VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler"

Transkript

1 VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler Hausübung In der Übung Übungsblatt Gegeben: Skala zur Messung der Gesundheitssorge mit 20 Items (dichotomes Antwortformat). Person A hat 15 Items beantwortet und den Wert 13 erhalten. Person B hat bei 19 beantworteten Items den Wert 16 erhalten. Person C hingegen hat 12 Items beantwortet und den Wert 11 erreicht. Welche Person hat unter Berücksichtigung der Missing Data den höheren Wert? Bei dichotom kann man sagen: 13 von 15 richtig. Bei einem Persönlichkeitsfragebogen entspricht der Wert der Ausprägung dieses Persönlichkeitsmerkmales. Bevor man in der Praxis in die Formel einsetzt muss man sich fragen, wieso Person nicht alle Items beantwortet hat. Hat die Person Items nicht beantwortet, weil Items nicht vorgelegt worden (z.b. Abbruch des Tests)? War die Person nicht in der Lage, das Item zu beantworten. Wenn die Person die Items nicht gelöst hat, weil sie nicht in der Lage war (zu schwer), ist es nicht sinnvoll, in die Formel einzusetzten! Ab wie vielen Missing Data ist es sinnlos, die Formel / Korrektur zu verwenden? In der Literatur: sind mehr als 10% der Items nicht beantwortet, soll man das Ergebnis nicht korrigieren! Anzahl Items Rohwert X beantwortet Person A ,3 Person B ,8 Person C ,3 Überlegung vor Rechnen: Person C hat die meisten Items im Sinne der Skala gelöst. (11 von 12) Vorsicht: Formel rechnet nur das Verhältnis hoch! A: x A = 13* = 17,3 B: x B = 16* = 16,8 C: x C = 11* = 18,3 Antwort: Unter Berücksichtigung der Missing Data erreicht Person C mit 18,3 den höheren Wert! 2.a) Berechnen Sie die Schwierigkeit für folgende Items einer Neurotizismusskala: a)- Ich habe öfters Kopfweh: ja= 80 nein= 50 b)- Bei Stress bin ich ruhig: ja= 70 nein= 100 N + Anzahl der korrekt im Skalensinn beantworteten Items bzw. der richtigen Antworten p i = N Anzahl der Gesamtpersonen, die das Item bearbeitet haben a) Neurotizismus + Kopfweh p i = 80/(80+50)= 0,6154 0,62 mittlere Schwierigkeit (nach Fisseni) b) Neurotizismus + Unruhe p i =100(100+70)= 0,5882 0,59 mittlere Schwierigkeit (nach Fisseni)

2 b). Welche Items würden Sie warum streichen, sofern 4 Items zu streichen wären (Intelligenzskala mit 12 Items (i1-i12) für die Allgemeinbevölkerung; Angabe der Schwierigkeit p i ): i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i Für die Allgemeinbevölkerung: Optimal ist der Bereich zwischen.20 und.80 (zw. 20% und 80%): Zu leicht: i6:.96 (96% aller Personen können dieses Item lösen/richtig beantworten) i11:.85 (85% aller Personen können dieses Item lösen) Zu schwer: i3:.14 (14% aller Personen können dieses Item lösen) i7:.09 (9% aller Personen können dieses Item lösen) Es gibt hier mehrere Möglichkeiten. Andere Überlegung: dass man ein höheres und ein eres drinnen lässt und dafür 2 aus der Mitte streicht. I6 und I7 streichen. 3. Berechnen Sie bei folgendem Item die Schwierigkeit als Mittelwert in absoluter Form und in normierter Form (0-1), Medianklasse und exakten Median (N=100) für die zwei angegebenen Gewichtungen: Stimme zu Stimme eher zu Stimmt eher nicht zu Stimme nicht zu AM abs AM norm Median Kl Median ex Gewichtung ,77 0,59 2 1,85 Gewichtung ,31 0,59 9 8,56 Antworthäufigkeiten pro Kategorie Sinn der Aufgabe: Es kommt bei gleicher Verteilung und verschiedenen Kategorien bei manchen Größen zu verschiedenen Werten. Gewichtung 1: Mittelwert: AM abs = (24 + 2*51 + 3*17)/100 = 1,77 Normierter Mittelwert: AM norm = (1,77 0)/ (3-0)= 0,59 Medianklasse Bestimmung der mittleren Position: (N+1)/2: (100+1)/2= 50,5 Schauen, so 50 und 51 liegt. In unserem Fall liegen beide in der Medianklasse 2. Achtung: Liegen die 2 Positionen in verschiedenen Kategorien, dann wird der Median gemittelt. (Liegen die 2 Positionen z.b. in der Kategorie 1 und 2, so ist die Medianklasse = 1,5!) 50,5 liegt in der Stimmt eher nicht zu Kategorie Medianklasse Median kl = 2 Exakter Median Med ex = 1,5 + 1 *( 100 / 2 )-(8+24) 51 Med ex = 1, / 51 = 1, x_2 3

3 Gewichtung 2: Mittelwert: AM abs = (3*8 + 6* *9 + 12*17)/100 = 8,31 Normierter Mittelwert: AM norm = (8,31 3)/ (12-3)= 0,59 Medianklasse Mittlere Position: (N+1)/2: (100+1)/2= 50,5 50,5 liegt in der Stimmt eher nicht zu Kategorie Medianklasse = 9 Klasse, um die es geht: 9 (untere Klasse nehmen 6 und zusammenzählen. Dann durch 2 untere grenze!) Untere Grenze= 7,5 Obere Grenze= 10,5 Exakter Median Med ex = 7,5 + 3 *( 100 / 2 )-(32) 51 Med ex = 8, x_9 12 Exakter Median liegt bei den beiden Gewichtungen an der selben Stelle: 0 1 x_ x_ In einer Itemanalyse (N=50) haben Sie für einen Test die part-whole-korrigierten Trennschärfen berechnet und folgende Kennwerte r (it) erhalten: I1 I2 I3 I4 I5 I6 I7 I a) Welche Konsequenzen ziehen Sie aus den Ergebnissen? Bewertung der Trennschärfe Signifikanz (ja/nein) Richtung (pos. Od. neg) Höhe (Fisseni) Trennschärfe sagt uns, wie gut Item zu dem passt, was Skala messen soll. Bei einer negativen Trennschärfe: Formulierung des Items ist genau so gestaltet, dass sie gegen den Skalensinn laufen. Umpolen und danach noch mal die Trennschärfe berechnen I1 I2 I3 I4 I5 I6 I7 I8 Trennschärfe Signifikanz < r krit nicht < r krit nicht < r krit nicht Höhe.30<r it<.50 mittel r it>.50 hoch.30<r it<.50 mittel r it>.50 hoch Richtung negativ positiv positiv positiv positiv positiv negativ positiv Berechnung von r krit N= 50 df=48 (Tabelle nachschauen) Df (40) = 0,304 Df (50) = 0,273

4 Diff= 0,031 0,031/10= 0,0031*8= 0,0248 r krit (df= 48, α=0,05, zweiseitig) = 0,304-0,0248= 0,2792 0,279 Alle Werte, die 0,279 überscheiten weisen auf eine Signifikanz hin! Die die negativ sind und die Items, die nicht sind, würden rausfallen. Höhe Item.29 ist zu. b) Wie groß ist die durchschnittliche Trennschärfe der Items 5 bis 8? Berechnen Sie den Mittelwert der Trennschärfen normal und zusätzlich mittels der beigefügten Gebrauchsanleitung über die Fisher-z transformierten Koeffizienten (nicht zu verwechseln mit den bisher bekannten z-werten!!) GEBRAUCHSANLEITUNG / How To / Manual 1. Zuerst alle vorhandenen Korrelationen in Fisher-z Werte (nach Tabelle) umwandeln: r in Tabelle suchen und entsprechenden Fisher-z ablesen (ist unabhängig von den Freiheitsgraden). 2. Den Mittelwert der Fisher-z Werte (Absolutwerte) berechnen. 3. Diesen Wert wieder rück-transformieren in einen normalen Korrelationskoeffizienten: Fisher-z in Tabelle suchen und entsprechenden Korrelationskoeffizienten ablesen) 4. PS: Negative Werte sind im Sinn von r zu verstehen (Betrag; Vorzeichen nicht relevant) 5. PSS: Versuchen Sie Ihre Ergebnisse in Excel zu kontrollieren: =Fisher() für die Transformation r nach Fisher-z und =Fisherinv() für die Transformation von Fisher-z r 6. PSSS: Falls Sie daran interessiert sind zu erfahren, warum man dieses Prozedere vornehmen muss, finden Sie gute Hinweise in: Bortz, J. (2005). Statistik Beispiel ia ib ic id Mittelwert Fisher-z Mittelwert (als r) r (1) Fisher-z (2) (1) Mittelwert normal berechnet (2) Mittelwert mit Fisher-z transformierten Werten berechnet Hier geht es darum: für 4 Items soll der Mittelwert berechnet werden. Mittelwert= Summe(X i ) Anzahl i Mittelwert = (0,12 + 0, ,19 + 0,64)/ 4 = 0,2925 I5 I6 I7 I8 r it Fisher-z 0, , , ,75817 Warum sollte man die Werte mit Fisher-z rechnen? Verteilung bei einer Korrelation ist keine Normalverteilung. Verteilung ist stark abhängig von von Ausreissern etc... Fisher z ist ab N =30 annähernd eine Normalverteilung. Vorteil: Mittelwert passt besser zu der Stichprobe. Tabelle im oberen Bereich: Fisher-z wert rückumwandeln Mittelwert= (0, , , ,75817) / 4= 0, (in Tabelle schauen) z= 0,324 (in Tabelle bei 0,34, weil gerundet) r= 0, Sie haben einen Test (Items mit 4-stufige Antwortkategorien) konstruiert und folgende Ergebnisse erhalten (Ausschnitt aus der Itemanalyse; N=160)? Diskutieren Sie jedes Item unter

5 Berücksichtigung des normierten Mittelwerts (Schwierigkeit), der Trennschärfe und der Verteilungsform (jeweils unabhängig von den Ergebnissen der anderen Items) heißt: Sie bewerten pro Item den jeweiligen Itemkennwert und kommen pro Item zu einer Entscheidung bezüglich Verbleib oder Eliminierung des Items. ACHTUNG: Diese Übungsaufgabe ist nicht abzugeben Sie kann aber in der Übung besprochen werden, sofern Zeit ist (auf jeden Fall werden die richtigen Lösungen zur Verfügung gestellt). Antwortkategorie r(it) AM Item nie selten öfters immer korr norm Itembewertung i ,5 Siehe unten i ,4 Siehe unten i ,475 Siehe unten N= 160 Mittelwert M i1 = 23*0 + 40*1 + 91*2 + 6*3 160 = 1,5 M i2 = 83*0 + 17*1 + 5*2 + 55*3 160 = 1,2 M i3 = 41*0 + 38*1 + 53*2 + 28*3 160 = 1,425 AM norm i1 = 1, = 0,5 Wert liegt zwischen.20 und.80 mittlere Schwierigkeit nach Fisseni AM norm i2 = 1, = 0,4 Wert liegt zwischen.20 und.80 mittlere Schwierigkeit nach Fisseni AM norm i3 = 1, = 0,475 Wert liegt zwischen.20 und.80 mittlere Schwierigkeit nach Fisseni Trennschärfe Berechnung von r krit N= 160 df=158 (Tabelle nachschauen) Df (150) = 0,159 Df (200) = 0,138 Diff= 0,021 0,021/50= 0,00042*8= 0,00336 r krit (df= 158, α=0,05, zweiseitig) = 0,159-0,00336= 0,1554 0,16 Alle Werte, die 0,16 überscheiten weisen auf eine Signifikanz hin! r it1 =.33 ; r it1 >.30 mittel r it2 =.17 ; r it1 <.30 schmeissen wir raus r it3 =.62 ; r it1 >.50 hoch Verteilungsform

6 rechtssteil, unimodal, unregelmässig verteilt; auch nicht optimalverteilt, aber Trennschärfe und Schwierigkeit sind gut. Item bleibt U-Verteilung in den Extrempunkten mehr Personen als in der Mitte regelmässig verteilt, keine optimale Verteilung Schwierigkeit Trennschärfe Verteilungsform Beurteilung I1 Mittel r it1 >.30 mittel Unregelmässig verteilt, rechtssteil I2 Mittel r it1 <.30 u-verteilung Item streichen I3 mittel r it1 >.50 hoch Gleichmässig verteilt

Rekodierung invertierter Items

Rekodierung invertierter Items 16.Testkonstruktion Items analysieren (imrahmen der KTT) Pretest Aussortieren / Umschreiben von unverständlichen, uneindeutigen oder inakzeptablen Items empirische Prüfung Kennwerte: Itemschwierigkeit

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 1 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Einführung in Datensatz Stichprobenbeschreibung

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Sitzung 4: Übungsaufgaben für Statistik 1

Sitzung 4: Übungsaufgaben für Statistik 1 1 Sitzung 4: Übungsaufgaben für Statistik 1 Aufgabe 1: In einem Leistungstest werden von den Teilnehmern folgende Werte erzielt: 42.3; 28.2; 30.5, 32.0, 33.0, 38.8. Geben Sie den Median, die Spannweite

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

12 Rangtests zum Vergleich zentraler Tendenzen

12 Rangtests zum Vergleich zentraler Tendenzen 12 Rangtests zum Vergleich zentraler Tendenzen 12.1 Allgemeine Bemerkungen 12.2 Gepaarte Stichproben: Der Wilcoxon Vorzeichen- Rangtest 12.3 Unabhängige Stichproben: Der Wilcoxon Rangsummentest und der

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Reliabilitäts- und Itemanalyse

Reliabilitäts- und Itemanalyse Reliabilitäts- und Itemanalyse In vielen Wissenschaftsdisziplinen stellt die möglichst exakte Messung von hypothetischen Prozessen oder Merkmalen sogenannter theoretischer Konstrukte ein wesentliches Problem

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen

SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen SPSS-Beispiel zum Kapitel 4: Deskriptivstatistische Evaluation von Items (Itemanalyse) und Testwertverteilungen Augustin Kelava 22. Februar 2010 Inhaltsverzeichnis 1 Einleitung zum inhaltlichen Beispiel:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent

1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Reliabilität 1. Überblick 2. Berechnung

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke

4.2 Grundlagen der Testtheorie. Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke 4.2 Grundlagen der Testtheorie Wintersemester 2008 / 2009 Hochschule Magdeburg-Stendal (FH) Frau Prof. Dr. Gabriele Helga Franke GHF im WiSe 2008 / 2009 an der HS MD-SDL(FH) im Studiengang Rehabilitationspsychologie,

Mehr

Übung 2 im Fach "Biometrie / Q1"

Übung 2 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-897 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 3, 8975 Ulm Tel. +49

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

Beispielberechnung Normierung

Beispielberechnung Normierung 1 Beispielberechnung Normierung Auszug Kursunterlagen MAS ZFH in Berufs-, Studien- und Laufbahnberatung Prof. Dr. Marc Schreiber, Dezember 2016 Verschiedene Formen der Normierung (interaktiv) Referenz:

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Tests für Erwartungswert & Median

Tests für Erwartungswert & Median Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X

Mehr

4.2 Grundlagen der Testtheorie

4.2 Grundlagen der Testtheorie 4.2 Grundlagen der Testtheorie Januar 2009 HS MD-SDL(FH) Prof. Dr. GH Franke Kapitel 5 Vertiefung: Reliabilität Kapitel 5 Vertiefung: Reliabilität 5.1 Definition Die Reliabilität eines Tests beschreibt

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Verfahren zur Skalierung. A. Die "klassische" Vorgehensweise - nach der Logik der klassischen Testtheorie

Verfahren zur Skalierung. A. Die klassische Vorgehensweise - nach der Logik der klassischen Testtheorie Verfahren zur Skalierung A. Die "klassische" Vorgehensweise - nach der Logik der klassischen Testtheorie 1. Daten: z. Bsp. Rating-Skalen, sogenannte "Likert" - Skalen 2. Ziele 1. Eine Skalierung von Items

Mehr

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005

Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005 Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001

Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben

Mehr

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder

Häufigkeiten. Verteilungen. Lageparameter Mittelwert. oder Formelsammlung Beschreibende Statistik Univariate Häufigkeitsverteilungen X ist ein diskretes Merkmal, mit k Ausprägungen TR: Mode 2 1 = AC absolute relative Häufigkeit Häufigkeiten Bivariate Häufigkeitsverteilungen

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Statistik im Labor. BFB-tech Workshop Eugen Lounkine

Statistik im Labor. BFB-tech Workshop Eugen Lounkine Statistik im Labor BFB-tech Workshop 9.11.07 Eugen Lounkine Übersicht Darstellung und Charakterisierung von Daten Datentransformationen Lineare Korrelation Wahrscheinlichkeitsverteilung(en) Schätzer Konfidenzintervalle

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Statistik Probeprüfung 1

Statistik Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Statistik Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur Orientierung:

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Streuungsmaße von Stichproben

Streuungsmaße von Stichproben Streuungsmaße von Stichproben S P A N N W E I T E, V A R I A N Z, S T A N D A R D A B W E I C H U N G, Q U A R T I L E, K O V A R I A N Z, K O R R E L A T I O N S K O E F F I Z I E N T Zentrale Methodenlehre,

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Prüfungsliteratur: Rudolf & Müller S

Prüfungsliteratur: Rudolf & Müller S 1 Beispiele zur univariaten Varianzanalyse Einfaktorielle Varianzanalyse (Wiederholung!) 3 Allgemeines lineares Modell 4 Zweifaktorielle Varianzanalyse 5 Multivariate Varianzanalyse 6 Varianzanalyse mit

Mehr

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur

Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur Gesamtpunktzahl der Statistik I-Klausur: 12 Einführung in die Statistik I BA VM, 45 Minuten, Probeklausur 03.07.2015 Name, Vorname: Matrikelnr.: Um die volle Punktzahl zu erhalten, müssen Sie bei den Berechnungen

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 9 t-verteilung Lernumgebung Hans Walser: 9 t-verteilung ii Inhalt 1 99%-Vertrauensintervall... 1 2 95%-Vertrauensintervall... 1 3 Akkus... 2 4 Wer ist der

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-31 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Lage- und Streuungsparameter

Lage- und Streuungsparameter Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben

Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Albert/Marx 0: Empirisches Arbeiten Sonderanhang: Manuelle Berechnungen der Statistikaufgaben Kaum jemand führt heutzutage statistische Berechnungen noch von Hand durch, weil es sehr viele Computerprogramme

Mehr

GRUPPE B Prüfung aus Statistik 1 für SoziologInnen

GRUPPE B Prüfung aus Statistik 1 für SoziologInnen GRUPPE B Prüfung aus Statistik 1 für SoziologInnen 16. Oktober 2015 Gesamtpunktezahl =80 Prüfungsdauer: 2 Stunden Name in Blockbuchstaben: Matrikelnummer: 1) Wissenstest (maximal 20 Punkte) Kreuzen ( )

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2004/2005 Universität Karlsruhe 14. Februar 2005 Dr. Bernhard Klar Sebastian Müller Aufgabe 1: (15 Punkte) Klausur zur Vorlesung Statistik für Biologen Musterlösungen

Mehr

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0

1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0 1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

3.2 Grundlagen der Testtheorie Methoden der Reliabilitätsbestimmung

3.2 Grundlagen der Testtheorie Methoden der Reliabilitätsbestimmung 3.2 Grundlagen der Testtheorie 3.2.6 Methoden der Reliabilitätsbestimmung 6.1 Was ist Reliabilität? 6.2 Retest-Reliabilität 6.3 Paralleltest-Reliabilität 6.4 Splithalf-(Testhalbierungs-)Reliabilität 6.5

Mehr

5 Exkurs: Deskriptive Statistik

5 Exkurs: Deskriptive Statistik 5 EXKURS: DESKRIPTIVE STATISTIK 6 5 Ekurs: Deskriptive Statistik Wir wollen zuletzt noch kurz auf die deskriptive Statistik eingehen. In der Statistik betrachtet man für eine natürliche Zahl n N eine Stichprobe

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Übung 3 im Fach "Biometrie / Q1"

Übung 3 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Deskriptive Statistik Erläuterungen

Deskriptive Statistik Erläuterungen Grundlagen der Wirtschaftsmathematik und Statistik Erläuterungen Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen 7 2.1 Einfache Lageparameter aus einer gegebenen Messreihe ablesen Erklärung

Mehr

Begriffe (moodle-intern) Bedeutung Beispiel

Begriffe (moodle-intern) Bedeutung Beispiel Begriffe (moodle-intern) Bedeutung Beispiel Standardabweichung Leichtigkeitsindex Zufällig angenommene Punktezahl wie groß war die Abweichung der einzelnen Bewertungen von der Durchschnittsbewertung Gibt

Mehr

Statistische Messdatenauswertung

Statistische Messdatenauswertung Roland Looser Statistische Messdatenauswertung Praktische Einführung in die Auswertung von Messdaten mit Excel und spezifischer Statistik-Software für naturwissenschaftlich und technisch orientierte Anwender

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Aufgabe 1 a) Berechnen Sie einen U-Test für das in Kapitel 8.1 besprochene Beispiel mit verbundenen n. Die entsprechende Testvariable punkte2 finden Sie im Datensatz Rangdaten.sav.

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Probleme bei kleinen Stichprobenumfängen und t-verteilung

Probleme bei kleinen Stichprobenumfängen und t-verteilung Probleme bei kleinen Stichprobenumfängen und t-verteilung Fassen wir zusammen: Wir sind bisher von der Frage ausgegangen, mit welcher Wahrscheinlichkeit der Mittelwert einer empirischen Stichprobe vom

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr