Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme"

Transkript

1 Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff mu du al Hauaufgabe erledigen! Aufgabe 1: Lie auf S. 132 die Spale Rechenbeipiel und löe die Aufgaben132.4 und 8 Aufgabe 2: Die Bewegung zweier Fahrräder auf gerader Srecke wurde experimenell uneruch und in einer Wereabelle, bei Fahrrad 1 zuäzlich in einem Schaubild dargeell: Fahrrad 1 Fahrrad 2 Zei in 0 1,0 2,0 3,0 4,0 5,0 0 1,5 2,5 3,5 4,5 5,5 Srecke in m 0 5,0 9,9 15, ,7 0 9,2 15,3 21,2 27,5 33,7 Fahrrad 1 a) Vervolländige die Bechrifung de Diagramm und zeichne da Schaubild der Fahr von Fahrrad 2 in gleiche Diagramm ein. b) Begründe ohne Rechnung, welche der Fahrräder chneller gefahren i. km c) Zeige durch Rechnung, da da Fahrrad 2 die Gechwindigkei 22 hae. h d) Berechne: Wie wei komm da Fahrrad 2, wenn e auf die dargeelle Ar ingeam 25 Sekunden lang fähr? e) Zeichne in gleiche Diagramm die Bewegung eine drien Fahrrade ein, da mi 15 m Vorprung mi der gleichen Gechwindigkei und in die gleiche Richung wie Fahrrad 1 lofähr, nach 2,0 Sekunden anhäl und 1,5 Sekunden päer mi halb o großer Gechwindigkei zurück fähr. f) Wann und wo begegnen ich Fahrrad 1 und Fahrrad 3?

2 Aufgabe 3: Du kauf eine Rolle Schur, deren Länge mi 150 m angegeben wird. Um zu überprüfen, ob die Längenangabe imm, chneide du nacheinander 50 cm, 100 cm und 200 cm Schnur ab und wieg die Mae dieer Teilücke. Da Ergebni deiner Meung eh in folgender Tabelle: a) Selle eine Formel auf, mi deren Hilfe du die Länge Schnur au ihrer Mae berechnen kann. b) Die geame Schnurrolle wieg 60 g. Wie lang i die Schnur? c) Wie chwer ind 72 m dieer Schnur? l in m 0,50 1,00 2,00 m in g 1,25 2,50 5,01 Aufgabe 4: Ein Modellauo fähr 3,0 Sekunden lang mi einer Gechwindigkei von 0,50 m/. Dann bleib e 2,0 Sekunden lang ehen, um danach nochmal 2,0 Sekunden lang mi v = 0,2 m/ zu fahren. a) Zeichne da -v-diagramm b) Zeichne da --Diagramm c) Berechne die milere Gechwindigkei Aufgabe 5: Du ha einen großen Karon, gefüll mi lauer gleichen Schrauben. a) Begründe, warum die Mae m der Schrauben proporional mi deren Anzahl N zunimm. b) Selle eine Formel zur Berechnung der Mae auf und ermile die darin vorkommende Konane, wenn 50 Schrauben 87,5 g wiegen. c) Der Inhal deine Karon wieg 2,275 kg. Berechne mi Hilfe deiner Formel die Anzahl der Schrauben. Aufgabe 6: Bechreibe in eigenen Woren möglich genau, die zu folgenden Diagrammen gehörenden Bewegungabläufe. a) --Diagr. b) v -v-diagr. c) --Diagr.

3 Muerlöungen: Aufgabe 1: Lie auf S. 132 die Spale Rechenbeipiel und löe die Aufgaben132.4 und 8 Aufgabe 132.4: (Auli Verlag, Spekrum Phyik 1) Zeichne ein --Diagramm für eine Sraßenbahn. (1) 15 lang fähr ie an und leg dabei einen Weg von 150 m zurück. (2) Dann fähr ie 45 lang mi gleichbleibender Gechwindigkei 600 m wei. (3) Anchließend brem ie 12 lang in den Sand ab. Der Bremweg beräg dabei 120 m Vorüberlegung zur Eineilung der Diagrammachen: Die geame Fahrzei beräg = 72 Die geame Srecke beräg 150 m m m = 870 m in m 800 (3) (2) (1) in

4 Aufgabe 132.8: (Auli Verlag, Spekrum Phyik 1) Ein Schüler brauch für den 1,2 km langen Schulweg zu Fuß ¼ Sunde, mi dem Fahrrad beräg eine Bezei 3 min 10. a) Berechne jeweil die Durchchnigechwindigkei in m/ und in km/h. Geg.: = 1,2 km = 1200 m ; Rad = 190 ; Fuß = ¼ h = 900 Ge.: v Rad, v Fuß Lg.: v Rad = = 1200 m Rad 190 = 6, m/ Da 1 m/ = 3,6 km/h ind, folg: v Rad = 6,3175 3,6 km/h = km/h v Rad = 6,3 m/ bzw. v Rad = 23 km/h (innvoll gerunde!) 1200 m v Fuß = = = 1,33.. m/ 900 Ruß Da 1 m/ = 3,6 km/h ind, folg: v Rad = 1,33 3,6 km/h = 4,8.. km/h v Rad = 1,3 m/ bzw. v Rad = 4,8 km/h (innvoll gerunde!) b) Zeichne beide Bewegungen in ein --Diagramm. Woran erkenn du die Bewegung mi der höheren Gechwindigkei. in m 1200 Radfahrer Fußgänger in Die Bewegung mi der höheren Gechwindigkei erkenn man daran, da der Graph im -- Diagramm eiler i, d.h., da in der gleichen Zei ein größerer Weg zurück geleg wird.

5 Aufgabe 2: Die Bewegung zweier Fahrräder auf gerader Srecke wurde experimenell uneruch und in einer Wereabelle, bei Fahrrad 1 zuäzlich in einem Schaubild dargeell: Fahrrad 1 Fahrrad 2 Zei in 0 1,0 2,0 3,0 4,0 5,0 0 1,5 2,5 3,5 4,5 5,5 Srecke in m 0 5,0 9,9 15, ,7 0 9,2 15,3 21,2 27,5 33,7 in m 30 Fahrrad 2 20 Fahrrad in g) Vervolländige die Bechrifung de Diagramm und zeichne da Schaubild der Fahr von Fahrrad 2 in gleiche Diagramm ein. Die Löung wurde in Diagramm eingezeichne. h) Begründe ohne Rechnung, welche der Fahrräder chneller gefahren i. Fahrrad 2 i chneller gefahren, denn au dem Diagramm kann man ennehmen, da e in der gleichen Zei, z.b. nach 5 Sekunden, einen größeren Weg zurückgeleg ha, al Fahrrad 1. km i) Zeige durch Rechnung, da da Fahrrad 2 die Gechwindigkei 22 hae. h Fahrrad 2 leg in 5,5 Sekunden 33,7 m zurück. Seine Gechwindigkei beräg alo v = = 33,7 m = 6,127..m/ 5,5 Da 1 m/ = 3,6 km/h ind, folg: v = 6, ,6 km/h = 22,05 km/h Sinnvoll gerunde ergib ich al Ergebni: v = 22 km/h

6 j) Berechne: Wie wei komm da Fahrrad 2, wenn e auf die dargeelle Ar ingeam 25 Sekunden lang fähr? Geg.: v = 22 km/h = 6,111.. m/, = 25 Ge.: Lg.: v = v = : v Ergebni: = v = 6,111 m/ ,77.. m = 0,15 km k) Zeichne in gleiche Diagramm die Bewegung eine drien Fahrrade ein, da mi 15 m Vorprung mi der gleichen Gechwindigkei und in die gleiche Richung wie Fahrrad 1 lofähr, nach 2,0 Sekunden anhäl und 1,5 Sekunden päer mi halb o großer Gechwindigkei zurück fähr. in m 30 Fahrrad 3 Fahrrad 2 20 Fahrrad in l) Wann und wo begegnen ich Fahrrad 1 und Fahrrad 3? Au dem Diagramm kann man ableen, da Fahrrad 1 nach 6,6 Sekunden am gleichen Or i wie Fahrrad 3. Beide ind dann ca. 33 m wei gefahren.

7 Aufgabe 3: Du kauf eine Rolle Schur, deren Länge mi 150 m angegeben wird. Um zu überprüfen, ob die Längenangabe imm, chneide du nacheinander 50 cm, 100 cm und 200 cm Schnur ab und wieg die Mae dieer Teilücke. Da Ergebni deiner Meung eh in folgender Tabelle: a) Selle eine Formel auf, mi deren Hilfe du die Länge Schnur au ihrer Mae berechnen kann. Au der Tabelle kann man erkennen, da eine Verdoppelung (bzw. eine Vervierfachung) der Länge im Rahmen der Megenauigkei auch eine Verdoppelung (bzw. Vervierfachung) der Mae bewirk. Die Mae nimm alo proporional mi der Länge zu und man kann chreiben: m ~ l => m = k l wobei k = m / l = 2,5 g/m (Mielwer innvoll gerunde!) l in m 0,50 1,00 2,00 m in g 1,25 2,50 5,01 b) Die geame Schnurrolle wieg 60 g. Wie lang i die Schnur? Geg.: m = 60 g, k = 2,5 g/m Ge.: l Lg.: m = k l m k = l : k l = m = 60 g = 24 m k 2,5 g/m => l = 24 m c) Wie chwer ind 72 m dieer Schnur? Geg.: l = 72 m, k = 2,5 g/m Ge.: m Lg.: m = k l = 2,5 g/m 72 m = 180 m Erg.: m = 0,18 km

8 Aufgabe 4: Ein Modellauo fähr 3,0 Sekunden lang mi einer Gechwindigkei von 0,50 m/. Dann bleib e 2,0 Sekunden lang ehen, um danach nochmal 2,0 Sekunden lang mi v = 0,2 m/ zu fahren. a) Zeichne da -v-diagramm v in m/ 0,4 0, b) Zeichne da --Diagramm Um da --Diagramm zeichnen zu können, mu man er berechnen, wie wei da Auo nach 3, 5 und nach 7 gefahren i. in Dabei gil: = v 3 = 0,5 m/ 3 = 1,5 m 3 = 1,5 m Da da Auo während der nächen 2 Sekunden eh, i 5 = 3 = 1,5 m In den nächen 2 Sekunden fähr e mi 0,2 m/ und leg den Weg Δ = v Δ = 0,2 m/ 2 = 0,4 m zurück => 7 = 5 + Δ = 1,5 m + 0,4 m = 1,9 m 7 = 1,9 m in m in c) Berechne die milere Gechwindigkei v = ge / ge = 1,9 m / 7 = 0,27 m/ v = 0,27 m/

9 Aufgabe 5: Du ha einen großen Karon, gefüll mi lauer gleichen Schrauben. a) Begründe, warum die Mae m der Schrauben proporional mi deren Anzahl N zunimm. Eine proporionale Beziehung zwichen zwei Größen erkenn man z.b. daran, da bei Verx-fachung der einen Größe, auch die andere Größe auf da x-fache zunimm. Weil alle Schrauben gleich ind, wiegen zwei Schrauben doppel o viel wie eine Schraube bzw. x Schrauben x-mal o viel wie eine Schraube. Die Mae nimm alo proporional mi der Anzahl zu. b) Selle eine Formel zur Berechnung der Mae auf und ermile die darin vorkommende Konane, wenn 50 Schrauben 87,5 g wiegen. E gil: m ~ N => m = k N m 87,5 g wobei k = = 1,75 g N 50 k 1,75 g c) Der Inhal deine Karon wieg 2,275 kg. Berechne mi Hilfe deiner Formel die Anzahl der Schrauben. Geg.: Ge.: Lg.: m = 2275 g, k = 1,75 g N m = k N : k m k = N N = m 2275 g = = 1300 k 1,75 g Der Karon enhäl 1300 Schrauben. Aufgabe 6: Bechreibe in eigenen Woren möglich genau, die zu folgenden Diagrammen gehörenden Bewegungabläufe. a) --Diagr. Ein Auo fähr eine Zei lang mi konaner Gechwindigkei, häl dann eine Zei lang an und fähr danach mi konaner aber kleinerer Gechwindigkei weier. b) v -v-diagr. Ein Fahrzeug fähr zunäch mi fa konaner, ganz leich zunehmender Gechwindigkei. E wird dann immer langamer um am Ende eine Gechwindigkei gleichmäßig zu eigern. c) --Diagr. Ein Fahrzeug fähr zunäch mi geringer Gechwindigkei. Dann bechleunig e gleichmäßig. Späer brem e wieder ewa ab und fähr mi konaner Gechwindigkei weier. Am Ende brem e charf und bleib ehen.

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

1. Kontrolle Physik Grundkurs Klasse 11

1. Kontrolle Physik Grundkurs Klasse 11 1. Konrolle Phyik Grundkur Klae 11 1. Ein Luch lauer eine Haen auf und lä e da ahnungloe und chackhafe Tier bi auf 30,0 herankoen. Dann prine er i 68 k/h auf ein Opfer lo, da ofor davon renn. Nach 5,0

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs,

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs, Löung Aufgabenalung BM Beruf- und Weierbildungzenru bzb, Hanflandr. 17, Pofach, 9471 Buch, www.bzbuch.ch 1) Während Sie in eine Lif ehen, ehen Sie eine Schraube von der hohen Decke der Lifkabine herabfäll.

Mehr

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung

Messung der Ladung. Wie kann man Ladungen messen? /Kapitel Formeln auf S.134: Elektrische Ladung --- Meung der Ladung Wie kann man Ladungen meen? -/Kapiel.. Formeln auf S.: Elekriche Ladung Zur Ladungmeung können wir einen au der Mielufe bekannen Zuammenhang zwichen der Ladung Q und der Sromärke I

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Physik-Übungsblatt Nr. 1: Lösungsvorschläge

Physik-Übungsblatt Nr. 1: Lösungsvorschläge Phyik-Übungbla Nr. 1: Löungorchläge ufgabe 1: Zur Zei are Wagen mi der konanen Gechwindigkei 1 km / h, Wagen fähr mi der konanen Gechwindigkei 1 km / h in die gleiche Richung, ha aber zu eginn einen Vorprung

Mehr

3 GERADL. GLEICHM. BESCHL. BEWEGUNG

3 GERADL. GLEICHM. BESCHL. BEWEGUNG PS KINEMATIK P. Rendulić 0 GERADL. GLEICHM. BESCHL. BEWEGUNG 7 3 GERADL. GLEICHM. BESCHL. BEWEGUNG 3. Experimenelle Herleiung de WegZeiGeeze 3.. Veruchbechreibung Wirk läng der Bahn eine konane Kraf in

Mehr

Bekommt Schüler F. noch den Bus...

Bekommt Schüler F. noch den Bus... Gnuplo Inro Aufgbenellung Bekomm Schüler F. noch den Bu...... oder komm er ew zu pä in die Schule? E. Pulu 1 T. Bonow 2 1 Bichöfliche Gymnium Snk Urul Geilenkirchen 2 Sudieneminr Jülich Jülich Phyik GK11

Mehr

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen,

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen, Aufgben zur bechl. Bewegung 66. (Abi 007) Ein Lieferwgen der Me,5 wird u de Sillnd durch eine konne Krf i de k Berg,0 kn bechleunig. Nchde die Gechwindigkei 7 erreich i, fähr der h Lieferwgen gleichförig

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinknn hp://brinknn-du.de Seie 5..03 Kle 0: Ergebnie und uführliche Löungen der Aufgben zur bechleunigen Bewegung Ergebnie E E E3 E4 E5 Erkläre die Begriffe: ) gleichförige Bewegung b) bechleunige

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Überlegungen zum Bremsweg eines Wagens Seite 1. Rechnung Bremsweg. F g. m g,m=0,8 1000kg 10 N Hy. =μ H

Überlegungen zum Bremsweg eines Wagens Seite 1. Rechnung Bremsweg. F g. m g,m=0,8 1000kg 10 N Hy. =μ H Überlegungen zum Bremweg eine Wagen Seite 1 Rechnung Bremweg Ein Auto mit v=72km/h und m=1000kg Mae macht eine Vollbremung. Der Reibfaktor zwichen Reifen und Straße beträgt dabei μ H =0,8. Impultrom Impul

Mehr

Gleichförmige Bewegung

Gleichförmige Bewegung Gleichförmige Bewegung 1. Grundwien (a) Ein PKW fähr mi der konanen Gechwindigkei v = 16 km auf der Auobahn. Wie lange brauch da Auo für eine 00m lange h Srecke? (b) Wird ein geeiche 50 g-sück an eine

Mehr

PHYSIK. Gleichförmige Bewegungen. Datei Nr Geradlinige Bewegungen. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

PHYSIK. Gleichförmige Bewegungen. Datei Nr Geradlinige Bewegungen. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. PHYSIK Geradlinige Bewegungen Teil 1 Gleichförige Bewegungen Daei Nr. 91111 Friedrich W. Buckel Geänder: 18. Januar 2013 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.ahe-cd.de 91111 Gleichförige

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

Physikalische Größe = Zahlenwert Einheit

Physikalische Größe = Zahlenwert Einheit Phyikaliche Grundlagen - KOMPAKT 1. Phyikaliche Größen, Einheien und Gleichungen 1.1 Phyikaliche Größen Um die Ar ( Qualiä) und da Aumaß ( Quaniä) phyikalicher Eigenchafen und Vorgänge bechreiben und mi

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik Phyik I im Sudiengang lekroechnik - Kinemaik - Prof. Dr. Ulrich Hahn WS 2015/2016 Bewegung in Körper/Objek änder eine Poiion (Or) Dafür wird Zei benöig Kinemaik 2 Bewegung Kinemaik 3 Roaion Unerchiedliche

Mehr

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung :

F Rück. F r Rück. Mechanische Schwingungen. Größen zur quantitativen Beschreibung : Mechaniche chwingungen F r Rück Gleichgewichlage r F Rück F r Rück F r Rück Gleichgewichlage Größen zur quaniaiven Bechreibung : chwingungdauer oder Periode T, Einhei: Frequenz υ /T, Einhei: / oder Hz

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit

Gruppenarbeit: Anwendungen des Integrals Gruppe A: Weg und Geschwindigkeit Gruppenarbei: Anwendungen de Inegral Gruppe A: Weg und Gechwindigkei Die ere Ableiung der Zei-Or-Funkion x() der Bewegung eine Körper ergib bekannlich die Zei- Gechwindigkei-Funkion v(), deren ere Ableiung

Mehr

M4/I Bewegungs-und Leistungsaufgaben Name: 1) Verwandle in Minuten! 1 min 30 s = 7 min 15 s = 3 min 45 s =

M4/I Bewegungs-und Leistungsaufgaben Name: 1) Verwandle in Minuten! 1 min 30 s = 7 min 15 s = 3 min 45 s = ) erwandle in Minuen! 30 s 7 5 s 3 5 s 2) erwandle in gemische Einheien! 2,5 2,25,75 3) erwandle in Sekunden! 0,6 0, 0,9 ) erwandle in Minuen! 2 s s 36 s 5) erwandle in Minuen! 0,2 h 0,3 h 0, h 6) erwandle

Mehr

Grundfertigkeiten Physik Jahrgangsstufe 7

Grundfertigkeiten Physik Jahrgangsstufe 7 Robert-Koch-Gymnaium Grundfertigkeiten Phyik Jahrgangtufe 7 Fachchaft Phyik 2013 Serie A 1 Grundfertigkeiten Phyik Jahrgangtufe 7 Serie A Hilfe: Hookeche Geetz: Einfache Formelgleichungen Elektricher Widertand

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

Experiments. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1

Experiments. Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Experimen Prof. F. Wörgöer (nach M. Seib) -- Phyik für Mediziner und Zahnmediziner Phyik für Mediziner und Zahnmediziner Vorleung 04 Prof. F. Wörgöer (nach M. Seib) -- Phyik für Mediziner und Zahnmediziner

Mehr

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung

Bewegung. Einteilung der Mechanik. Kinematik. Bezugssystem. Modell Massepunkt. Geradlinig gleichförmige Bewegung Eineilung der Mechanik Kinemaik Mechanik Kinemaik Dynamik Lehre von den Bewegungen und ihren Gesezen, ohne Beachung der zu Grunde liegenden Ursachen Lehre von den Kräfen und deren Wirkungen und dami der

Mehr

PHYSIK Geradlinige Bewegungen 1

PHYSIK Geradlinige Bewegungen 1 PHYSIK Geradlinige Bewegungen 1 Gleichförige Bewegungen Daei Nr. 91111 Friedrich W. Buckel Juli 2002 Inernagynaiu Schloß Torgelow Inhal 1 Grundlagen der gleichförigen Bewegung 1 2 Gleichförige Bewegung

Mehr

Freier Fall. Quelle: Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m

Freier Fall. Quelle:  Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m Freier Fall 1. Der franzöiche Fallchirpringer Michel Fournier (geb. 14.5.1944) verfolg ei ehr al 1 Jahren da Ziel in ca. 4 Höhe i eine Sraophärenballon aufzueigen und von dor abzupringen. Dabei will er

Mehr

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt?

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt? Aufgaben zur gleicäßig becleunigen Bewegung. Ein Auo eiger eine Gecwindigkei gleicäßig on = 0 k - auf = 50 k -. Wie groß i die Becleunigung und der zurückgelege Weg, wenn die Gecwindigkeieröung in der

Mehr

1 Mein Wissen aus der Volksschule Beispiele

1 Mein Wissen aus der Volksschule Beispiele Mein Wissen aus der Volksschule Beispiele Löse die Rechenaufgaben und male die Felder mi den passenden Lösungen in der angegebenen Farbe an! Zum Vorschein komm ein Gegensand, der zum Schulbeginn pass.

Mehr

Induktionsgesetz. a = 4,0cm. m = 50g

Induktionsgesetz. a = 4,0cm. m = 50g 1. Die neenehende Aildung (Blick von vorn) zeig eine Spule mi 5 Windungen von quadraichem uerchni mi Seienlänge a = 4,cm zum Zeipunk. DieSpuleeweg ich mider Gechwindigkei v vom Berag v = 2, cm nachrech.

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Ergänzung Kpiel 5. Whl der Führunggröße Whl der Führunggröße für Lgeregelungen Biher wurde mei on einem prungförmigen Verluf der Führunggröße w( ugegngen. Viele regelungechniche Anwendungen weien uch ein

Mehr

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Institut für Informatik. Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2 NIVESITÄT LEIPZIG Iniu für Informaik Prüfungaufgaben Klauur zur Vorleung WS 2/2 und SS 2 b. Techniche Informaik Prof. Dr. do Kebchull Dr. Paul Herrmann Dr. Han-Joachim Lieke Daum:. Juli 2 hrzei: 8-3 Or:

Mehr

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2.

Berechnen Sie die Extrem- und Wendepunkte des Graphen von f 1. Berechnen Sie die Gleichung der Tangente an den Graphen von f 1 an der Stelle 2. Miniserium für Schule und Berufsbildung 05 Bei der Bearbeiung der Aufgabe dürfen alle Funkionen des Taschenrechners genuz werden. Aufgabe : Analysis Gegeben is eine Funkionenschar durch f () = e mi R;

Mehr

College International Vorbereitungsjahr 2016/17

College International Vorbereitungsjahr 2016/17 College Inernaional Vorbereiungjahr 6/7 Phyik Dr. Ferenc Tölgyei olgyei.ferenc@med.emmelwei.hu Vorleungkripe zum Herumerladen: hp//:nighowl.oe.hu/olgyei Themaik (bi zu Weihnachen) Daum Thema 3. und 5.

Mehr

College International Vorbereitungsjahr 2017/18

College International Vorbereitungsjahr 2017/18 College Inernaional Vorbereiungjahr 07/8 Phyik Dr. Ferenc Tölgyei olgyei.ferenc@med.emmelwei.hu Vorleungkripe zum Herumerladen: hp//:nighowl.oe.hu/olgyei Themaik (bi zu Weihnachen) Daum Thema. und 4. Ok.

Mehr

1. Klausur Physik Leistungskurs Klasse

1. Klausur Physik Leistungskurs Klasse 1. Kluur Phyik Leiungkur Kle 11 1.1.1 1. uf einer gerden, horizonlen Srße fähr ein Moorrd i der konnen Gechwindigkei 9kh -1. pier zur Zei eine Mrke M. Zu elben Zeipunk re i Punk P ein Moorrd (Me einchließlich

Mehr

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: Gleichförmige Bewegungen und Überholvorgang

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: Gleichförmige Bewegungen und Überholvorgang bungaufgaben Pyik p://pyik.lern-online.ne p://.lern-online.ne THEMA: leicförmige Beegungen und berolvorgang Vorgeclagene Arbeizei: Vorgeclagene Hilfmiel: Beerung: Hinei: ea 30 Minuen Tacenrecner (nic programmierbar,

Mehr

KAPITEL 2 KÜRZESTE WEGE

KAPITEL 2 KÜRZESTE WEGE KAPITEL 2 KÜRZESTE WEGE F. VALLENTIN, A. GUNDERT Da Ziel diee Kapiel i e kürzee Wege in einem gegebenen Nezwerk zu verehen und zu berechnen. Ein einführe Beipiel für ein Nezwerk zwichen den vier Säden

Mehr

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)

Schriftliche Abiturprüfung 2007 Sachsen-Anhalt Physik 13 n (Leistungskursniveau) Schrifliche Abiurprüfung 2007 Sachsen-Anhal Physik 13 n (Leisungskursniveau) Thema 2: Bewegungen in raviaionsfeldern 1 Eigenschafen des raviaionsfeldes Erläuern Sie den Feldbegriff anhand des raviaionsfeldes.

Mehr

2. Torsion geschlossener Profile

2. Torsion geschlossener Profile Berache werden Balken mi einem konanen einzelligen gechloenen dünnwandigen Hohlquerchni, die durch ein konane Torionmomen M x belae werden. A B () D C M x x y Prof. Dr. Wandinger 5. Dünnwandige Profile

Mehr

Versuchsprotokoll. Datum:

Versuchsprotokoll. Datum: Laborveruch Elekroechnik I eruch 2: Ozillokop und Funkiong. Hochchule Bremerhaven Prof. Dr. Oliver Zielinki / Han Sro eruchprookoll Teilnehmer: Name: 1. 2. 3. 4. Tea Daum: Marikelnummer: 2. Ozillokop und

Mehr

Kreisbewegung. Die gleichförmige Kreisbewegung. Mechanik. Die gleichförmige Kreisbewegung. Physik Leistungskurs

Kreisbewegung. Die gleichförmige Kreisbewegung. Mechanik. Die gleichförmige Kreisbewegung. Physik Leistungskurs Mechanik Krummlinie Beweunen (6 h) Kreibeweun Phyik Leiunkur Walkowiak 9 Walkowiak 9 Die leichförmie Kreibeweun Die leichförmie Kreibeweun Kreibeweun: Man berache einen Maepunk, der ich im Aband r um einen

Mehr

Musterlösung zur Einsendearbeit zur Erlangung der Teilnahmeberechtigung

Musterlösung zur Einsendearbeit zur Erlangung der Teilnahmeberechtigung Muerlöung zur Einenearbei Moul 3511 Seuern un ökonomiche Anreize, Kur 00694 Seuerwirkunglehre I, KE 3 Verbraucheuern, Wineremeer 011/1 1 Muerlöung zur Einenearbei zur Erlangung er Teilnahmeberechigung

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorihmiche Graphenheorie Sommeremeer 2014 3. Vorleung Flualgorihmen Prof. Dr. Alexander Wolff 1 Erinnerung Oh my God i an LP! Gegeben ein gericheer Graph G = (V, E) mi, V und Kanenkapaziäen c : E R >0.

Mehr

Wiederholung Exponentialfunktion

Wiederholung Exponentialfunktion SEITE 1 VON 9 Wiederholung Eponenialfunkion VON HEINZ BÖER 1. Regeln und Beispiele Der Funkionserm Eponenialfunkionen haben die Form f() = b a. Die y-achse wird bei b geschnien, denn f(0) = 0 b a = b 1

Mehr

Gegeben: v 1 = 120 km h. und v 2 = 150 km h. 2. Ein Radfahrer fährt 40 s mit der gleichbleibenden Geschwindigkeit von 18 km.

Gegeben: v 1 = 120 km h. und v 2 = 150 km h. 2. Ein Radfahrer fährt 40 s mit der gleichbleibenden Geschwindigkeit von 18 km. Übungen (en ohne Gewähr) ================================================================== 1. Ein Auto teigert eine Gechwindigkeit gleichmäßig von 120 km auf 150 km. h h Wie groß it die Bechleunigung

Mehr

Positioniersteuerung (5.12) Beschleunigen - Phase 2 (5.13) Beschleunigen - Phase 3 (5.14) Phase 4: Konstante Geschwindigkeit (5.15) Bremsen Phase 5

Positioniersteuerung (5.12) Beschleunigen - Phase 2 (5.13) Beschleunigen - Phase 3 (5.14) Phase 4: Konstante Geschwindigkeit (5.15) Bremsen Phase 5 Poiioniereuerung ( 0 a ( 0 0 v ( ˆ ( ˆ 0 0 0 0 (5. echleunigen Phae ( 0 a ( v ˆ ( ç ( + çè (( ( ˆ + ( + ç çè (5. echleunigen Phae ( ( a ( v( ( ( ( ( ( 7 + + + 9 ( ( (5.4 Phae 4: Konane Gechwindigkei a

Mehr

Transport. Explizite und implizite Verfahren

Transport. Explizite und implizite Verfahren p. 1/9 Tranpor Explizie und implizie Verfahren home/lehre/vl-mhs-1/inhalt/folien/vorlesung/10_transport_verf/decbla.ex Seie 1 von 9 p. /9 Inhalverzeichni 1. Explizie Verfahren Inabile Verfahren Lax Verfahren

Mehr

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz

Aufgabensammlung Teil 2a. Auch mit Verwendung von Methoden aus der Analysis: Wachstumsraten Differentialgleichungen. Auch mit CAS-Einsatz Wachsum Exponenielles Wachsum Aufgabensammlung Teil 2a Auch mi Verwendung von Mehoden aus der Analysis: Wachsumsraen Differenialgleichungen Auch mi CAS-Einsaz Sand: 23. Februar 2012 Daei Nr. 45811 INTERNETBIBLIOTHEK

Mehr

Bohrmaschine. kinetische Energie b) Campingkocher. Sonnenkollektor. Akku beim Laden

Bohrmaschine. kinetische Energie b) Campingkocher. Sonnenkollektor. Akku beim Laden Anwendunggaben - nergie - Löungen a) Die gepanne Feder beiz nergie. Wirkung: Der Tichenniball wird bechleunig. b) Da Öl und die Flae beizen nergie. Wirkung: Die Flae gib Wäre ab und ende Lich au. c) Die

Mehr

Übungen für die 1. Physikprüfung - mit Lösungen

Übungen für die 1. Physikprüfung - mit Lösungen Übungen für die. Pyikprüfung - i Löungen One vhvon obenl : =H 0 L + v 0 + ÅÅÅÅ a One Hvon obenl : v = v 0 + a One a : =H 0 L + ÅÅÅÅ Hv + v 0L One : v = è!!!!!!!!!!!!!!!!!!!!!!! v 0 + a Zenerpoenzen Screiben

Mehr

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1.

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1. Unterrichtfach Lehrplan HAK: Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik 1. HLW (1. Jahrgang) Lehrplan HTL: Mathematik

Mehr

2. Gleich schwere Pakete werden vom

2. Gleich schwere Pakete werden vom . Klauur Phyik Leiungkur Klae 11 14.1.014 Dauer. 90 in Teil 1 Hilfiel: alle verboen 1. a) Schreiben Sie den Energieerhalungaz für ein abgechloene Sye auf. () b) Ein Auo wird ohne angezogene Handbree und

Mehr

4.7. Prüfungsaufgaben zum beschränkten Wachstum

4.7. Prüfungsaufgaben zum beschränkten Wachstum .7. Prüfungsaufgaben zum beschränken Wachsum Aufgabe : Exponenielle Abnahme und beschränkes Wachsum In einem Raum befinden sich eine Million Radonaome. Duch radioakiven Zerfall verminder sich die Zahl

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Physik LK 11, 2. Klausur Energie, Leistung, Impuls, Rotation Lösung Learjet 60

Physik LK 11, 2. Klausur Energie, Leistung, Impuls, Rotation Lösung Learjet 60 Phyik LK 11,. Klauur Energie, Leitung, Impul, Rotation Löung..1 Name: Die Rechnungen bitte volltändig angeben und die Einheiten mitrechnen. Antwortätze chreiben. Die Reibung it bei allen Aufgaben zu vernachläigen,

Mehr

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

Geradendarstellung in Paramterform

Geradendarstellung in Paramterform Vekorrechnung Theorie Manfred Gurner Seie Geradendarellung in Paramerform X X X - X - r r Die Punke auf einer Geraden laen ich folgendermaßen finden: Gegeben ei der Punk und der Richungvekor r. Dann ergib

Mehr

Abbildungsmaßstab und Winkelvergrößerung

Abbildungsmaßstab und Winkelvergrößerung Abbildungmaßab und Winkelvergrößerung Abbildungmaßab Uner dem Abbildungmaßab vereh man da Verhälni /, wobei der Audruck ein negaive Vorzeichen erhäl, wenn da ild verkehr wird. Alo Abbildungmaßab V: Winkelvergrößerung

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Phyik für Mediziner und Zahnmediziner Vorleung 05 Prof. F. Wörgöer (nach M. Seib) -- Phyik für Mediziner und Zahnmediziner 1 Zuammenhang von Kraf und Bechleunigung Experimen M Fmg m Deuung: Kraf Mae Bechleunigung

Mehr

Äußerer lichtelektrischer Effekt Übungsaufgaben

Äußerer lichtelektrischer Effekt Übungsaufgaben Aufgabe: LB S.66/6 Betrahlt man die Katode einer Vakuumfotozelle mit Licht verchiedener Wellenlängen, o werden die in der Tabelle angegebenen Gegenpannungen gemeen, bei denen jeweil gerade kein Fototrom

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min 1. Klauur Phik Klae 11 Grundkur, 3.11.011 Dauer: 45 in 1. Skizzieren Sie für die leichförie und die leichäßi bechleunie Beweun die --, - und a--diarae. (6). Beor ein Dach neu einedeck wird, werden die

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Physik I Übung 3 - Lösungshinweise

Physik I Übung 3 - Lösungshinweise Phyik I Übung 3 - Löunghinweie Moritz Kütt WS / Stefan Reutter Stand:.. Franz Fujara Aufgabe Der erte Blick Ein Fahrradfahrer fährt die Hälfte einer Strecke mit km/h, die zweite Hälfte mit km/h. Schätze

Mehr

An welchen Wirkungen können wir Kräfte erkennen? Ergebnis Verformung, Beschleunigung, abbremsen, Bewegungsrichtung ändern.

An welchen Wirkungen können wir Kräfte erkennen? Ergebnis Verformung, Beschleunigung, abbremsen, Bewegungsrichtung ändern. R. Brinkann http://brinkann-du.de Seite 1 5.11.013 Obertufe: e und auführliche Löungen zur Klaenarbeit zur Mechanik II (Variante A) e: E1 E E3 E4 E5 E6 E7 An welchen Wirkungen können wir Kräfte erkennen?

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Aufgaben gleichmäßig beschleunigte Bewegung

Aufgaben gleichmäßig beschleunigte Bewegung Aufaben eichäßi bechleunie Beweun 671. (Abi 1995, Grundkur) Vor der Einfahr in eine Bahnhof bre der Lokführer einen Zu i der Bechleuniun 0,850 - on 100,0 kh -1 auf 50,0 kh -1 ab und fähr i dieer Gechwindikei

Mehr

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat

Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in

Mehr

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels

FOS: Die harmonische Schwingung. Wir beobachten die Bewegung eines Fadenpendels R. Brinkmann http://brinkmann-du.de Seite 1 25.11.213 Bechreibung von Schwingungen. FOS: Die harmoniche Schwingung Veruch: Wir beobachten die Bewegung eine Fadenpendel Lenken wir die Kugel au und laen

Mehr

Zeit (in h) Ausflussrate (in l/h)

Zeit (in h) Ausflussrate (in l/h) Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird)

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird) AB Energie Leiung Scüler, Seie 1 V Welce Leiung bring ein Menc bei arrad aren? Einleiung (Hier wird erklär, waru der Veruc durcgefür wird) Mecanice Energie E wird dann auf einen Körper überragen, wenn

Mehr

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm Vierecke Parallelogramme ind Vierecke mit zwei Paaren paralleler Seiten. Auch Rauten, Quadrate und Rechtecke ind Vierecke, je doch mit weiteren peziellen Eigenchaften. 1 Zeichne die Figuren in Originalgröße.

Mehr

I-Strecken (Strecken ohne Ausgleich)

I-Strecken (Strecken ohne Ausgleich) FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer

Mehr

Studiengang Biomedizinische Technik Sommersemester

Studiengang Biomedizinische Technik Sommersemester Klauur Phyik I Studiengang Biomediziniche Technik Sommeremeter 9 6.8.9 Für alle Berechnungen gilt: die Erdbechleunigung beträgt g 9,8 m/!. (7 Punkte) Ein rechtwinklig zur Fahrtrichtung unter einem Winkel

Mehr

PHYSIK Gekoppelte Bewegungen 2

PHYSIK Gekoppelte Bewegungen 2 PHYSIK Gekoppelte Bewegungen Gekoppelte Bewegungen auf chiefer Ebene Datei Nr. 93 Friedrich W. Buckel ktober 00 Internatgynaiu Schloß Torgelow Inhalt Grundwien Bewegung ohne äußeren Antrieb (Beipiel )

Mehr

Tutorium Physik 2. Rotation

Tutorium Physik 2. Rotation 1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a

Mehr

2 Formeln richtig und schnell umstellen

2 Formeln richtig und schnell umstellen Formeln ricig und cnell umellen 17 Aufgabe 1 Peer i mi einer Scweer Criina in Konanz unerweg. Er oll ie bei irer Freundin abezen. Die beiden faren gerade in einer engen Einbanraße mi Parkbucen und Bürgereig

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr