1 Grundprinzip. 2 Huygens'sches Prinzip. Hochfrequenztechnik I Aperturantennen AP/1

Größe: px
Ab Seite anzeigen:

Download "1 Grundprinzip. 2 Huygens'sches Prinzip. Hochfrequenztechnik I Aperturantennen AP/1"

Transkript

1 Hochfrequenztechnik I Aperturantennen AP/1 1 Grundprinzip Im Kapitel über lineare Antennen (LA) wurde gezeigt, dass man durch eingeprägte Ströme auf einer Antenne Leistungsabstrahlung erreichen kann. Diese linearen Antennen haben idealer Weise keine Ausdehnung auÿer in der Höhe und weisen eine rotationssymmetrische Abstrahlung auf. Aperturantennen hingegen haben eine zweidimensionale Ausdehnung und gestatten eine gezieltere Abstrahlung in eine bestimmte Raumrichtung. Die Beschreibung derartiger Aperturantennen erfolgt mit dem Huygensschen Prinzip. 2 Huygens'sches Prinzip Das Huygens'sche Prinzip besagt, dass jeder Punkt einer Wellenfront wieder als Quelle neuer Elementarwellen angesehen werden kann (siehe Abb. 1). Daher genügt es, die elektrische und magnetische Feldstärke auf einer vorgegebenen Fläche F zu kennen, um die Wellenausbreitung beschreiben zu können. Abb. 1: Huygens'sches Prinzip: Bildung einer Kugelwelle aus einzelnen Elementarwellen. Wir betrachten dazu in Abb. 2 ein geschlossenes Volumen der Oberäche F, wobei die Felder ~ E und ~H entlang dieser Oberäche bekannt seien (z. B. durch Messungen). Die Felder ~ E und ~ H entstehen beispielsweise durch Antennen oder sonstige Primärstrahler innerhalb des Volumens, wobei aber die Quellen nicht unbedingt bekannt sind. Entsprechend des Huygensschen Prinzips besteht nun die Aufgabe darin, entlang der Oberäche F äquivalente Ersatzquellen (elektrische und magnetische Strombeläge) derart anzugeben, dass die Felder ~E, ~ H entlang der Oberäche korrekt wiedergegeben werden, aber das Innere des Volumens feldfrei bleibt. Die Bestimmung der elektrischen und magnetischen Strombeläge ~ J f Abb. 3. und ~ J fm erfolgt in Anlehnung an Abb. 3 illustriert die Stetigkeitsbedingungen in Form eines Umlauntegrals entlang der Oberäche. Im Falle des magnetischen Feldes ergibt sich: ( ) j Hj ~ j H ~ i j l = j J ~ f j l (1)

2 Hochfrequenztechnik I Aperturantennen AP/2 Oberfläche F Abb. 2: Ersatzanordnung für die Berechnung der elektrischen und magnetischen Strombeläge J ~ f bzw. ~J fm bei vorgegebenen elektrischen und magnetischen Feldstärken auf der Oberäche F mit Normalenvektor ~n senkrecht zur Oberäche. Abb. 3: Umlauntegral über elektrische und magnetische Feldstärke an der Oberäche des Gebiets.

3 Hochfrequenztechnik I Aperturantennen AP/3 Auf Grund der Feldfreiheit im Inneren ist ~ H i = 0. Analog dazu ergibt sich für die elektrische Feldstärke: ( ) j Ej ~ j E ~ i j l = j J ~ fm j l (2) Daher kann man bei gegebener Feldverteilung ~ E und ~ H entlang der Oberäche F einen elektrischen ~J f und einen magnetischen Strombelag ~ J fm einführen mit: ~J f = ~n ~ H mit der Dimension A/m (3) ~J fm = ~n ~ E mit der Dimension V/m; (4) wobei ~n der Einheitsnormalenvektor der Oberäche F ist. Die Strombeläge J ~ f und J ~ fm lassen sich nun als die neuen Quellen für die Wellenausbreitung auassen. Da das Innere des Gebiets mit der Oberäche F ansatzgemäÿ feldfrei ist, kann innerhalb dieses Volumens ein Medium mit beliebigem "; angenommen werden. 3 Abstrahlung einer rechteckigen Apertur Wir nehmen in Abb. 4 als einfaches Beispiel eine rechteckige Apertur mit der Breite a und der Höhe b an. Diese Apertur fassen wir als Teil der Oberäche F in Abb. 2 auf, so dass wir die Felder in dieser Apertur durch äquivalente Quellen J ~ f und J ~ fm auf dieser Apertur beschreiben wollen. Abb. 4: Ebene Welle in rechteckiger Apertur der Breite a und der Höhe b. Die Felder auf der Apertur seien durch ~E = ~e z E z ( ; ) (5) ~H = ~e y H y ( ; ) (6) gegeben. Der Normalenvektor ~n in Abb. 2 zeigt in Abb. 4 in x-richtung: ~n = ~e x ; (7)

4 Hochfrequenztechnik I Aperturantennen AP/4 so dass sich dann die äquivalenten Strombeläge ~ J f, ~ J fm in Gl. (3) und (4) ergeben zu: ~J f = ~n ~ H = (~e x ~e y )H y ( ; ) = ~e z H y ( ; ) (8) ~J fm = ~n ~ E = (~e x ~e z )E z ( ; ) = ~e y E z ( ; ) (9) In Analogie zu den Gl. (LA 30) und (LA 31) lassen sich dann daraus die Vektorpotentiale ~ A und ~ F mit ~A = 1 4 ~F = 1 4 j~r ~J f ( r ~ 0 j exp ~J f m j~r r ~ 0 j exp ( jk 0 j~r jk 0 j~r ) r ~ 0 j d d (10) ) r ~ 0 j d d (11) und damit mit Gl. (LA 19) und (LA 20) auch ~ E und ~ H im gesamten Raum vor der Apertur in Abb. 4 für x > 0 bestimmen. Die Lösung gemäÿ Gl. (10) und (11) setzt ein homogenes Medium mit " = " 0 und = 0 voraus. Da das Innere des Volumens in Abb. 2 bzw. der Bereich hinter der Apertur in Abb. 4 denitionsgemäÿ feldfrei ist, kann dort ein beliebiges Medium angenommen werden, also z. B. der freie Raum mit " = " 0, = 0, so dass die Lösungen (10), (11) gerechtfertigt sind. 3.1 Einführung einer magnetisch leitenden Wand Auf Grund der Feldfreiheit hinter der Apertur kann dort auch ein beliebiges anderes Material angenommen werden, z. B. eine ideal magnetisch leitende Wand an der Stelle x = 0. Dadurch wird der magnetische Strombelag ~ J fm kurzgeschlossen, und man muss nur noch den elektrischen Strombelag ~J f für das Feldproblem betrachten. Als weitere Annahme gehen wir davon aus, dass die magnetisch leitende Wand bei x = 0 in - und - Richtung unendlich ausgedehnt ist. Diese Annahme ist zulässig, wenn in der Ebene x = 0 für j j > a=2 und j j > b=2 die Feldkomponenten vernachlässigbar werden. Für diese Annahme beschränken wir uns deshalb auf groÿe Aperturen mit a; b 0, wenn die Abstrahlung im Wesentlichen in x-richtung erfolgt und in der Apertur H y = E z =Z F 0 gilt. Nach der Spiegelung an der magnetisch leitenden Wand entspricht das Feldproblem einem Strombelag von: Das Vektorpotential ~ A ist für x > 0 ähnlich zu Gl. (10) anzugeben: ~A = 1 4 ~J f ;gesamt = 2 ~ J f im freien Raum (12) ~J f ;gesamt exp ~r r ~ 0 ( ) ~r jk 0 r ~ 0 d d (13) nur das jetzt ~ F nach Gl. (11) entfällt und der Strombelag ~ J f ;gesamt doppelt so groÿ geworden ist. Wegen Gl. (3) weist das Vektorpotential ~ A ausschlieÿlich eine z-komponente auf: A z = 1 2 H y ( ; ( ) exp ~r r ~ 0 ) ~r jk 0 r ~ 0 d d (14)

5 Hochfrequenztechnik I Aperturantennen AP/5 Ähnlich wie in Kapitel LA lässt sich für das Fernfeld r a; b eine Vereinfachung einführen: ~r r ~ 0 = r sin ' sin cos ; (15) so dass aus Gl. (14) folgt: A z = exp( jk 0r ) 2r 0 0 H y (y ; z ) exp(jk0 sin ' sin ) d exp(+jk 0 cos ) d (16) Für die beiden nicht verschwindenden Feldkomponenten gilt wie bei den linearen Antennen: H ' jk 0 A z sin (17) E H ' Z F 0 (18) Für Aperturen mit a; b 0 erfolgt die Abstrahlung im Wesentlichen in x-richtung, so dass das Fernfeld hauptsächlich für Winkel j'j 1 und =2, bzw. j j 1 mit = =2, existiert. Damit kann man weiter vereinfachen: sin 1; sin ' '; cos Es ergibt sich somit aus Gl. (16) und (17) im Fernfeld für das magnetische Feld: H ' ('; ) jk 0 exp( jk 0 r ) 0 0 H y (y ; z ) exp(jk0 ' + jk 0 ) d d (19) 2r Gl. (19) entspricht einer zweidimensionalen Fouriertransformation, d. h. das magnetische Fernfeld H ' lässt sich bis auf einen von ' und auassen. unabhängigen Faktor als Fouriertransformierte des Nahfeldes 3.2 Beispiel: Aperturantenne mit rechteckiger Apertur (a; b 0) und konstanter Belegung Wir wollen eine rechteckige Apertur wie in Abb. 4 betrachten mit konstanter Belegung, also konstanter Feldverteilung auf der gesamten Apertur. Die Abmessungen sollen groÿ sein verglichen mit der Wellenlänge (a; b 0 ). Die Verteilung des magnetischen Feldes auf der Apertur ist dann: H y ( ; H 0 für j j a 2 und ) = j j b 2 0 sonst Nach Gl.19 ergibt sich für das Fernfeld: mit H ' ('; ) = jk 0H 0 exp( jk 0 r ) 2r F ' (') = F ( ) = a=2 a=2 b=2 b=2 cos(k 0 ' ) d = a sin(k 0'a=2) k 0 'a=2 }{{} cos(k 0 ) d = b (20) F ' (') F ( ) (21) Spaltfunktion {}}{ sin(k 0 b=2) k 0 b=2 (22) (23)

6 Hochfrequenztechnik I Aperturantennen AP/6 Der Richtfaktor einer solchen Antenne berechnet sich analog zu Kapitel LA: D = 4 F' (' = 0) F ( = 0) 2 F2 ' d' 4 a b = =2 =2 F2 d 2 0 (24) Die Wirkäche ergibt sich dann bei Vernachlässigung der Verluste (D = G iso ) zu A w = G iso = a b = A; (25) d. h. für den Spezialfall einer konstanten Antennenbelegung ist die Antennenwirkäche gleich der geometrischen Fläche. Bei nicht konstanter Belegung wird die Antennenwirkäche jedoch kleiner als die geometrische Fläche. Typische Gröÿen sind A w = [0; 5 : : : 0; 8] A. Beispiel: Für eine Antennenwirkäche A w = 0; 5 m 2 und eine Wellenlänge 0 = 3 cm oder f = 10 GHz weist die Aperturantenne einen Gewinn von G iso 7000 ( ^=38; 5 dbi) auf. 4 Ausführungsformen Aperturantennen werden i. A. mit Parabolspiegeln wie in Abb. 5 realisiert. Für Parabeln gilt, dass die Entfernungen 0A, 0B, 0C, 0D vom Brennpunkt auf die Gerade EE 0 gleich groÿ sind. Es bildet sich so eine Phasenfront entlang EE 0 aus. Die Felder entlang EE 0 führen dann, wie oben beschrieben, zu den äquivalenten Strombelägen J ~ f und J ~ fm. Abb. 5: Aperturantenne als Parabolspiegel. Aperturantennen sind mit nahezu konstanter Belegung realisierbar. Allerdings werden häug die Randbereiche der Apertur etwas weniger angeregt, um die Aufzipfelung des Fernfeldes (als Fouriertransformierte des Nahfeldes) zu verhindern. Abb. 6 zeigt verschiedene technische Ausführungen von Aperturantennen.

7 Hochfrequenztechnik I Aperturantennen AP/7 Parabol ebene Phasenfront e Abb. 6: Ausführungsformen von Aperturantennen: a) Parabolantenne, b) Cassegrain-Antenne mit hyperbolischem Subreektor, c) Hornparabol, d) Muschelantenne, e) Oset-Parabolantenne.

Rechenübung HFT I. Antennen

Rechenübung HFT I. Antennen Rechenübung HFT I Antennen Allgemeines zu Antennen Antennen ermöglichen den Übergang zwischen der leitungsgebundenen Ausbreitung elektromagnetischer Wellen und der Wellenausbreitung im freien Raum Allgemeines

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Matrikelnummer: Klausurnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe

Mehr

3.6. Zweidimensionale Wellenleiter

3.6. Zweidimensionale Wellenleiter 3.6. Zweidimensionale Wellenleiter Zweidimensionale Wellenleiter sind nur in speziellen Fällen z.b. bei Zlindersmmetrie analtisch eakt lösbar. Für die in Halbleiterlasern verwendeten Wellenleiter eistieren

Mehr

Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte

Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte UNIVERSITÄT PADERBORN Fakultät EIM Institut für Elektrotechnik und Informationstechnik Fachgebiet Prof. Dr.-Ing. R. Schuhmann Klausur TET A 1. August 2007 Name: Vorname: Matrikel-: Prüfungsnr.: Aufgabe

Mehr

Elektromagnetische Felder und Wellen: Klausur Herbst

Elektromagnetische Felder und Wellen: Klausur Herbst Elektromagnetische Felder und Wellen: Klausur Herbst 2006 1 Aufgabe 1 (2 Punkte) Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt

Mehr

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll

Elektromagnetische Felder (TET 1) Gedächtnisprotokoll Elektromagnetische Felder (TET 1) Gedächtnisprotokoll 8. August 2017 Dies ist ein Gedächtnisprotokoll. Leider konnte ich mich nicht an alle Details jeder Aufgabe erinnern. Für korrigierte Exemplare dieses

Mehr

Klausur Theoretische Elektrotechnik A LÖSUNGSVORSCHLAG. 04. März Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe.

Klausur Theoretische Elektrotechnik A LÖSUNGSVORSCHLAG. 04. März Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. UNIVERSITÄT PADERBORN Fakultät EIM Institut für Elektrotechnik und Informationstechnik Fachgebiet Prof. Dr.-Ing. R. Schuhmann Klausur A LÖSUNGSVORSCHLAG 04. März 2009 Name: Vorname: Matrikel-Nr.: Prüfungsnr.:

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Übung zu Drahtlose Kommunikation. 4. Übung

Übung zu Drahtlose Kommunikation. 4. Übung Übung zu Drahtlose Kommunikation 4. Übung 12.11.2012 Aufgabe 1 Erläutern Sie die Begriffe Nah- und Fernfeld! Nahfeld und Fernfeld beschreiben die elektrischen und magnetischen Felder und deren Wechselwirkungen

Mehr

P h = 1 2 < ( U I ) (1) ~E ~ H ) (2) ~S = 1 2 < ~S I = 1 U I. r ln D=2. 1 ln. d=2

P h = 1 2 < ( U I ) (1) ~E ~ H ) (2) ~S = 1 2 < ~S I = 1 U I. r ln D=2. 1 ln. d=2 Hochfrequenztechnik I Ebene Wellen Polarisation EB/ 1 1 Vorbetrachtung Bevor wir die Wellenausbreitung im freien Raum betrachten, wollen wir noch einmal die Koaxialleitung analysieren: Die geführte Leistung

Mehr

2 Periodische, nicht harmonische Signale

2 Periodische, nicht harmonische Signale Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

1.1 Annahme: keine magnetischen Ströme ( J ~ m = 0)

1.1 Annahme: keine magnetischen Ströme ( J ~ m = 0) Hochfrequenztechnik I Lineare Antennen LA/1 1 Vorbetrachtung Lineare Antennen basieren auf der Tatsache, dass aufgrund von Leiterströmen elektromagnetische Energie abgestrahlt wird. Man kann diese Leiterströme

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Klausur Theoretische Elektrotechnik A. 04. März Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte

Klausur Theoretische Elektrotechnik A. 04. März Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte UNIVERSITÄT PADERBORN Fakultät EIM Institut für Elektrotechnik und Informationstechnik Fachgebiet Prof. Dr.-Ing. R. Schuhmann Klausur A 04. Mär 2009 Name: Vorname: Matrikel-: Prüfungsnr.: Aufgabe 1 2 3

Mehr

SWISS-ARTG. Antennenbetrachtungen im Mikrowellenbereich

SWISS-ARTG. Antennenbetrachtungen im Mikrowellenbereich SWISS-ARTG Fachtagung 10. Nov. 2018 Antennenbetrachtungen im Mikrowellenbereich Willi, Nov. 2018 Inhalt Antennen Grundlagen Der Begriff Antenne, technische Bedeutung Isotroper Strahler Grafische Darstellung

Mehr

1 Spannungs- und Stromtransformation

1 Spannungs- und Stromtransformation Hochfrequenztechnik I Impedanztransformation, Smith-Diagramm SMI/1 1 Spannungs- und Stromtransformation Wir wollen die Leitung in Abb. 1 als Vierpol betrachten. Dann können wir Beziehungen zwischen den

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Beugung Inhalte Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer (Fernfeld) Näherung

Mehr

Projektarbeit: Bau eines Halbwellendipols als GSM-Antenne für 1.8 GHz.

Projektarbeit: Bau eines Halbwellendipols als GSM-Antenne für 1.8 GHz. Projektarbeit: Bau eines Halbwellendipols als GSM-Antenne für 1.8 GHz. Name: Mario Stieber Matr.Nr.: 184174 1. Theorie der Antenne Ausarbeitung: Mario Stieber 1.1 Der Dipol Die elektromagnetischen Verhältnisse

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

Wo sind die Grenzen der geometrischen Optik??

Wo sind die Grenzen der geometrischen Optik?? In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Klausur zur Rechenübung Hochfrequenztechnik I WS 2015/2016

Klausur zur Rechenübung Hochfrequenztechnik I WS 2015/2016 Technische Universität Berlin Fakultät Elektrotechnik und Informatik Fachgebiet Hochfrequenztechnik / Photonics Klausur zur Rechenübung Hochfrequenztechnik I WS 2015/2016 Name, Vorname Matrikelnummer Studiengang,

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

DIE INTECRALGLEICHUNCSMETHODE - EIN VERFAHREN ZUR BERECHNUNG DER STRÖME UND STREUFELDER KOMPLIZIERTER KÖRPER

DIE INTECRALGLEICHUNCSMETHODE - EIN VERFAHREN ZUR BERECHNUNG DER STRÖME UND STREUFELDER KOMPLIZIERTER KÖRPER Vorwort 13 Danksagung 18 TEIL I DIE INTECRALGLEICHUNCSMETHODE - EIN VERFAHREN ZUR BERECHNUNG DER STRÖME UND STREUFELDER KOMPLIZIERTER KÖRPER 1. Prinzip der Integralgleichungsmethode 19 2. Darstellung des

Mehr

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip

0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip 1 05.04.2006 0.1 76. Hausaufgabe 0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip Trifft eine Welle auf Barriere, die idealisiert nur in einem einzigen Punkt durchlässig ist, bildet sich im Öffnungspunkt

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT Praktikumsversuch Meßtechnik Wellenoptik/Laser INHALT 1.0 Einführung 2.0 Versuchsaufbau/Beschreibung 3.0 Aufgaben 4.0 Zusammenfassung 5.0 Fehlerdiskussion 6.0 Quellennachweise 1.0 Einführung Die Beugung

Mehr

Einführung in die optische Nachrichtentechnik. Photodioden (PH)

Einführung in die optische Nachrichtentechnik. Photodioden (PH) M E F K M PH/1 Photodioden (PH) Zur Detektion des optischen Signals werden in der optischen Nachrichtentechnik vorwiegend Halbleiterphotodioden eingesetzt und zwar insbesondere pin-dioden sowie Lawinenphotodioden.

Mehr

Wellenleiter und Resonatoren

Wellenleiter und Resonatoren Übung 1 Abgabe: 01.06. bzw. 05.06.018 Elektromagnetische Felder & Wellen Frühjahrssemester 018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Wellenleiter und Resonatoren 1 Koaxialleitung (50 Pkt.)

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

Vorlesung Elektromagnetisches Feld. Einführung

Vorlesung Elektromagnetisches Feld. Einführung Vorlesung Elektromagnetisches Feld Eine Einführung Lesender: Dr. Wolfgang G. Büntig Helmholtz-Bau Raum H 263 Telefon: (3677) 69 26 3 EMail: Wolfgang.Buentig@TU-Ilmenau.DE Technische Universität Ilmenau

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Kurzaufgaben Aufgabe 1.1: Aufgabe 1.2: Aufgabe 1.3: Aufgabe 1.4: Kurzaufgaben: Aufgabe 2: Aufgabe 3: Aufgabe 4: Summe: Note: Elektromagnetische

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( S)

Sessionsprüfung Elektromagnetische Felder und Wellen ( S) Sessionsprüfung Elektromagnetische Felder und Wellen (7-005-10S) 5. Januar 019, 09:00-1:00 Uhr, HG D3. Prof. Dr. L. Novotny Bitte beachten Sie: Diese Prüfung besteht aus 4 Aufgaben. Die Angabe umfasst

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Lfd. Nr.: Matrikelnr. Σ 6 Ruhr-Universität Bochum Lehrstuhl für Hochfrequenztechnik Prof. Dr.-Ing. H. Ermert Prüfungsklausur und Leistungstest im Fach Elektromagnetische Wellen Prüfungsperiode Herbst Datum:.9.

Mehr

5.8.1 Interferenz von Wasserwellen ******

5.8.1 Interferenz von Wasserwellen ****** Interferen von Wasserwellen 5.8.1 Interferen von Wasserwellen ****** 1 Motivation Zwei synchron periodisch in Wasser eintauchende punktförmige Stifte ereugen kreisförmige Wellenüge. Die Kreiswellen interferieren,

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

Verteidigung der Diplomarbeit. Mathias Magdowski

Verteidigung der Diplomarbeit. Mathias Magdowski Verteidigung der Diplomarbeit Entwicklung und Validierung eines Werkzeugs zur Berechnung der elektromagnetischen Einkopplung von stochastischen Feldern in Leitungsstrukturen Mathias Magdowski Otto-von-Guericke

Mehr

Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert. M. Schick. EM Software & Systems GmbH, Böblingen, Germany

Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert. M. Schick. EM Software & Systems GmbH, Böblingen, Germany Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert M. Schick EM Software & Systems GmbH, Böblingen, Germany, Neuherberg, Übersicht Anwendungsbeispiele aus der Praxis Voruntersuchung

Mehr

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel

Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel 1.3.8.5 Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel Zwei induktiv gekoppelte LC-Kreise verhalten sich analog zu zwei gekoppelten Federn/Pendeln. Wie in der Mechanik kommt

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 8. 6. 29 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 8. 6. 29 Exkursion

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Diplomprüfungsklausur. Hochfrequenztechnik. 04. August 2003

Diplomprüfungsklausur. Hochfrequenztechnik. 04. August 2003 Diplomprüfungsklausur Hochfrequenztechnik 4. August 23 Erreichbare Punktzahl: 1 Name: Vorname: Matrikelnummer: Fachrichtung: Platznummer: Aufgabe Punkte 1 2 3 4 5 6 7 8 9 1 11 12 Aufgabe 1 Gegeben sei

Mehr

Dipolstrahlung und Antennen II

Dipolstrahlung und Antennen II Übung 1 Abgabe: 14.5. bzw. 17.5 Elektromagnetische Felder & Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Dipolstrahlung und Antennen II 1 Abstrahlung einer Dipolschleife

Mehr

(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld

(1,y,0) e y dy + z 2. d) E muß rotationsfrei sein, also konservatives Feld . a) E = grad ϕ = e r ϕ/ r = ϕ e r/ e r b) ρ = div D = D ( y 2y2 y 2 y ) = 2D y 2 y 3 y 2 y 3 c) J = rot H = H e z ( / )) = d) F = q v B = q v B 5 (3, 4,) e) U = = rb Ed l = r a [ ] E y2 2 r (,,) E y=

Mehr

9.10 Beugung Beugung

9.10 Beugung Beugung 9.0 Beugung Abb. 9. Aufbau des Original Michelson-Morley Experiments von 887 mit einer massiven Granitplatte in einem Quecksilberbad (Wikipedia). 9.0 Beugung Bisher sind wir von der Idealisierung ebener

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 2005 1 Aufgabe 1 Wie lautet das elektrostatische Potential V ( r), das durch die Raumladungsdichte ϱ( r) = ϱ 0 e k xxik y y erzeugt wird, wenn

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Ferienkurs Elektrodynamik WS11/12 - Zeitabhängige Elektromagnetische Felder

Ferienkurs Elektrodynamik WS11/12 - Zeitabhängige Elektromagnetische Felder Ferienurs Eletrodynami WS11/12 - Zeitabhängige Eletromagnetische Felder Isabell Groß, Martin Ibrügger, Marus Krottenmüller 21. März 2012 TU München Inhaltsverzeichnis 1 Potentiale in der Eletrodynami 1

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

EH-Antennen (MicroVert nach DL7PE, Dosenantenne DL7AHW)

EH-Antennen (MicroVert nach DL7PE, Dosenantenne DL7AHW) EH-Antennen (MicroVert nach DL7PE, Dosenantenne DL7AHW) Grundlage für räumlich stark verkürzte symmetrische Antennen ist der Hertz sche Dipol Die Längenausdehnung beträgt nur einen Bruchteil der halben

Mehr

3.7 Das magnetische Feld in Materie

3.7 Das magnetische Feld in Materie 15 KAPITEL 3. MAGNETOSTATIK 3.7 Das magnetische Feld in Materie Wie wir in den vorangegangenen Kapiteln bereits gesehen haben, wird die magnetische Induktionsdichte B durch ein Vektorpotenzial A charakterisiert,

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Induktion und Polarisation

Induktion und Polarisation Übung 2 Abgabe: 09.03. bzw. 13.03.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion und Polarisation 1 Magnetfelder in Spulen

Mehr

II. Klassische EM-Felder in Vakuum

II. Klassische EM-Felder in Vakuum Wellengleichung im Vakuum 1 II. Klassische EM-Felder in Vakuum Motivation: Berechnung der Felder ausserhalb von Quellen mittels Rand- bzw. Anfangswerten von Feldverteilungen zb Nahfeld in Nähe der Quelle

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

Aufgabe 1 ( 12 Punkte)

Aufgabe 1 ( 12 Punkte) Elektromagnetische Felder und Wellen: zur Klausur 2017-1 1 Aufgabe 1 ( 12 Punkte) In einem ideal leitfähigen Metallrohr mit rechteckigem Querschnitt lautet der Ansatz für das magnetische Vektorpotenzial

Mehr

Klausur Experimentalphysik II

Klausur Experimentalphysik II Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Inhalte Prisma & Regenbogen Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r

Wie man dieses (Weg-)Integral berechnet, kann man sich mit der folgenden Merkregel im Kopf halten. Man schreibt d~r = d~r Vektoranalysis 3 Die Arbeit g Zum Einstieg eine kleine Veranschaulichung. Wir betrachten ein Flugzeug, das irgendeinen beliebigen Weg zurücklegt. Ausserdem seien gewisse Windverhältnisse gegeben, so dass

Mehr

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. Aufgabe 5 Arbeit beim elektrischen Auaden Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. a) Welche Arbeit W ist erforderlich, um die Kugel auf die Ladung Q

Mehr

Koaxialleiter E-Feldstärke, H-Feldstärke

Koaxialleiter E-Feldstärke, H-Feldstärke Koaxialleiter E-Feldstärke, H-Feldstärke blog.zahlenpresse.de 4. April 3 R 3 Abbildung : uerschnitt vom Koaxialleiter Für alle Berechnungen in diesem Dokument wird ein Koaxialleiter folgender Konstruktion

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Felder und Wellen. Musterlösung zur 11. Übung

Felder und Wellen. Musterlösung zur 11. Übung Felder und Wellen WS 218/219 Musterlösung zur 11. Übung 26. Aufgabe a) Die Welle breitet sich im Vakuum aus, deshalb gilt ρ =,j =. Die zeitabhängigen Maxwellgleichungen im Vakuum (µ = µ, ε = ε ) lauten

Mehr

Felder und Wellen Übung 13 WS 2018/2019

Felder und Wellen Übung 13 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 13 WS 2018/2019 Institute of Photonics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University in the Helmholtz

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

ELEKTRISCHER DIPOL (5.1)

ELEKTRISCHER DIPOL (5.1) @ 3 4 4 Kapitel 5 ELEKTRISCHER DIPOL Wegen der Linearität der Poisson leichung, φ = ρ/ɛ gilt das Superpositionsprinip: φ( R) = f c i Q i R r i (5.) Für Ladungen, die im Raum kontinuierlich verteilt sind

Mehr

Abstrahlung von Quellen, Green sche Funktionen

Abstrahlung von Quellen, Green sche Funktionen Übung 7 Abgabe: 24.4. bzw. 27.4.218 Elektroagnetische Felder & Wellen Frühjahrsseester 218 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Abstrahlung von Quellen, Green sche Funktionen 1 Nahfeld

Mehr

2 Grundlagen e lektromagnetischer Felder

2 Grundlagen e lektromagnetischer Felder 2 Grundlagen elektromagnetischer Felder 9 2 Grundlagen e lektromagnetischer Felder Seit mehr als 100 Jahren nutzt der Mensch nun schon elektrische, magnetische und elektromagnetische Felder für sehr viele

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr