1. Theorie der Darstellungsebenen (E-I-S-Schema, E-I-S-Prinzip nach Jerome BRUNER)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Theorie der Darstellungsebenen (E-I-S-Schema, E-I-S-Prinzip nach Jerome BRUNER)"

Transkript

1 1. Theorie der Darstellungsebenen (E-I-S-Schema, E-I-S-Prinzip nach Jerome BRUNER) Nach BRUNER lassen sich drei Formen der Repräsentation von Wissen unterscheiden: 1. enaktive Repräsentation (Handlungen) 2. ikonische Repräsentation (Bilder) 3. symbolische Repräsentation (Zeichen, Sprache) Alle drei Repräsentationsformen entwickeln sich normalerweise im Laufe der ersten drei Lebensjahre. Sie stehen Erwachsenen flexibel zur Verfügung. In Abwandlung bzw. Erweiterung dieser Theorie kann man der Sprache eine besondere Funktion zuweisen. Einerseits stellt sie eine vierte Ebene dar, andererseits vermittelt sie in der Kommunikation zwischen den Ebenen. Der Übergang zwischen den Ebenen (Modi) wird auch als intermodaler Transfer bezeichnet.

2 2. Konsequenzen für den Mathematikunterricht (1) Der Mathematikunterricht folgt in der Regel diesem Schema, indem üblicherweise verschiedene didaktischmethodische Phasen durchlaufen werden, die auf H. AEBLI zurückführbar sind ( Phasen des Aufbaus und des Verinnerlichungsprozesses ) und die unterschiedlichen Darstellungs- und Verständnisebenen des E-I-S- Schemas von BRUNER ansprechen: 1. Phase des Handelns mit konkretem Material (enaktive Ebene) 2. Phase der bildhaften Darstellung (ikonische Ebene) 3. Phase der symbolischen Darstellung (symbolische Ebene) In der Arithmetik kommt eine vierte Phase hinzu: 4. Phase der Automatisierung

3 2. Konsequenzen für den Mathematikunterricht (2) Darüber hinaus müssen in jeder Phase die bis dahin verfügbaren intermodalen Transfers geübt werden bzw. immer dann genutzt werden, wenn Probleme auftauchen ( Kannst Du zu dieser Aufgabe eine Geschichte erzählen/ein Bild malen? ). Dieser Aufbau gilt grundsätzlich für jede der vier Grundrechenarten, im Anschluss daran können Sachaufgaben behandelt werden. Außerdem gilt: Verschiedene Kinder durchlaufen die einzelnen Phasen zu unterschiedlichen Zeiten. Wenn ein Kind eine Aufgabe noch enaktiv löst, kann ein anderes womöglich schon bildhaft oder gar symbolisch arbeiten!

4 3.1 Phase der Handlungen an konkretem Material (1) Jede Rechenoperation wird so eingeführt, aufbauend auf einer Alltagshandlung mit Alltagsgegenständen oder schulischen Veranschaulichungsmitteln o Plättchen werden zusammengelegt: Addition o Steckwürfel werden von einer Steckwürfelstange abgebrochen: Subtraktion o durch wiederholte Handlungen werden Mengen erzeugt: Multiplikation o Mengen von Muscheln werden auf- oder verteilt: Division Dabei kommt es nicht nur auf die motorische Ausführung an, sondern... Teilschritte müssen vorausgedacht werden (visuelle Antizipation), auf die vergangene Handlung muss zurückgeblickt werden können, die vollzogenen Teilschritte müssen visuell und sprachlich erinnert werden können, das Kind muss also die Handlung in die Vorstellung zurückholen können, da am Ende nur noch das Ergebnis auf dem Tisch liegt.

5 3.1 Phase der Handlungen an konkretem Material (1) Ziel dieser Phase: Kinder müssen von Anfang an erleben, dass die Mathematik in den Quantitäten und in den Handlungen mit den Quantitäten steckt und nicht in den Zeichen auf dem Papier und den algorithmischen Manipulationen mit den geschriebenen Symbolen Beispiel für falsches Verständnis: die Hälfte von 20 ist 2 und die andere Hälfte ist 0! Symbole für Zahlen und Rechenoperationen sind Hilfsmittel für Aufzeichnungen, zum Protokollieren der quantitativen Vorstellungen, die das Kind in der Handlung zuvor bereits entwickelt haben muss. Rückblickende Klärung ist nicht nur Erinnern und Vorstellen der ausgeführten Tätigkeit als bloße Handgriffe, sondern... o der konkreten Handlung wird die eigentliche mathematische Struktur verliehen, o die vom Kind geschaffene mathematische Bedeutung der Handlung kann dann in symbolische Darstellung übertragen werden. Verinnerlichung ist also mehr als die Vorstellung der konkreten Tätigkeit, sondern das Produkt eines Abstraktionsvorganges.

6 3.2 Phase der bildhaften Darstellung (1) Im Vergleich zu den Handlungen abstraktere, da zweidimensionale und insbesondere statische Darstellungen in Schulbüchern, an der Tafel, auf Arbeitsblättern usw. Die den Operationen zugrunde liegenden Handlungen werden jetzt nicht mehr ausgeführt, sondern durch Abbildungen von Mengen und eine entsprechende Andeutung der jeweils intendierten Operation durch graphische Zeichen (Pfeile, Durchstreichungen usw.) und andere Markierungshilfen ersetzt.

7 3.2 Phase der bildhaften Darstellung (2) Vom Kind wird verlangt, dass es sich aufgrund der Darstellung die entsprechende Handlung bzw. die reale, dreidimensionale, lebensnahe Operation vorstellen kann. Neue kognitive Anforderung: Der gemeinte Handlungsablauf (in dem seinerseits die mathematische Operation enthalten ist) muss in der visuellen Vorstellung erzeugt werden. Schwierig insbesondere bei Subtraktion und Division sowie bei fehlenden Ziffern Oftmals wird versucht, eine Regel zu finden, nach der die bildliche Darstellung in eine Zifferngleichung/einen Rechenausdruck übersetzt werden kann. Warnung: Die erste und die zweite Phase kommen für viele Kinder oft zu kurz, da die mathematischen Begriffe noch nicht im Kopf des Kindes konstruiert worden sind. Ein zu früher Übergang zur symbolischen Ebene (oder gar zur Automatisierung) steht meist dem Aufbau von Verständnis entgegen und versucht, dieses zu ersetzen.

8 3.2 Phase der bildhaften Darstellung (3) LORENZ spricht hier vom anschaulichen Handlungskorrelat, das als Schema verfügbar sein muss: ein visuelles Vorstellungs- und Denkmuster für sämtlichen strukturgleichen Darstellungen. Es genügt, wenn bei einer gestellten Aufgabe ein isomorphes (gleichgestaltetes) Anschauungsbild erzeugt wird.

9 3.3 Symbolische Phase Verwendung einer symbolischen ( zeichenmäßigen ) Darstellung diese muss mit einer Handlung verknüpft werden können Falls nicht: Ziffern und Symbole bleiben Zeichen auf dem Papier, die nach irgendwelchen Regeln manipuliert werden. Kurz- und Langzeitgedächtnis sowie Symbolverständnis werden benötigt Die Symbole folgen einer anderen Syntax und Semantik als die Objekte der ikonischen oder enaktiven Ebene (z. B. gilt nicht 5+2=52). Symbole sind Vereinbarungen, Konventionen, die man auch anders hätte definieren können. Dies kann subjektive Verständnisschwierigkeiten zur Folge haben, die nur auf der Symbolebene bestehen (z.b. <, >, Vorgänger, Nachfolger usw.). Die ersten drei Phasen werden unter dem Oberbegriff Erarbeitung zusammengefasst.

10 3.4 Automatisierung Übungsphase; Ziel: Entlastung des Kurzzeitgedächtnisses Rechnungen im kleinen Einspluseins und Einmaleins sollen als Wortgleichungen (wie Vokabeln) gelernt werden, damit sie später bei komplexeren Rechnungen zur Verfügung stehen. Verständnis für Rechenstrategien verschafft hierbei jedoch Erleichterungen (z.b. 2+7=9, da 7+2=9) Warnung: In dieser Phase können auch Schüler mit Rechenschwierigkeiten wieder erfolgreich sein, da ihnen ein gutes (Assoziations-)Gedächtnis hilft. Das Problem, die Rechenoperation als Begriff bzw. als Handlung nicht verstanden zu haben, steht dem nicht entgegen und zeigt sich erst wieder, wenn die Automatisierungsphase verlassen wird (z.b. beim Sachrechnen oder beim Rechnen im Zahlenraum 100).

Umgang mit Mengen, Zahlen u. Größen - Mathematik. 3.2 Umgang mit Mengen, Zahlen und Größen Mathematik

Umgang mit Mengen, Zahlen u. Größen - Mathematik. 3.2 Umgang mit Mengen, Zahlen und Größen Mathematik 3.2 Umgang mit Mengen, Zahlen und Größen Mathematik Die Mathematik mit ihren verschiedenen Aspekten ist fester Bestandteil des Unterrichts in allen Stufen der St.-Elisabeth-Schule. Die Voraussetzungen

Mehr

Würfelbilder als visuelle Unterstützung bei Kopfrechnen und Rechenstrategien

Würfelbilder als visuelle Unterstützung bei Kopfrechnen und Rechenstrategien Würfelbilder als visuelle Unterstützung bei Kopfrechnen und Rechenstrategien Vortrag von Miriam Hörth Dipl. Soz.Päd. Diplomierte Legasthenie- und Dyskalkulietrainerin Spieleautorin bei der 21. Fachtagung

Mehr

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder

Datum Kursbeschreibung und Inhalte der Förderung Ziele Kinder Förderkurs im Schuljahr 2016/17 VS Großarl Förderkurs: Mathematik (Festigung und Förderung der mathematischen Basiskompetenzen, Festigung der Grundrechnungsarten, Sachaufgaben verstehen und lösen, Training

Mehr

= Rechne nach - das Ergebnis ist immer 1!

= Rechne nach - das Ergebnis ist immer 1! Was ist ein Bruch? Bisher kennst du genau eine Art der Zahlen, die sogenannten "Natürlichen Zahlen". Unter den Natürlichen Zahlen versteht man die Zahlen 0, 1,,,... bis Unendlich. Mit diesen Zahlen lassen

Mehr

Einführung in die Didaktik der Mathematik

Einführung in die Didaktik der Mathematik Einführung in die Didaktik der Mathematik Andrea Hoffkamp WS 2016/17 1 Wichtig! Modul: Vorlesung Einführung in die Mathematikdidaktik, Planungsseminar, Schulpraktische Übungen (SPÜ) Registrierung SPÜ im

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1)

Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Kriterien zur Beurteilung von Arbeitsmitteln (nach Radatz et al., 1996) (1) Didaktische Kriterien: (D1) Erlaubt das Material simultane Zahlauffassung und -darstellung bis 4? (D2) Erlaubt das Material quasi-simultane

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 100 (S. 4 23)

M ATHEMATIK Klasse 2. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 100 (S. 4 23) Der Zahlenraum bis 100 (S. 4 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien Zählen und schätzen

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR ) Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR ) Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 1 (ZR 10-20 - 100) Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 10 1-8 Zahlen 3, 2, 1, 0, 4 und 5 Zahlen bis 5 darstellen,

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

DUDEN. Stoffverteilungsplan. Deutsch Mathematik Sachunterricht Klasse 1 und 2. Sachsen-Anhalt. Die neuen Lehrwerke zu den neuen Lehrplänen

DUDEN. Stoffverteilungsplan. Deutsch Mathematik Sachunterricht Klasse 1 und 2. Sachsen-Anhalt. Die neuen Lehrwerke zu den neuen Lehrplänen DUDEN Stoffverteilungsplan Sachsen-Anhalt Die neuen Lehrwerke zu den neuen Lehrplänen Deutsch Mathematik Sachunterricht Klasse 1 und 2 M ATHEMATIK Klasse 2 Stoffverteilungsplan Sachsen-Anhalt Duden Mathematik

Mehr

Die Arbeitsblätter eignen sich auch als Hausaufgaben. Je nach Bedarf mit oder ohne Lösungsseite.

Die Arbeitsblätter eignen sich auch als Hausaufgaben. Je nach Bedarf mit oder ohne Lösungsseite. Vorwort/Einleitung Vorwort Sind die Mengen erfasst und die Rechenoperationen verstanden, hilft nur noch eins: üben üben üben. Die vorliegende Mappe entlastet Sie, zugunsten der Unterstützung einzelner

Mehr

Diagnose und Fördermöglichkeiten bei Dyskalkulie/Rechenschwäche. Salzburg, Jens Holger Lorenz, Heidelberg

Diagnose und Fördermöglichkeiten bei Dyskalkulie/Rechenschwäche. Salzburg, Jens Holger Lorenz, Heidelberg Diagnose und Fördermöglichkeiten bei Dyskalkulie/Rechenschwäche Salzburg, 06.06.09 Jens Holger Lorenz, Heidelberg www.jh-lorenz.de Repräsentation der Zahlen und Rechenoperationen Wie rechnen Sie 47 +

Mehr

Diagnose von lernbeeinträchtigenden Faktoren im Mathematikunterricht und mögliche Förderung

Diagnose von lernbeeinträchtigenden Faktoren im Mathematikunterricht und mögliche Förderung Diagnose von lernbeeinträchtigenden Faktoren im Mathematikunterricht und mögliche Förderung Tagung Pippis Plutimikation Bozen, 20.02.2013 Jens Holger Lorenz www.jh-lorenz.de Repräsentation der Zahlen und

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund

Inhalte des Schulbuches Kompetenzen und Inhalte Erweiterte Materialien aus dem Lehrwerksverbund Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Kapitel 1: Zahlen bis 10 Seiten 4 23

Kapitel 1: Zahlen bis 10 Seiten 4 23 11 Mathematik Schuljahr 1 Zahlen bis 10 kennen Zahlvorstellung entwickeln, Mengen erfassen, vergleichen und zerlegen Mengen- und Zahlvorstellungen entwickeln Zahlen in der Umwelt entdecken Kapitel 1: Zahlen

Mehr

Idee und Aufgabenentwurf Anna Lisa Dausend und Jennifer Euler Offene Ganztagsgrundschule Saarbrücken-Weyersberg, Klassenstufe 4 (November 2012)

Idee und Aufgabenentwurf Anna Lisa Dausend und Jennifer Euler Offene Ganztagsgrundschule Saarbrücken-Weyersberg, Klassenstufe 4 (November 2012) Aufgabe 1.1 Idee und Aufgabenentwurf Anna Lisa Dausend und Jennifer Euler Offene Ganztagsgrundschule Saarbrücken-Weyersberg, Klassenstufe 4 (November 2012) Finde Aufgaben zu den folgenden Zahlen. 5420

Mehr

Didaktik der Grundschulmathematik 1.1

Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik 1.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 1.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Zahlbegriff 3 Addition

Mehr

Puzzleteile zur Subtraktion

Puzzleteile zur Subtraktion Puzzleteile zur Subtraktion 1/27 Vorstellungen von der Operation entwickeln Einspluseins: Umkehraufgaben geläufig erwerben Analogien in höheren Dezimalen finden Grundstrategie für große Zahlen anwenden:

Mehr

Zahlen und Operationen Grundaufgaben der Multiplikation und Division auf

Zahlen und Operationen Grundaufgaben der Multiplikation und Division auf Zahlen und Operationen Grundaufgaben der Multiplikation und Division auf analoge Aufgaben im erweiterten Zahlenraum übertragen, Gesetzmäßigkeiten sowie Regeln erkennen und zur Lösung nutzen Inhaltsbezogene

Mehr

Schulbücher und Materialien für sonderpädagogische Förderung (Stand: Juli 2017)

Schulbücher und Materialien für sonderpädagogische Förderung (Stand: Juli 2017) Schulbücher und ien für (Stand: Juli 2017) Name Verlag Auflage Art Schrank 1,2 Papagei Schubi 2012 Basisfähigkeiten trainieren Addition und Subtraktion im Zahlenraum bis 10 Mathematik für Schüler mit geistiger

Mehr

Idee und Aufgabenentwurf Nicole Mai und Birgit Amann, Mellinschule, Sulzbach, Klassenstufe 3 (November 2012)

Idee und Aufgabenentwurf Nicole Mai und Birgit Amann, Mellinschule, Sulzbach, Klassenstufe 3 (November 2012) Aufgabe 1.3 Idee und Aufgabenentwurf Nicole Mai und Birgit Amann, Mellinschule, Sulzbach, Klassenstufe 3 (November 2012) Schreibe Sachaufgaben zum Bild. - Du darfst addieren. Du darfst subtrahieren. -

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Rechenkonzept der Förderschule an der Untermosel

Rechenkonzept der Förderschule an der Untermosel Rechenkonzept der Förderschule an der Untermosel Bevor wir uns mit Zahlen und Rechenoperationen in diesem Lernbereich beschäftigen, schaffen wir zunächst eine Grundlage im vorzahligen (pränumerischen)

Mehr

Eingangstest Modul 2: Kopfrechnen

Eingangstest Modul 2: Kopfrechnen Eingangstest Modul 2: Kopfrechnen AUFGABEN Löse die! 1021 + 8 = 87 6 = 252 + 8 = 300 145 = 456 + 42 = 247 74 = 465 + 49 = 1021 22 = Rechne 220 48 und schreibe deine Rechenschritte auf! Löse die folgenden

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte: Wie heißt die Zahl? 2. Zehnerschritte: Wie heißen die Zahlen? 1 3. Zehnerschritte: Wie heißen die Zahlen? 2 4.

Mehr

Mathematik. Grundstufe II Aufbau der natürlichen Zahlen. Mathematisches Denken weiter entwickeln und anwenden

Mathematik. Grundstufe II Aufbau der natürlichen Zahlen. Mathematisches Denken weiter entwickeln und anwenden Mathematik Grundstufe II Aufbau der natürlichen Zahlen Mathematisches Denken weiter entwickeln und Festigen von Zahlenvorstellungen und Zahlenverständnis im bekannten Zahlenraum Erarbeitung des Zahlenraums

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 30. Oktober 2013 ZÜ DS ZÜ

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 100 Seite (S. 4 23)

M ATHEMATIK Klasse 2. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 100 Seite (S. 4 23) Der Zahlenraum bis 100 Seite (S. 4 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien Zählen

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (1. Klasse) A. Addition und Subtraktion

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Rätsel für helle Köpfe / 4. Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Rätsel für helle Köpfe / 4. Schuljahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Rätsel für helle Köpfe / 4. Schuljahr Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt Seite Vorwort

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 100 Seite (S. 4 23)

M ATHEMATIK Klasse 2. Stoffverteilungsplan Berlin Brandenburg Mecklenburg-Vorpommern. Der Zahlenraum bis 100 Seite (S. 4 23) Der Zahlenraum bis 100 Seite (S. 4 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien Zählen

Mehr

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden

Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Folgende drei Punkte erleichtern die Entwicklung der Rechenfertigkeit bei allen Lernenden Bei allen Operationen gilt für größere Zahlen die gleiche Strategie: schrittweise rechnen Schreibweisen werden

Mehr

Zur Anwendung heuristischer Hilfsmittel beim Lösen von Sachaufgaben im Mathematikunterricht der Grundschule

Zur Anwendung heuristischer Hilfsmittel beim Lösen von Sachaufgaben im Mathematikunterricht der Grundschule Naturwissenschaft Stefanie Kahl Zur Anwendung heuristischer Hilfsmittel beim Lösen von Sachaufgaben im Mathematikunterricht der Grundschule Examensarbeit Zur Anwendung heuristischer Hilfsmittel beim Lösen

Mehr

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK

BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK BILDUNGSSTANDARDS 4. Schulstufe MATHEMATIK Allgemeine mathematische Kompetenzen (AK) 1. Kompetenzbereich Modellieren (AK 1) 1.1 Eine Sachsituation in ein mathematisches Modell (Terme und Gleichungen) übertragen,

Mehr

Inhaltsbezogene Kompetenzen. Analogien zur Lösung nutzen

Inhaltsbezogene Kompetenzen. Analogien zur Lösung nutzen Zeit Prozessbezogene Kompetenzen Kommunizieren : Mathematische Zusammenhänge erkennen, beschreiben und nutzen, Fachbegriffe (Summe, Summand, addieren; Minuend, Subtrahend, Differenz, subtrahieren) sachgerecht

Mehr

Mathedidaktik Plus & Minus Inhaltlicher Fokus

Mathedidaktik Plus & Minus Inhaltlicher Fokus Mathedidaktik Plus & Minus Inhaltlicher Fokus Überlegungen zur Umsetzung Plus rechnen 20 Blaue und rote Klötze werden zu einer Gesamtmenge vereinigt oder eine Plus-Strecke auf dem Zahlenstrahl zurückgelegt.

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte: Wie heißt die Zahl? 7. Einerschritte: Wie heißt die Zahl? 2. Zehnerschritte: Wie heißen die Zahlen? 1 8. Einerschritte: Wie heißen die Zahlen? 1 3.

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Zahlen überall 4-19 Seiten Prozessbezogene Kompetenzen Zahlen

Mehr

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik V e r l ä s s l i c h e G r u n d s c h u l e Hauptstraße 5 30952 Ronnenberg-Weetzen 05109-52980 Fax 05109-529822 2.Schuljahr Schuleigener Arbeitsplan für das Fach Mathematik Kompetenzbereiche, erwartete

Mehr

Basiskompetenzen Grössen und Sachrechnen im Kopf Schweizer Zahlenbuch 1 4

Basiskompetenzen Grössen und Sachrechnen im Kopf Schweizer Zahlenbuch 1 4 Basiskompetenzen Grössen und Sachrechnen im Kopf Schweizer Zahlenbuch 1 4 Hinweise zur Konzeption und zum Umgang mit den Übersichtsplänen zu Basiskompetenzen: 1. Konzeption Die Übersichtspläne sollen die

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

Mathematik 1 Primarstufe

Mathematik 1 Primarstufe Mathematik 1 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 2. Zehnerschritte bis 1000: Von wo bis wo? 3. Zehnerschritte bis 1000: Wo ist

Mehr

Tipps für den Umgang mit den Seiten Sachrechnen mit Leonardo

Tipps für den Umgang mit den Seiten Sachrechnen mit Leonardo Tipps für den Umgang mit den Seiten Sachrechnen mit Leonardo In jedem Schülerbuch gibt es kurze Hinweise zum Einsatz des Sachrechenlehrgangs auf Seite 3 unten. Danach sollen die Seiten nach Bedarf eingesetzt

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Rotary International Distrikt 1810 Berufsdienst Werte + Bildung + Beruf

Rotary International Distrikt 1810 Berufsdienst Werte + Bildung + Beruf Rudi Rechenmeister und die Mathe Kiste ergänzen sich gegenseitig. Die Mathe Kiste ist ein Werkzeug für alle 7 Hefte. Die 7 Hefte unterstützen den Wirkungsgrad der Mathe Kiste Rudi Rechenmeister 1 Vorkurs

Mehr

Lernheft Mathematik. Mittelstufe. -Lernstufen 5 und 6-

Lernheft Mathematik. Mittelstufe. -Lernstufen 5 und 6- Lernheft Mathematik Mittelstufe -Lernstufen 5 und 6- erarbeitet von Jutta Frankfurter und Anja Sievers (September 2005) Lernheft Mathematik Mittelstufe- 2 Fachspezifische Anforderungen für den Mathematikunterricht

Mehr

Das werde ich nie verstehen. Mathematisch denken und sprechen Rechenschwächen vermeiden

Das werde ich nie verstehen. Mathematisch denken und sprechen Rechenschwächen vermeiden Das werde ich nie verstehen. Mathematisch denken und sprechen Rechenschwächen vermeiden Vortrag am 14.06.2014 Dr. Jörg Kwapis Zentrum zur Therapie der Rechenschwäche Potsdam 1 Geraden unter sich ein Gespräch

Mehr

weitere Medien Zeitraum Außerschulische Lernorte

weitere Medien Zeitraum Außerschulische Lernorte A R B E I T S P L Ä N E SCHULEINGANGSPHASE Welt der Zahl 1 UNTERRICHTSTHEMA : Entwicklung des Zahlbegriffs Zahlen überall Zerlegen Anzahlen entdecken, erfassen und darstellen Anzahlen mit verschiedenen

Mehr

Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik

Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik Die Stufentheorie von Piaget Kinga Szűcs Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Abteilung Didaktik 14.04.2016 Hintergrund Die umfassendste und bedeutendste Theorie des

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (3. Klasse) A. Rechenstrategien Addition

Mehr

Basiskompetenzen Arithmetik Blitzrechnen Schweizer Zahlenbuch 1 4

Basiskompetenzen Arithmetik Blitzrechnen Schweizer Zahlenbuch 1 4 Basiskompetenzen Arithmetik Blitzrechnen Schweizer Zahlenbuch 1 4 Hinweise zur Konzeption und zum Umgang mit den Übersichtsplänen zu Basiskompetenzen: 1. Konzeption Die Übersichtspläne sollen die Übersicht

Mehr

Themenzuordnung. Sachaufgaben (1) Seite 1 von 5

Themenzuordnung. Sachaufgaben (1) Seite 1 von 5 GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 3: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - beschreiben

Mehr

Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl

Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl Übergang vom Zwanzigerfeld zu den Mehrsystemblöcken und zum leeren Zahlenstrahl Im mathematischen Anfangsunterricht sollten nicht zu viele Materialien verwendet werden. In der Förderung am Institut für

Mehr

Weberstrasse 2, 8400 Winterthur, , Elterninformation Unterstufe. 1. Klasse 2. Klasse 3.

Weberstrasse 2, 8400 Winterthur, , Elterninformation Unterstufe. 1. Klasse 2. Klasse 3. Elterninformation Unterstufe Sprache Wörter mit geeigneter Lesetechnik erlesen und akustische Gestalt des Wortes erfassen Kleine Texte lesen Einfache Lesestrategien aufbauen (z.b. Geschichten zeichnerisch

Mehr

Natürliche und ganze Zahlen

Natürliche und ganze Zahlen Die ganze Welt ist Harmonie und Zahl. Pythagoras Natürliche und ganze Zahlen 1-E1 Richard Dedekind (1831-1916) war ein deutscher Mathematiker. Die Zahlen sind freie Schöpfungen des menschlichen Geistes,

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Kompetenzmodell Mathematik, 4. Schulstufe. Ergänzende Informationen

Kompetenzmodell Mathematik, 4. Schulstufe. Ergänzende Informationen Kompetenzmodell Mathematik, 4. Schulstufe Ergänzende Informationen Kompetenzmodell Mathematik, 4. Schulstufe 3 Kompetenzmodell Die für Mathematik streben einen nachhaltigen Aufbau von grundlegenden Kompetenzen

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Niedersachsen. Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S )

M ATHEMATIK Klasse 2. Stoffverteilungsplan Niedersachsen. Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S ) Wiederholung (S. 4 9) Der Zahlenraum bis 100 (S. 10 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien

Mehr

Problemlösen. Modellieren

Problemlösen. Modellieren Die Menge Bruchzahlen (Fortsetzung) Primfaktorzerlegungen zur Ermittlung von ggt und kgv Darstellen von Bruchteilen in Sachzusammenhängen und am Zahlenstrahl Eigenschaften von Bruchzahlen, Kürzen, Erweitern

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst kann man sagen, dass alles beim Alten bleibt. Es bleiben also sämtliche

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tests & Übungen - Lernzielkontrollen für das 2. Schuljahr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Tests & Übungen - Lernzielkontrollen für das 2. Schuljahr Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Tests & Übungen - Lernzielkontrollen für das 2. Schuljahr Das komplette Material finden Sie hier: School-Scout.de Titel: Tests & Übungen

Mehr

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./ Arithmetik in der Grundschule V2 -./ Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Multiplikation und Division

Multiplikation und Division Multiplikation und Division Hilfsmittel zur Darstellung von Multiplikationsaufgaben Hunderterpunktfeld Multiplikation und Division 7 9 = 5 5 + 2 5 + 5 4 + 2 4 = 63 5 2 5 25 10 4 20 8 63 Multiplikation

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Vertiefende Diagnostik zur Förderung im Fach Mathematik. Aufgaben und Beobachtungsschwerpunkte

Vertiefende Diagnostik zur Förderung im Fach Mathematik. Aufgaben und Beobachtungsschwerpunkte Vertiefende Diagnostik zur Förderung im Fach Mathematik Aufgaben und Beobachtungsschwerpunkte Prozessorientierte Diagnose ist eine Diagnostik, in deren Rahmen Kindern Aufgaben gestellt werden, die geeignet

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das kleine 1x1 - Umfangreiches Material zur Multiplikation für die Förderschule Das komplette Material finden Sie hier: School-Scout.de

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 02.11.2016 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien eigene Vorgehensweisen beschreiben Problemlösen

Mehr

Ausbildungsmodule für die zweite Phase der Lehrerbildung im Saarland. Didaktik der Primarstufe Mathematik

Ausbildungsmodule für die zweite Phase der Lehrerbildung im Saarland. Didaktik der Primarstufe Mathematik Ausbildungsmodule für die zweite Phase der Lehrerbildung im Saarland - Lehramt für die Primarstufe und für die Sekundarstufe I (Klassenstufen 5 bis 9) - 1. Februar 2012 Didaktik der Primarstufe Mathematik

Mehr

Schriftliche Subtraktion

Schriftliche Subtraktion Schriftliche Subtraktion 1. Schriftliche Subtraktion Grundidee Art der Durchführung des Übertrages: Rechentechnik Entbündeln Erweitern Auffüllen Art der Differenzberechnung: Rechenverfahren Abziehen X

Mehr

Inhalte des Schulbuches Kompetenzen und Inhalte Ergänzende Materialien aus dem Produktkranz

Inhalte des Schulbuches Kompetenzen und Inhalte Ergänzende Materialien aus dem Produktkranz Wiederholung (S. 4 13) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens der bereits bekannten Rechenstrategien Addieren bis 100 Festigen

Mehr

Mathematik Jahrgangsstufe 2

Mathematik Jahrgangsstufe 2 Grundschule Bad Münder Stand: 12.03.2014 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 2 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Kommunizieren und eigene Vorgehensweisen beschreiben

Mehr

Auf die Einteilung kommt es an! Fördermaterial zum Bruchbegriff und zum Bruchrechnen

Auf die Einteilung kommt es an! Fördermaterial zum Bruchbegriff und zum Bruchrechnen I Zahlen und Größen Beitrag 47 Fördermaterial zum Bruchrechnen 1 von 32 Auf die Einteilung kommt es an! Fördermaterial zum Bruchbegriff und zum Bruchrechnen Von Roland Bullinger, Gaildorf Illustriert von

Mehr

Physik eine empirische Wissenschaft

Physik eine empirische Wissenschaft Experimentalphysik A 1. Einleitung Physik eine empirische Wissenschaft Die Naturerscheinungen laufen nicht regellos ab, sondern sie werden durch Naturgesetze gesteuert. Die Physik befaßt sich mit der Erforschung

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Lehrplansynopse zum Zahlenbuch Klasse 3/4

Lehrplansynopse zum Zahlenbuch Klasse 3/4 Klett. Ich weiß. Lehrplansynopse zum Zahlenbuch Klasse 3/4 für Rheinland-Pfalz Geometrie Raum Bewegung und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen Grundrisszeichnungen, Wegeskizzen,

Mehr

Workshop: Grundvorstellungen aufbauen. Sebastian Wartha, Karlsruhe

Workshop: Grundvorstellungen aufbauen. Sebastian Wartha, Karlsruhe Workshop: Grundvorstellungen aufbauen Sebastian Wartha, Karlsruhe Küchenzurufe Vom Zählen zum Grundvorstellungen, keine Regeln Auf s Übersetzen kommt es an; Verinnerlichen von Handlungen Diagnose & Förderung

Mehr

Mathedidaktik Mal & Geteilt Inhaltlicher Fokus

Mathedidaktik Mal & Geteilt Inhaltlicher Fokus Mathedidaktik Mal & Geteilt Inhaltlicher Fokus Multiplikation und Division gelten als Spezialfälle der Addition und Subtraktion. Bei der Multiplikation werden immer gleich grosse Mengen addiert. Um die

Mehr

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Vorwort. Last not least bedanke ich mich bei den Kindern und ihren Eltern für das Vertrauen, dass sie mir entgegengebracht haben.

Vorwort. Last not least bedanke ich mich bei den Kindern und ihren Eltern für das Vertrauen, dass sie mir entgegengebracht haben. Vorwort Schwierigkeiten von Kindern im Rechnen werden bislang in der Literatur sowie in der Terminologie der beteiligten Personen häufig als Dyskalkulie oder Rechenschwäche bezeichnet, die durch Teilleistungsschwächen

Mehr

Modul 2.2: Darstellungsmittel für Grundschule und Sek. I

Modul 2.2: Darstellungsmittel für Grundschule und Sek. I Haus 2: Fortbildungsmaterial Kontinuität von Klasse 1 bis 6 Modul 2.2: Darstellungsmittel für Grundschule und Sek. I 1 1 1 Darstellungsformen und Darstellungsmittel Erinnerung: Mathematische Sachverhalte

Mehr

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler...

Klasse 5. Inhalt(sfelder) Inhaltsbezogene Kompetenzen. Prozessbezogene Kompetenzen. Die Schülerinnen und Schüler... Die Schülerinnen und Schüler... I Natürliche Zahlen 1. Zählen und darstellen stellen Beziehungen zwischen Zahlen und Größen in Tabellen bzw. Diagrammen (Säulendiagramm, Balkendiagramm) dar, lesen Informationen aus Tabellen und Diagrammen

Mehr

WELT DER ZAHL Schuljahr 2

WELT DER ZAHL Schuljahr 2 Kapitel 1: Wiederholung und Vertiefung Seiten 4 13 Übungen mit dem Zahlen- ABC Addieren und Subtrahieren Aufgabe und Umkehraufgabe Gleichungen und Ungleichungen, Variable Sachrechnen; Rechengeschichten

Mehr

Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung

Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung Friedhelm Padberg Didaktik der Arithmetik für Lehrerausbildung und Lehrerfortbildung 3. erweiterte, völlig überarbeitete Auflage ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum kjlakademischer VERLAG Inhaltsverzeichnis

Mehr

Lernumgebung 3 Zahlen 4 Aufgaben (Zahlenzauber S. 48/49)

Lernumgebung 3 Zahlen 4 Aufgaben (Zahlenzauber S. 48/49) Claudia Hauke Lernumgebung 3 Zahlen 4 Aufgaben (Zahlenzauber S. 48/49) Klassenstufe: 1 Bezug zum Lehrplan: Umkehroperation zur Addition und Subtraktion bilden Einspluseinssätze mit Ergebnis bis 10 und

Mehr

Vorwort. Marc Peter, Rainer Hofer Berufsschullehrer und Lehrpersonen für Förderangebote

Vorwort. Marc Peter, Rainer Hofer Berufsschullehrer und Lehrpersonen für Förderangebote Vorwort Das mathematische Grundwissen in der Arithmetik dem «Rechnen» kommt in vielen Berufen zur Anwendung. Dieser Band aus der Reihe «Mathematik Basics» bietet Ihnen die Möglichkeit, in Form eines programmierten

Mehr

Teilbarkeitsbetrachtungen in den unteren Klassenstufen - Umsetzung mit dem Abakus

Teilbarkeitsbetrachtungen in den unteren Klassenstufen - Umsetzung mit dem Abakus Naturwissenschaft Melanie Teege Teilbarkeitsbetrachtungen in den unteren Klassenstufen - Umsetzung mit dem Abakus Examensarbeit Inhaltsverzeichnis Abkürzungsverzeichnis... 2 1 Einleitung... 3 2 Anliegen

Mehr

M ATHEMATIK Klasse 2. Stoffverteilungsplan Rheinland-Pfalz. Der Zahlenraum bis 100 (S. 4 23)

M ATHEMATIK Klasse 2. Stoffverteilungsplan Rheinland-Pfalz. Der Zahlenraum bis 100 (S. 4 23) M ATHEMATIK Klasse 2 Stoffverteilungsplan Rheinland-Pfalz Der Zahlenraum bis 100 (S. 4 23) Wiederholung der zentralen Inhalte im Bereich Arithmetik unter dem Aspekt des beziehungsreichen Übens, des Festigens

Mehr

WELT DER ZAHL Schuljahr 1

WELT DER ZAHL Schuljahr 1 Zahlen bis 10 kennen und schreiben Zahlvorstellung entwickeln Anzahlen mit verschiedenen Sinnen erfassen, Mengen erfassen, Zahlen vergleichen Zahlzerlegung, Kraft der Fünf Zerlegungsgeschichten, mit der

Mehr

Didaktische Grundlagen Arithmetik

Didaktische Grundlagen Arithmetik Didaktische Grundlagen Arithmetik Vertiefung www.math-edu.de/dgarithmetikv Folien erstellt auf der Grundlage von: Köhler, Hartmut (Hrsg.). 2008. Kreative Ideenbörse Mathematik Sekundarstufe I, Ausgabe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das kleine 1:1 - Umfangreiches Material zur Division für die Förderschule

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das kleine 1:1 - Umfangreiches Material zur Division für die Förderschule Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das kleine 1:1 - Umfangreiches Material zur Division für die Förderschule Das komplette Material finden Sie hier: School-Scout.de

Mehr

Schuleigener Arbeitsplan für das Fach Mathematik

Schuleigener Arbeitsplan für das Fach Mathematik Schuleigener Arbeitsplan für das Fach Mathematik 1 Rahmenbedingungen Das Fach Mathematik ist in der Stundentafel in den Jahrgängen 1, 3 und 4 mit 5 Wochenstunden ausgewiesen, in Jahrgang 2 mit 6 Wochenstunden.

Mehr

Arbeitsblätter für die Dyskalkulietherapie

Arbeitsblätter für die Dyskalkulietherapie 1. Einführung Das Ziel der ist die Automatisierung grundlegender Kopfrechenaufgaben der Addition und Subtraktion im Zahlraum 20 und Zahlenraum 100. Durch das wiederholte Üben der Aufgaben prägt sich das

Mehr