also gegen eine Bremskraft F R die Geschwindigkeit v erhalten: P = F R v. Offenbar ist P = P L. Für die Bremskraft folgt damit: P PL FR = = = cw ρl A v. v v L Club Apollo 3 Aufgabe /.0.0

CLUB APOLLO 13, 16. Wettbewerb Aufgabe 1. Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt.

CLUB APOLLO 13, 16. Wettbewerb Aufgabe 1. Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt. CLUB APOLLO 13, 16. Wettbewerb Aufgabe 1 Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt. Weitere Informationen zum Angebot der Physik für Schülerinnen und Schüler findet

Mehr

CLUB APOLLO 13, 12. Wettbewerb Aufgabe 4

CLUB APOLLO 13, 12. Wettbewerb Aufgabe 4 CLUB APOLLO 13, 12. Wettbewerb Aufgabe 4 Von Zahnrädern und Getrieben Die vierte Apollo-Aufgabe wird vom Institut für Maschinenkonstruktion und Tribologie der Fakultät für Maschinenbau der Leibniz Universität

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 4

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 4 CLUB APOLLO 13, 13. Wettbewerb Aufgabe 4 Biomedizintechnik Diese Aufgabe wird vom Zentrum für Biomedizintechnik der Leibniz Universität Hannover gestellt. Weitere Informationen zum Studiengang der Biomedizintechnik

Mehr

B!G B4NG challenge, 17. Wettbewerb Aufgabe 3

B!G B4NG challenge, 17. Wettbewerb Aufgabe 3 B!G B4NG challenge, 17. Wettbewerb Aufgabe 3 Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt. Weitere Informationen zum Angebot der Physik für Schülerinnen und Schüler

Mehr

B!G B4NG challenge, 17. Wettbewerb Aufgabe 1

B!G B4NG challenge, 17. Wettbewerb Aufgabe 1 B!G B4NG challenge, 17. Wettbewerb Aufgabe 1 Diese Aufgabe wird vom Fachgebiet Software Engineering an der Fakultät für Elektrotechnik und Informatik der Leibniz Universität Hannover gestellt. Weitere

Mehr

CLUB APOLLO 13, 15. Wettbewerb Aufgabe 2. Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt.

CLUB APOLLO 13, 15. Wettbewerb Aufgabe 2. Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt. CLUB APOLLO 13, 15. Wettbewerb Aufgabe 2 Zum Jahr des Lichts 2015 ein nicht alltäglicher Optik-Versuch Diese Aufgabe wird vom Fachbereich Physik der Leibniz Universität Hannover gestellt. Weitere Informationen

Mehr

CLUB APOLLO 13, 16. Wettbewerb Aufgabe 3. Immer positiv bleiben!

CLUB APOLLO 13, 16. Wettbewerb Aufgabe 3. Immer positiv bleiben! CLUB APOLLO 13, 16. Wettbewerb Aufgabe 3 Immer positiv bleiben! Die dritte Aufgabe wird vom Institut für Algebra, Zahlentheorie und Diskrete Mathematik der Leibniz Universität Hannover gestellt. Weitere

Mehr

Fall eines Papierkegels Simulation und Experiment

Fall eines Papierkegels Simulation und Experiment Fall eines Papierkegels Simulation und Experiment Ein Papierkegel wird aus ca. 8.5 m Höhe im Treppenhaus der Schule fallen gelassen. Sollte sich innerhalb dieser Fallhöhe schon eine Endgeschwindigkeit

Mehr

Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf

Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Übung Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Wissensfragen 1. Welches sind die Grundeinheiten des SI-Systems? Nennen Sie die Größen, den Namen der Einheiten und

Mehr

Wie schwer ist eine Masse? S

Wie schwer ist eine Masse? S 1.1.2.1 Wie schwer ist eine Masse? S Eine Masse ist nicht nur träge, sondern auch schwer. Das soll bedeuten, dass nicht nur eine Kraft nötig ist, um eine Masse zu beschleunigen, sondern dass jede Masse

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

B!G B4NG challenge, 18. Wettbewerb Aufgabe 3

B!G B4NG challenge, 18. Wettbewerb Aufgabe 3 B!G B4NG challenge, 18. Wettbewerb Aufgabe 3 Aus dem Labor ans Krankenbett wie physikalische Grundlagen für die medizinische Bildgebung eingesetzt werden In dieser Aufgabe wollen wir uns mit modernen medizinischen

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Klassenarbeit - Mechanik

Klassenarbeit - Mechanik 5. Klasse / Physik Klassenarbeit - Mechanik Aggregatszustände; Geschwindigkeit; Geradlinige Bewegung; Volumen; Physikalische Größen; Masse; Dichte Aufgabe 1 Welche 3 Arten von Stoffen kennst Du? Nenne

Mehr

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken?

Der Millikan-Versuch. Einstiegsfragen. Theorie. betreffenden Feldstärken? Der Millikan-Versuch Einstiegsfragen 1. Welche Körper untersuchte Millikan in seinem Versuch? 2. Welche Felder ließ er darauf wirken? Wie "erzeugte" er sie? Welche Richtungen hatten die betreffenden Feldstärken?

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Umgang mit Diagrammen Was kann ich?

Umgang mit Diagrammen Was kann ich? Umgang mit Diagrammen Was kann ich? Aufgabe 1 (Quelle: DVA Ph 2008 14) Tom führt folgendes Experiment aus: Er notiert in einer Tabelle die Spannstrecken x, um die er das Auto rückwärts schiebt, und notiert

Mehr

Gewichtskraft mit measureapp (Artikelnr.: P )

Gewichtskraft mit measureapp (Artikelnr.: P ) Lehrer-/Dozentenblatt Gewichtskraft mit measureapp (Artikelnr.: P0999068) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Mechanik Unterthema: Kräfte, einfache Maschinen

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

12GE1 - Wiederholung - Verbesserung Praktikum 01

12GE1 - Wiederholung - Verbesserung Praktikum 01 12GE1 - Wiederholung - Verbesserung Praktikum 01 Raymond KNEIP, LYCÉE DES ARTS ET MÉTIERS September 2015 1 Die gleichförmige Bewegung Dritte Reihe der Tabelle: s/t (m/s) (F.I.) 0.5 0.5 0.5 0.5 a. Der Quotient

Mehr

K1PH-4h/2 Stundenprotokoll der ersten Physikstunde ( ) im 1. Halbjahr 2012/13

K1PH-4h/2 Stundenprotokoll der ersten Physikstunde ( ) im 1. Halbjahr 2012/13 K1PH-4h/2 Stundenprotokoll der ersten Physikstunde (12.09.2012) im 1. Halbjahr 2012/13 Thema: Einstieg in die Physik anhand eines kleinen Wagens (s. Abb. unten), Wiederholung Kinematik (Bewegungslehre)

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Lineare Bewegungsgesetze. 1. Theoretische Grundlagen Der Vektor der Momentangeschwindigkeit eines Massepunktes ist. , (1) dt . (2)

Lineare Bewegungsgesetze. 1. Theoretische Grundlagen Der Vektor der Momentangeschwindigkeit eines Massepunktes ist. , (1) dt . (2) M03 Lineare Bewegungsgesetze Die Zusammenhänge zwischen Geschwindigkeit, Beschleunigung, Masse und Kraft werden am Beispiel eindimensionaler Bewegungen experimentell mit Hilfe eines Bewegungsmesswandlers

Mehr

Lernstation I. Abstrakte Formulierungen die drei Größen in der Kraftformel. 4. Zum Ausprobieren: Auf dem Tisch liegen verschieden

Lernstation I. Abstrakte Formulierungen die drei Größen in der Kraftformel. 4. Zum Ausprobieren: Auf dem Tisch liegen verschieden Lernstation I Abstrakte Formulierungen die drei Größen in der Kraftformel 1. Welche Kraft wird benötigt, um einen Körper der Masse m = 1 kg mit a = 1 m s 2 zu beschleunigen? Schreiben sie einen Antwortsatz!

Mehr

2 Mechanik des Massenpunktes

2 Mechanik des Massenpunktes 2 Mechanik des Massenpunktes Wir beginnen deshalb in Kapitel 2 mit der Beschreibung der Bewegung von Massenpunkten, kommen dann in Kapitel 4 zum starren Körper und schließlich in Kapitel 5 zur Mechanik

Mehr

Stationstraining. Trage hier ein, wenn du eine Station abgeschlossen hast. Wenn du mit einem Partner gearbeitet hast, trage seinen Vornamen ein.

Stationstraining. Trage hier ein, wenn du eine Station abgeschlossen hast. Wenn du mit einem Partner gearbeitet hast, trage seinen Vornamen ein. Name: Starte an einer Station deiner Wahl. Achtung: es sollten nicht mehr als 4 Schüler gleichzeitig an einer Station arbeiten. Löse die Aufgaben einer Station entsprechend der Anweisung. Bearbeite zuerst

Mehr

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar.

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar. Atwood sche Fallmaschine Die kann zum Bestimmen der Erdbeschleunigung und zum Darstellen der Zusammenhänge zwischen Weg, Geschwindigkeit und Beschleunigung verwendet werden. 1) Aufgaben a) Stellen Sie

Mehr

IU1. Modul Universalkonstanten. Erdbeschleunigung

IU1. Modul Universalkonstanten. Erdbeschleunigung IU1 Modul Universalkonstanten Erdbeschleunigung Das Ziel des vorliegenden Versuches ist die Bestimmung der Erdbeschleunigung g aus der Fallzeit eines Körpers beim (fast) freien Fall durch die Luft. Î

Mehr

6 Vertiefende Themen aus des Mechanik

6 Vertiefende Themen aus des Mechanik 6 Vertiefende Themen aus des Mechanik 6.1 Diagramme 6.1.1 Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k=

Mehr

Arbeitsblatt: Studium einfacher Bewegungen Freier Fall

Arbeitsblatt: Studium einfacher Bewegungen Freier Fall Arbeitsblatt: Studium einfacher Bewegungen Freier Fall NAME:.. Klasse:.. Thema: Freier Fall Öffnen Sie die Simulation mit dem Firefox-Browser: http://www.walter-fendt.de/ph6de/projectile_de.htm Wir untersuchen

Mehr

Rotationsgerät. Wir können 4 Parameter variieren, die die Beschleunigung des Systems beeinflussen:

Rotationsgerät. Wir können 4 Parameter variieren, die die Beschleunigung des Systems beeinflussen: Rotationsgerät Übersicht Mit diesem Gerät wird der Einfluss eines Moments auf einen rotierenden Körper untersucht. Das Gerät besteht aus einer auf Kugellagern in einem stabilen Rahmen gelagerten Vertikalachse.

Mehr

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................

Mehr

Lösung zur 1. Probeklausur

Lösung zur 1. Probeklausur EI PH3 2010-11 PHYSIK Lösung zur 1. Probeklausur Diese Lösung ist ein Vorschlag, es geht oft auch anders die Ergebnisse sollten aber die gleichen sein! 1. Aufgabe Im Praktikum hast du eine Feder mit einer

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Protokoll zum Versuch: Atwood'sche Fallmaschine

Protokoll zum Versuch: Atwood'sche Fallmaschine Protokoll zum Versuch: Atwood'sche Fallmaschine Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 11.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3

Mehr

LANDAU. Der elektrische Tornado. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. Luca Markus Burghard

LANDAU. Der elektrische Tornado. ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht. Luca Markus Burghard ZfP-Sonderpreis der DGZfP beim Regionalwettbewerb Jugend forscht LANDAU Der elektrische Tornado Luca Markus Burghard Schule: Konrad Adenauer Realschule plus Landau Jugend forscht 2015 Fachgebiet Physik

Mehr

Herzlich Willkommen TEAMNAME: liebe Rallye Teilnehmer zur technischen Rallye im Heide Park Resort.

Herzlich Willkommen TEAMNAME: liebe Rallye Teilnehmer zur technischen Rallye im Heide Park Resort. Notizen Herzlich Willkommen liebe Rallye Teilnehmer zur technischen Rallye im Heide Park Resort. TEAMNAME: 1. Potentielle und kinetische Energie Aller Anfang ist schwer, das gilt auch für Colossos, KRAKE,

Mehr

M 5 - Reibungsfreie Bewegung

M 5 - Reibungsfreie Bewegung 20. 2. 08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: M 5 - Reibungsfreie Bewegung Mit Hilfe einer Luftkissenfahrbahn werden reibungsfreie Bewegungen analysiert. 1. Grundlagen Newton sche Grundgesetze

Mehr

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht.

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht. R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Beschleunigungsmessung an der Fahrbahn Protokoll und Auswertung einer Versuchsdurchführung. Gemessen wird die Zeit, die der Wagen bei einer beschleunigten

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis

VORSCHAU. zur Vollversion. Inhaltsverzeichnis Inhaltsverzeichnis Körpereigenschaften Volumen (1)... 1 Volumen (2)... 2 Masse, Volumen und Dichte (1)... 3 Masse, Volumen und Dichte (2)... 4 Dichte... 5 messen (1)... 6 messen (2)... 7 Wirkungen von

Mehr

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen 5. Mechanische Schwingungen und Wellen Der Themenbereich mechanische Schwingungen und Wellen ist ein Teilbereich der klassischen Mechanik, der sich mit den physikalischen Eigenschaften von Wellen und den

Mehr

Technische Mechanik. Martin Mayr. Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre ISBN Leseprobe

Technische Mechanik. Martin Mayr. Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre ISBN Leseprobe Technische Mechanik Martin Mayr Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre ISBN 3-446-40711-1 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40711-1

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 13.April 2005 Mathias Arbeiter Betreuer: Dr. Hoppe Physikalisches Praktikum 4. Semester - Bestimmung der Elementarladung nach Millikan - 1 Aufgabenstellung: Ziel: Ermittlung einer Fundamentalkonstanten

Mehr

Arbeit, Leistung und Energie

Arbeit, Leistung und Energie Arbeit, Leistung und Energie Aufgabe 1 Ein Block kann reibungsfrei über einen ebenen Tisch gleiten. Sie üben eine Kraft von 5 Newton in Richtung 37 von der Waagrechten aus. Sie üben diese Kraft aus, während

Mehr

Energie zeigt sich in Arbeit

Energie zeigt sich in Arbeit Energie zeigt sich in Arbeit Versuchsbeschreibung Wir machen den folgenden Versuch mit der Holzbahn: Wir lassen einen Wagen mit der Masse m = 42 g von einer Schanze beschleunigen und in die Ebene fahren.

Mehr

Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13

Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13 Aufgaben für Dienstag, 23.10.2012: Physik im Straßenverkehr Für die Sicherheit im Straßenverkehr spielen die Bedingungen bei Beschleunigungsund Bremsvorgängen eine herausragende Rolle. In der Straßenverkehrsordnung

Mehr

Gruppenarbeit Federn, Kräfte und Vektoren

Gruppenarbeit Federn, Kräfte und Vektoren 1 Gruppenarbeit Federn, Kräfte und Vektoren Abzugeben bis Woche 10. Oktober Der geschätzte Zeitaufwand wird bei jeder Teilaufgabe mit Sternen angegeben. Je mehr Sterne eine Aufgabe besitzt, desto grösser

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Tarzan und der freie Fall

Tarzan und der freie Fall Tarzan und der freie Fall Einleitung und Problemstellung Im Film "Tarzans Abenteuer in New York" (1942), flieht Johnny Weissmuller als Tarzan vor der Polizei. Als er in eine Sackgasse gerät, springt Tarzan

Mehr

Übungsblatt 6 Besprechung am /

Übungsblatt 6 Besprechung am / PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2018/19 Übungsblatt 6 Übungsblatt 6 Besprechung am 04.12.2018/06.12.2018 Aufgabe 1 Felix Baumgartner vs. Gewöhnlicher Fallschirmspringer. Ein

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 2. KINEMATIK, DYNAMIK (I) 2.1 Gleichförmige Bewegung: Aufgabe (*) 4 a. Zeichnen Sie ein s-t-diagramm der gleichförmigen

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Umgang mit Formeln Was kann ich?

Umgang mit Formeln Was kann ich? Umgang mit ormeln Was kann ich? ufgabe 1 (Quelle: DV Ph 010 5) In der Grafik werden einige Messpunkte der I-U- Kennlinie einer elektrischen Energiequelle dargestellt. a) Bei welchem der Messpunkte, B,

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Projektarbeit Simulation eines Mathematischen Pendel

Projektarbeit Simulation eines Mathematischen Pendel Vorlesung: Numerische Mathematik SS04 Projektarbeit Simulation eines Mathematischen Pendel Heinrich Mellmann Matey Mateev Leiter: Dr. René Lamour 15. Oktober 2004 2 Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Lösungen zu Übungsblatt 2

Lösungen zu Übungsblatt 2 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 217/18 Übungsblatt 2 Lösungen zu Übungsblatt 2 Aufgabe 1 Koppelnavigation. a) Ein Schiff bestimmt seine Position bei Sonnenuntergang durch den

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

zu / II. Wiederholung zum freien Fall

zu / II. Wiederholung zum freien Fall Fach: Physik/ L. Wenzl Datum:. zu 2.1.4 / II. Wiederholung zum freien Fall Aufgabe 11 (Mechanik, freier Fall) Aus welcher Höhe müssen Fallschirmspringer zu Übungszwecken frei herabspringen, um mit derselben

Mehr

Versuchprotokoll A07 - Maxwell-Rad

Versuchprotokoll A07 - Maxwell-Rad Versuchprotokoll A07 - Maxwell-Rad 4. GRUNDLAGEN, FRAGEN 1. Welchen Zusammenhang gibt es hier zwischen der Winkelgeschwindigkeit ω des Rades und der Translationsgeschwindigkeit v seines Schwerpunktes?

Mehr

Lösungen und Hinweise zu den Arbeitsaufträgen, Heimversuchen und Aufgaben

Lösungen und Hinweise zu den Arbeitsaufträgen, Heimversuchen und Aufgaben Bewegungen S. 181 196 Aufträge S. 183 Lösungen und Hinweise zu den Arbeitsaufträgen, Heimversuchen und Aufgaben A1 Siehe Schülerband, S. 183, B1 (Bewegungsarten) und S. 18, B5 (Bewegungsformen). A Individuelle

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Freier Fall mit dem Timer 2-1

Freier Fall mit dem Timer 2-1 Lehrer-/Dozentenblatt Freier Fall mit dem Timer 2- Lehrerinformationen Einführung Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit Empfohlene Gruppengröße {complexity:3} mittel {time:} 0 Minuten

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Gravitationskonstante

Gravitationskonstante M05 Gravitationskonstante Unter Verwendung der Gravitationsdrehwaage als hochempfindliches Kraftmessgerät wird die Gravitationskonstante γ experimentell ermittelt. Eine auftretende systematische Abweichung

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Kommentiertes Musterprotokoll zum Versuch. g-bestimmung mit Hilfe des freien Falls und der Atwoodschen Fallmaschine

Kommentiertes Musterprotokoll zum Versuch. g-bestimmung mit Hilfe des freien Falls und der Atwoodschen Fallmaschine Grundlagenlabor Physik Kommentiertes Musterprotokoll zum Versuch g-bestimmung mit Hilfe des freien Falls und der Atwoodschen Fallmaschine Sophie Kröger und Andreas Bartelt SoSe 2017 Dozent/in... Studiengang:...

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Verwandte Themen Kinetische Gastheorie,, Wahrscheinlichkeit, Verteilungsfunktion, kinetische Energie, Durchschnittsgeschwindigkeit,

Verwandte Themen Kinetische Gastheorie,, Wahrscheinlichkeit, Verteilungsfunktion, kinetische Energie, Durchschnittsgeschwindigkeit, Verwandte Themen Kinetische Gastheorie,, Wahrscheinlichkeit, Verteilungsfunktion, kinetische Energie, Durchschnittsgeschwindigkeit, Geschwindigkeitsverteilung. Prinzip Ein Gerät zur kinetischen Gastheorie

Mehr

Umgang mit und Analyse von Messwerten

Umgang mit und Analyse von Messwerten In diesem ersten Praktikumsversuch erarbeiten Sie sich das Handwerkszeug, was zum erfolgreichen absolvieren des Physikpraktikums nötig ist. Im Fokus dieses Versuchs stehen die Themen: Signifikante Stellen

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist.

3, wobei C eine Konstante ist. des Zentralgestirns abhängig ist. Abschlussprüfung Berufliche Oberschule 00 Physik Technik - Aufgabe I - Lösung Teilaufgabe.0 Für alle Körper, die sich antriebslos auf einer Kreisbahn mit dem Radius R und mit der Umlaufdauer T um ein Zentralgestirn

Mehr

Übungsprüfung für die 2- Jahres- Prüfung Physik

Übungsprüfung für die 2- Jahres- Prüfung Physik Übungsprüfung für die 2- Jahres- Prüfung Physik Die Teilaufgaben sind meistens voneinander unabhängig lösbar! Schreiben Sie immer zuerst den formalen Ausdruck hin und setzen erst dann die Zahlen ein! 1.

Mehr

Übungsauftrag zur Kinematik - Lösungen

Übungsauftrag zur Kinematik - Lösungen Übungsauftrag zur Kinematik - Lösungen Aufgaben zu Bewegungsdiagrammen 1. Autofahrt Die Bewegung eines Autos lässt sich durch folgendes Diagramm beschreiben: (a) Beschreibe die Bewegung so genau wie möglich

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Kraft und Bewegung. a. Zeichnen Sie einen Freischnitt für den Block.

Kraft und Bewegung. a. Zeichnen Sie einen Freischnitt für den Block. Kraft und Bewegung Aufgabe 1 Ein Block der Masse 4 kg liegt auf einem waagrechten Tisch mit rauer Oberfläche. Wenn eine horizontale Kraft von 10N angelegt wird, ist die Beschleunigung 2 m/s 2. a. Zeichnen

Mehr

AUSWERTUNG: GALVANOMETER

AUSWERTUNG: GALVANOMETER AUSWERTUNG: GALVANOMETER TOBIAS FREY, FREYA GNAM, GRUPPE 6, DONNERSTAG 1. VOREXPERIMENTE (1) Nimmt man einen Zuleitungsbananenstecker in die linke Hand, den anderen in die rechte Hand, so ist deutlich

Mehr

F2 Volumenmessung Datum:

F2 Volumenmessung Datum: Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum Mechanik und Thermodynamik Datum: 14.11.005 Heiko Schmolke / 509 10 Versuchspartner: Olaf Lange / 507 7

Mehr

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen.

Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. 1 Optik 1.1 Brechung des Lichtes Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. α β 0 0 10 8 17 13 20

Mehr

Teamname: 1. Potentielle und kinetische Energie

Teamname: 1. Potentielle und kinetische Energie Notizen: 04/2017 Liebe Abenteurer, Viel Spaß bei Fragen zur Beschleunigung, Geschwindigkeit, potentielle und kinetische Energie, quer durch meine Abenteuerwelt. Der Parkplan weist Euch den Weg. Vergesst

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach

Mehr

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr.

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung.

Mehr

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Urs Wyder, 4057 Basel U.Wyder@ksh.ch Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Hinweis: Verwenden Sie in Formeln immer die SI-Einheiten Meter, Kilogramm und Sekunden resp. Quadrat- und Kubikmeter!

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger Serie 6 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012

Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 1. Kurzaufgaben (7 Punkte) a) Welche der folgenden Aussagen ist richtig? Kreuzen Sie diese an (es ist genau eine Aussage richtig). A: Der Brechungswinkel

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr