6 Vertiefende Themen aus des Mechanik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "6 Vertiefende Themen aus des Mechanik"

Transkript

1 6 Vertiefende Themen aus des Mechanik 6.1 Diagramme Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k= Δs Δv = v, also Geschwindigkeit) und in einem v-t Diagramm ( k= Δt Δt =ā, also Beschleunigung) zeigt. Allgemein ist die Steigung k= Δy eine Änderungsrate: sie zeigt uns, wie Δx schnell sich die Größe auf der y-achse in Bezug auf die Größe der x-achse ändert. Was könnte uns daher die Steigung in einem a-t Diagramm zeigen? Antwort: wie schnell sich die Beschleunigung in Bezug auf die Zeit ändert! Beispielsweise kann man sagen, dass nach 3 Sekunden sich die Beschleunigung mit einem Zeitrhythmus von 2m/s² pro Sekunde vergrößert (das wäre dann 2m/s³!, diese Größe hat aber keinen besonderen Namen). So was werden wir aber hier nicht weiter analysieren. Man könnte z.b. auch ein a-s Diagramm machen (nebenstehendes Bild). So ein Diagramm zeigt uns, wie groß die Beschleunigung an einem gewissen Punkt der Strecke ist. Am Anfang ist die Beschleunigung 1m/s². Nach 2m ist sie aber doch 4m/s² und nach noch 2m (also bei 4m) 7m/s². Dieses Diagramm ist eine Gerade, also ist die Änderungsrate der Beschleunigung konstant (1,5m/s³). Das bedeutet dann, dass je 2 Meter die Beschleunigung um 3 m/s² größer wird (oder je 1m um 1,5m/s²). a-s Diagramm Die Änderungsrate kommt in allerlei Diagrammen und in allen Bereichen der Wissenschaft vor. Sie ist daher ein grundsätzlicher Begriff. Die Begriffe der Strecke, der Geschwindigkeit und der Beschleunigung sind hilfreich, um zu verstehen, was uns die Änderungsrate in einem Diagramm (also die Steigung) zeigt Die Tangente an eine Kurve Bisher haben wir uns nur mit Geraden beschäftigt. Wie könnte man die Steigung bei irgendeine Kurve berechnen oder begreifen? Dafür braucht man erst den Begriff der Tangente. Für eine Kurve und eine Gerade gibt es folgende Möglichkeiten: 1. Bild: Sekante an einem Punkt 2. Bild: Sekante an drei Punkte 3. Bild: Passante 4. Bild: Tangente am Punkt A Eine Gerade kann eine Kurve in einem (1. Bild) oder mehreren Punkten (2.Bild) schneiden. Dann nennt man die Gerade eine Sekante der Kurve. Eine Gerade kann eine Kurve überhaupt nicht treffen (3.Bild). Dann nennt man die Gerade eine Passante der Kurve. Eine Gerade kann eine Kurve an einem Punkt berühren (4.Bild). Dann nennt man die Gerade Tangente der Kurve an diesem Punkt.

2 Was ist die Besonderheit im dritten Fall (4. Bild: Tangente)? Obwohl es nicht genau stimmt, sagen wir es hier nur so: die Tangente geht nicht auf die andere Seite der Kurve (es gibt eine Ausnahme zu dieser Regel, wir werden sie aber nicht hier analysieren). Man kann auch einfach die Definition benutzen: die Tangente schneidet die Gerade nicht, sie berührt sie nur (und das gilt immer, ohne Ausnahmen) Steigung einer Kurve (allgemeiner) Schauen wir jetzt die nebenstehende Kurve k an: Man könnte sagen, dass sie immer steiler wird (von links nach rechts). Das stimmt auch. Was ist dann mit ihrer Steigung? Sie sollte auch immer größer werden. Das stimmt auch. Wie könnte man das aber visualisieren? Man benutzt einfach die Tangente! Lassen wir einen Punkt (Punkt B) sich auf der Kurve bewegen. Je mehr wir uns nach rechts bewegen, desto steiler wird die Steigung der Tangente am Punkt B: Kurve k Punkt B bewegt sich nach rechts! Es ist naheliegend zu vermuten: die Steigung der Tangente an einem Punkt ist die Steigung der Kurve an diesem Punkt. Das kann man mit Hilfe der sogenannten 1.Ableitung (Stoff der 11. Schulstufe) beweisen Steigung in einem s-t Diagramm und Beschleunigung Im ersten Kapitel haben wir schon die Diagramme für die gleichmäßig beschleunigte Bewegung gesehen. Das s-t Diagramm war eine sogenannte Parabel. Es gibt zweierlei Sorten der Parabel: eine die hohl nach oben ist und einen sogenannten Tiefpunkt hat (1.Bild) und eine, die nach unten hohl ist und einen sogenannten Hochpunkt hat (2.Bild). Was ist mit der Steigung im Fall der Parabel A? Ab dem Punkt A haben wir schon gesehen (6.1.3), dass sie immer größer wird. Was ist vor dem Punkt A? Ganz links ist die Steigung sehr negativ. Je mehr wir uns nach rechts bewegen, desto weniger negativ wird sie. Nach dem Punkt A (Tiefpunkt) wird sie positiv sein (das Parabel A: mit Tiefpunkt (hohl nach oben) Parabel B: mit Hochpunkt (hohl nach unten) heißt aber dann, dass sie am Punkt A null sein wird!). Eine sehr negative Zahl ist doch kleiner als eine weniger negative Zahl ist doch kleiner als -2! Dass heißt aber dann, dass die Steigung bei der Parabel A auch für die Seite links vom Punkt A immer größer (also weniger negativ) wird, wenn man sich von links nach rechts bewegt! Nehmen wir an, dass das Diagramm ein s-t Diagramm ist. Die Steigung zeigt uns daher die Geschwindigkeit. Wenn die Steigung immer größer wird, bedeutet es dann, dass die Geschwindigkeit immer größer wird. Aber immer größere Geschwindigkeit bedeutet eine positive Beschleunigung! Wir haben im 1. Kapitel nur die rechte Seite der Parabel A gesehen. Da ist sowohl die Geschwindigkeit als auch die Beschleunigung

3 positiv. Auf der linken Seite aber ist zwar die Geschwindigkeit negativ (Kurve geht nach unten) die Beschleunigung aber ist, wie wir gerade erklärt haben, positiv! Die Geschwindigkeit wird immer weniger negativ, also immer größer, also die Beschleunigung wird positiv sein (und konstant, weil wir eine Parabel haben)! Umgekehrt ist die Situation bei Parabel B. Nehmen wir wieder an, dass es um ein s-t Diagramm geht. Wenn wir von ganz links anfangen und wir uns nach rechts bewegen, wird die Steigung immer weniger positiv (bis sie am Punkt B null wird). Weniger positiv bedeutet aber, dass sie immer kleiner wird. Immer kleinere Steigung bedeutet immer kleinere Geschwindigkeit, also eine negative Beschleunigung. Die linke Hälfte also hat zwar eine positive Geschwindigkeit (die Kurve geht nach oben), die Beschleunigung ist aber doch negativ. Auf der rechten Hälfte ist dann sowohl die Geschwindigkeit als auch die Beschleunigung negativ (die Geschwindigkeit wird immer negativer, also immer kleiner, also auch negative Beschleunigung). Um zu verstehen, ob die Beschleunigung bei einem s-t Diagramm positiv oder negativ ist, gibt es noch eine Weise. Man kann sich vorstellen, dass man sich auf der Kurve befindet und sich von links nach rechts bewegt. Muss man dann links abbiegen, dann ist die Beschleunigung positiv, muss man rechts abbiegen, ist sie negativ s-t Diagramm (Wiederholung) und Fläche in einem v-t Diagramm Im ersten Kapitel haben wir schon gelernt, dass die Fläche zwischen Kurve und x-achse in einem v-t Diagramm uns die zurückgelegte Strecke angibt. Die Erklärung ist einfach: Die Fläche z.b. eines Rechtecks, ist eine Seite mal die andere. Für ein Rechteck in einem v-t Diagramm ist dann diese Fläche die Größe der y-achse (Geschwindigkeit v) mal die Größe der x-achse (Zeit t). Dieses Produkt, v t, Geschwindigkeit mal Zeit, ist doch die Strecke. Wir sollen aber vorsichtig sein. Das Ergebnis (die Fläche) zeigt uns nur die zurückgelegte Strecke, also Δs. Es zeigt uns aber nicht, wo sich der bewegende Körper gerade befindet. Nehmen wir den einfachen Fall einer gleichförmigen Bewegung und vergleichen wir das folgende Bild und die folgenden s-t Diagramme: 1.Bild: positive Richtung 1. Diagramm 2. Diagramm 3. Diagramm 4. Diagramm 5. Diagramm Der Koordinatenursprung ist immer der Bezugspunkt unsere Messungen. Dieser ist hier z.b. Wels. Wir brauchen auch eine positive Richtung. Diese ist hier die Richtung vom Wels nach Linz (siehe 1.Bild). Bewegt sich ein Fahrzeug in dieser Richtung, dann ist die Geschwindigkeit positiv. Vorsicht! Es kann doch sein, dass die Geschwindigkeit positiv ist (positive Richtung) und doch das Fahrzeug Richtung Wels (also zurück zum Ursprung) fährt (!), nämlich wenn das Fahrzeug sich in Salzburg befindet und nach Wels fährt!

4 Fährt jetzt ein Fahrzeug von Wels aus nach Linz mit einer bestimmten konstanten Geschwindigkeit, dann fängt unsere Gerade am Koordinatenursprung und geht nach oben (positive Richtung). Das wird schon eine Gerade sein, da die Geschwindigkeit, also die Steigung, konstant ist (wir haben eine gleichförmige Bewegung angenommen). Diese Situation entspricht dem ersten Diagramm. Fährt aber das Fahrzeug vom Wels nach Salzburg, ist das doch die negative Richtung, also die Gerade muss nach unten sein (und auch im negativen Bereich: Salzburg ist vor Wels). Diese Situation entspricht dem zweiten Diagramm. Fährt das Fahrzeug vom Linz Richtung Wien, dann ist zwar die Gerade nach oben (positive Richtung), ihr Anfangspunkt ist aber nicht mehr der Koordinatenursprung, sondern ein Punkt auf der positiven y- Achse, da wo Linz auf der Achse dargestellt wird. Das entspricht dem dritten Diagramm. Fährt das Fahrzeug vom Linz Richtung Salzburg, dann ist die Gerade nach unten (negative Richtung) und der Anfangspunkt steht da, wo Linz auf der y-achse dargestellt wird. Wenn diese Gerade die x- Achse schneidet, dann befindet sich das Fahrzeug im Wels und fährt weiter nach Salzburg (negativer Bereich, negative Richtung). Das entspricht dem vierten Diagramm. Fährt das Fahrzeug vom Salzburg nach Wels, dann ist die Gerade nach oben (positive Richtung) aber doch im negativen Bereich (Salzburg ist vor Wels ). Das entspricht dem fünften Diagramm. Wenn die Gerade die x-achse schneidet, befindet sich das Fahrzeug bei Wels und fährt weiter, sogar nach Linz Richtung Wien. Vorsicht: was der Koordinatenursprung und die positive Richtung ist, ist eine Sache der Definition. Wir könnten auch als positive Richtung die Richtung nach Salzburg oder als Bezugspunkt Vöcklabruck annehmen, dann wären alle Diagramme anders! Vergleichen wir jetzt das 1. und das 3. Diagramm: Die zurückgelegte Strecke ist in beiden Fällen die gleiche, im ersten Fall befindet sich aber das Fahrzeug am Ende im Linz, im zweiten Fall doch weiter nach Linz! Der Grund liegt darin, dass der Anfangspunkt ein anderer war. Im ersten Diagramm ist Wels der Startpunkt, im zweiten doch schon Linz. Wir haben vorher gesagt, dass die zurückgelegte Strecke uns nicht besagt, wo sich der bewegende Körper gerade befindet. Das ist genau was wir damit gemeint haben. In einem v-t Diagramm kann man zwar die zurückgelegte Strecke durch die Fläche ablesen, nicht aber wo der Körper angefangen und wo er gestoppt hat! Fläche in einem v-t Diagramm bei einer gleichmäßig beschleunigten Bewegung und entsprechende zurückgelegte Strecke Im ersten Kapitel haben wir schon die Formel für die zurückgelegte Strecke bei einer gleichmäßig beschleunigte Bewegung gesehen: s = v 1 t + ½ a t². Wir haben auch gelernt, dass wir allgemein in einem v-t Diagramm die zurückgelegte Strecke durch die Fläche zwischen Kurve und x-achse ablesen können. Wir haben auch gelernt, dass ein v-t Diagramm bei einer gleichmäßig beschleunigte Bewegung wie das nebenstehende Diagramm aussieht. Die Steigung in so einem Diagramm zeigt uns die Beschleunigung. Die Beschleunigung bei einer gleichmäßig beschleunigte Bewegung ist konstant, daher ist auch die Steigung konstant. Wir haben also eine Gerade (nach oben, wenn die Beschleunigung positiv ist, nach unten, wenn sie negativ ist - also beim Bremsen). Die Gerade fängt bei v 1 an, also mit der Anfangsgeschwindigkeit. Dieses Diagramm können wir benutzen, um die Formel für die Strecke bei einer gleichmäßig v-t Diagramm mit konstanter a beschleunigte Bewegung zu erzeugen. Die Gesamtfläche ist die Fläche des Dreiecks A D plus die Fläche des Vierecks A V. Es gilt:

5 A D = ½ Δv Δt und A V = v 1 Δt Hier ist Δt=t und a= Δv und daher Δv =a Δt also Δv =a t Δt Die Gesamtfläche ist die zurückgelegte Strecke und daher: s = A D + A V = ½ Δv Δt + v 1 Δt = v 1 t + ½ Δv Δt = v 1 t + ½ a t t also s = v 1 t + ½ a t² Damit haben wir die Formel für die zurückgelegte Strecke bei einer gleichmäßig beschleunigte Bewegung mit Hilfe des v-t Diagramms erzeugt! Fläche in einem a-t, in einem s-t und ein einem allgemeineren Diagramm Wir haben uns bisher nur mit der Fläche in einem v-t Diagramm beschäftigt. Im Gegenteil zur Steigung, die als Änderungsrate immer einen physikalischen Sinn hat, ist das mit der Fläche zwischen Kurve und x-achse nicht immer der Fall. Was ist mit der Fläche in einem a-t Diagramm? Laut Definition der Fläche sollte sie a t sein und das hat doch die Dimensionen der Geschwindigkeit. So wie bei einem v-t Diagramm die Fläche uns die Differenz Δs zeigt (also in diesem Fall zurückgelegte Strecke), ist es auch bei einem a-t Diagramm: die Fläche in einem a-t Diagramm zeigt uns die Differenz der Geschwindigkeit Δv (also Geschwindigkeitsänderung). Bild 1 In einem s-t Diagramm ist die Fläche, also das Produkt s t, keine bekannte physikalische Größe. Daher macht es nicht Sinn, die Fläche in einem s-t Diagramm zu benutzen. Allgemein ist die (physikalische) Größe der Fläche zwischen Gerade und x-achse und zwischen zwei Werten von x das Produkt der Größen der beide Achsen. In Physik ist dieses Produkt oft aber nicht immer eine sinnvolle physikalische Größe (wie z.b. in einem s-t Diagramm). Die ganze Fläche zeigt uns dann die Änderung dieser Größe zwischen den beiden Werten x 1 und x 2 auf der x-achse (Geschwindigkeitsänderung zwischen t 1 und t 2 in einem a-t Diagramm, die Änderung der Strecke Δs zwischen t 1 und t 2 in einem v-t Diagramm usw.). Bisher haben wir vorwiegend Beispiele gesehen, wo der Wert für t 1 null war (am Koordinatenursprung), das ist aber in der Regel nicht so! Bild 2 Bild 3 Die Fläche zu berechnen ist im Fall einer linearen Funktion (Gerade, Bild 2) einfach (Summe der Fläche eines Dreiecks und eines Vierecks). Allgemein (Bild 3) kann man die Fläche mit Hilfe des Integrals (12. Schulstufe) berechnen Die Einheiten der Achsen und die Eigenschaften des Diagramms Bisher haben wir fast immer Diagramme verglichen unter der Annahme, dass die Achsen-Einheiten übereinstimmten. Das ist selbstverständlich nicht immer der Fall. Wenn man Steigung und Flächen bei Diagrammen vergleicht, bei denen die Achsen-Einheiten nicht übereinstimmen, muss man in der Regel die Steigungen bzw. die Flächen berechnen, um vergleichen zu können. Ein paar Beispiele werden das eindeutig machen. Alle Diagramme sind v-t Diagramme.

6 Vergleichen wir zuerst die beiden Geraden im ersten Diagramm. Die Gerade f fängt bei 1m/s, p bei 3 m/s an. Gerade f hat eindeutig eine größere Steigung (also ist für diese Bewegung die Beschleunigung größer). Die Fläche bis t=4s ist unter Gerade f weniger als unter Gerade p. Zwischen 4 und 8s ist sie aber doch mehr unter Gerade f. Wenn man die Flächen zwischen 0 und 8s berechnet, sind sie sogar für beide Geraden gleich groß (obwohl sie anders aussehen). Diagramm 1 Diagramm 2 Diagramm 3 Diagramm 4 Vergleichen wir jetzt Diagramme 2 und 3. Wenn man nicht auf die Einheiten achtet, würde man sagen, dass die Gerade in Diagramm 3 steiler ist und daher auch die Steigung. Das ist aber doch nicht so. Eigentlich geht es um das gleiche Diagramm, nur ist die Skalierung der y-achse anders: im Diagramm 3 ist auf der y-achse 1m/s doppelt so viel wie im Diagramm 2. Die Geschwindigkeitsänderung ist in beiden Diagrammen 1m/s je 2s, also ist die Steigung (und die Beschleunigung) 0,5m/s²! In der gleichen Weise kann man zeigen, dass die Flächen unter beiden Gerade (zwischen z.b. 0 und 4s) auch gleich groß sind! Wenn wir Diagramme 3 und 4 vergleichen, würden wir ohne Rücksicht auf die Einheiten sagen, dass es und die gleiche Gerade geht. Das ist aber doch falsch. In Diagramm 3 ist die Einheit für die Zeit (x- Achse) Sekunde (s) und für die Geschwindigkeit (y-achse) m/s. In Diagramm 4 sind die entsprechenden Einheiten Stunde (h) bzw. km/h! Die Steigung in Diagramm 3 ist 1m/s je 2s und in Diagramm 4 1km/h je h! Ist das gleich? Rechnen wir die Beschleunigung (Steigung) in Diagramm 4 in m/s² um: k=a= 1 km/h km =0,5 1 2 h 1h 2=0, m s 2 3, m/s 2!! wobei die Steigung (und die Beschleunigung) in Diagramm 3 0,5m/s² ist! Der Vergleich ist beeindruckend! Apropos: die Einheit km/h² für die Beschleunigung haben wir bisher nie gesehen und werden auch nicht mehr sehen. Sie wird nie benutzt! Genauso groß ist der Unterschied, wenn man die Flächen vergleicht. In Diagramm 3 ist die Fläche (also die zurückgelegte Strecke) nach 4 Einheiten der x-achse (also nach 4s) 16m/s 4s= 64 m und in Diagramm 4 16km/h 4h= 64 km! Die Folgerung ist eindeutig: Wenn man Diagramme vergleichen will, muss man die Einheiten der Achsen berücksichtigen.

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion s(t) beschreiben, die zu jedem Zeitpunkt t (Stunden oder Sekunden)

Mehr

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau)

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Vorbemerkung Die nachfolgenden Darstellungen dienen

Mehr

Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13

Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13 Aufgaben für Dienstag, 23.10.2012: Physik im Straßenverkehr Für die Sicherheit im Straßenverkehr spielen die Bedingungen bei Beschleunigungsund Bremsvorgängen eine herausragende Rolle. In der Straßenverkehrsordnung

Mehr

Klassenarbeit Nr. 3 Physik Kinematik SJ

Klassenarbeit Nr. 3 Physik Kinematik SJ Klassenarbeit Nr. 3 Physik Kinematik SJ Version 1: Name: Hinweise: Bitte immer auf zwei Nachkommastellen runden. (t in Sekunden, v in Meter pro Sekunde, 0 8 ; 0 50 ). & Geschwindigkeits-Zeit- Funktionen

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

2 Gleichmässig beschleunigte Bewegung

2 Gleichmässig beschleunigte Bewegung 2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du

Mehr

1.1 Eindimensionale Bewegung. Aufgaben

1.1 Eindimensionale Bewegung. Aufgaben 1.1 Eindimensionale Bewegung Aufgaben Aufgabe 1: Fahrzeug B fährt mit der Geschwindigkeit v B am Punkt Q vorbei und fährt anschließend mit konstanter Geschwindigkeit weiter. Eine Zeitspanne Δt später fährt

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

12GE1 - Wiederholung - Verbesserung Praktikum 01

12GE1 - Wiederholung - Verbesserung Praktikum 01 12GE1 - Wiederholung - Verbesserung Praktikum 01 Raymond KNEIP, LYCÉE DES ARTS ET MÉTIERS September 2015 1 Die gleichförmige Bewegung Dritte Reihe der Tabelle: s/t (m/s) (F.I.) 0.5 0.5 0.5 0.5 a. Der Quotient

Mehr

Bewegung. Ich kenne den Zusammenhang zwischen Geschwindigkeit und Weg. 19

Bewegung. Ich kenne den Zusammenhang zwischen Geschwindigkeit und Weg. 19 2 Bewegung Kreuze an jetzt / nach Abschluss des Kapitels 2.1 Geschwindigkeit Ich kann verschiedene Geschwindigkeiten abschätzen. Lernziele Seite Einschätzung Ich kenne den Zusammenhang zwischen Geschwindigkeit

Mehr

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Bewegt sich ein Körper geradlinig, dann kann mit einem Zeit-Ort-Diagramm dargestellt

Mehr

Prüfungsvorbereitung Physik: Beschreibung von Bewegungen

Prüfungsvorbereitung Physik: Beschreibung von Bewegungen Prüfungsvorbereitung Physik: Beschreibung von Bewegungen Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Bezugssystem b) Inertialsystem c) Geschwindigkeit

Mehr

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen Staatliche Technikerschule Waldmünchen Fach: Physik Häufig verwendete Formeln aus der Europa-Formelsammlung Lineare Bewegungen: Gleichförmige Bewegung: S. 11/ 2-7 Beschleunigte Bewegung: S. 12 / 2-20,

Mehr

Brückenkurs Physik SS11. V-Prof. Oda Becker

Brückenkurs Physik SS11. V-Prof. Oda Becker Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr

Mehr

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen

2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen Lehr- und Lernmaterial / Physik für M-Kurse am Landesstudienkolleg Halle / Jörg Thurm 2. Kinematik Physikalische Grundlagen Vorlesung 2.1. Mechanische Bewegung Zusammenfassung 1. Semester / 2. Thema /

Mehr

Lösungen und Hinweise zu den Arbeitsaufträgen, Heimversuchen und Aufgaben

Lösungen und Hinweise zu den Arbeitsaufträgen, Heimversuchen und Aufgaben Bewegungen S. 181 196 Aufträge S. 183 Lösungen und Hinweise zu den Arbeitsaufträgen, Heimversuchen und Aufgaben A1 Siehe Schülerband, S. 183, B1 (Bewegungsarten) und S. 18, B5 (Bewegungsformen). A Individuelle

Mehr

K1PH-4h/2 Stundenprotokoll der ersten Physikstunde ( ) im 1. Halbjahr 2012/13

K1PH-4h/2 Stundenprotokoll der ersten Physikstunde ( ) im 1. Halbjahr 2012/13 K1PH-4h/2 Stundenprotokoll der ersten Physikstunde (12.09.2012) im 1. Halbjahr 2012/13 Thema: Einstieg in die Physik anhand eines kleinen Wagens (s. Abb. unten), Wiederholung Kinematik (Bewegungslehre)

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Lösungen zu Übungsblatt 2

Lösungen zu Übungsblatt 2 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2017/18 Übungsblatt 2 Lösungen zu Übungsblatt 2 Aufgabe 1 Koppelnavigation. a) Ein Schi bestimmt seine Position bei Sonnenuntergang durch den

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

Modellschularbeit. Mathematik. März Teil-2-Aufgaben. Korrekturheft

Modellschularbeit. Mathematik. März Teil-2-Aufgaben. Korrekturheft Modellschularbeit Mathematik März 2014 Teil-2-Aufgaben Korrekturheft Aufgabe 1 Druckmessung in einem Behälter a) Lösungserwartung: Momentane Änderungsrate zum Zeitpunkt t = 12: p(t) = 1 64 t 3 3 16 t 2

Mehr

A38 O1 ma4 GK-Math - Protokoll vom Mi., den

A38 O1 ma4 GK-Math - Protokoll vom Mi., den A38 O1 ma4 GK-Math - Protokoll vom Mi., den 23.9.2009 Protokollantin: Wioletta Lazik, Kursleiter: Herr Manthey Themen der Stunde 1. Grafische Geschwindigkeitsbestimmung 2. Kontrolle der Hausaufgabe 3.

Mehr

Die Summen- bzw. Differenzregel

Die Summen- bzw. Differenzregel Die Summen- bzw Differenzregel Seite Kapitel mit Aufgaben Seite WIKI Regeln und Formeln Level Grundlagen Aufgabenblatt ( Aufgaben) Lösungen zum Aufgabenblatt Aufgabenblatt (7 Aufgaben) Lösungen zum Aufgabenblatt

Mehr

Schriftliche Lernerfolgskontrolle 1

Schriftliche Lernerfolgskontrolle 1 Schriftliche Lernerfolgskontrolle 1 Physik Mechanik I: Bewegungen Klasse 8 Schuljahr 2017/2018 Name: Klasse: Datum: Hinweise: Für die Bearbeitung der Lernerfolgskontrolle sind neben Schreibutensilien ein

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

Kinematik - Lehre von den Bewegungen

Kinematik - Lehre von den Bewegungen Kinematik - Lehre von den Bewegungen Physik Grundkurs 11 Goethegymnasium Auerbach Stephie Schmidt Grundbegriffe Bewegungslehre Bewegungslehre behandelt den zeitlichen Ablauf der Ortsveränderung eines Körpers,

Mehr

Steigung und Tangente. Steigung eines Funktionsgraphen in einem Punkt

Steigung und Tangente. Steigung eines Funktionsgraphen in einem Punkt R. Brinkmann http://brinkmann-du.de Seite 1 06..008 Steigung und Tangente Steigung eines Funktionsgraphen in einem Punkt In Segelflugzeugen sind häufig Flugschreiber eingebaut, die die Flughöhe in Abhängigkeit

Mehr

Prüfungs- und Testaufgaben zur PHYSIK

Prüfungs- und Testaufgaben zur PHYSIK Prüfungs- und Testaufgaben zur PHYSIK Mechanik - Schwingungslehre - WärmelehreInteraktive Lernmaterialien zum Selbststudium für technische Studienrichtungen an Hochschulenfür technische Studienrichtungen

Mehr

Aufgaben zu den Bewegungen

Aufgaben zu den Bewegungen Aufgaben zu den Bewegungen 1. Im Märchen Rapunzel wird das Mädchen von einer Zauberin in einen Turm eingesperrt, der ohne Tür war und nur oben ein kleines Fenster hatte. Wenn die Zauberin hinein wollte,

Mehr

Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am

Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am Wiederholung der zweiten Schularbeit Mathematik Klasse 7D WIKU am 22.12.2014 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhalt: Punkte im Koordinatensstem Funktionen und ihre Schaubilder Punktprobe und Koordinaten berechnen Proportionale Funktionen 5 Steigung und Steigungsdreieck 6 Die Funktion = m + b 7 Funktionsgleichungen

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Dierentialrechnung. 1. Tangente. Ableitung. Dierential. Dierentialrechnung. Tangente. Ableitung. Dierential

Dierentialrechnung. 1. Tangente. Ableitung. Dierential. Dierentialrechnung. Tangente. Ableitung. Dierential Dierentialrechnung. Tangente. Ableitung. Dierential Variablen und Funktionen Die Hauptguren dieser Notizen sind Variablen. Eine Variable ist ein oder mehrere Smbole, die nebeneinander stehen, zum Beispiel

Mehr

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner)

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Teil : Mathematische Grundkompetenzen ) Es muss (ausschließlich) die richtige Antwortmöglichkeit

Mehr

Grundwissen. Physik. Jahrgangsstufe 7

Grundwissen. Physik. Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 1: Kinematik Dr. Daniel Bick 02. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 02. November 2016 1 / 24 Übersicht 1 Kinematik Daniel Bick

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 2. KINEMATIK, DYNAMIK (I) 2.1 Gleichförmige Bewegung: Aufgabe (*) 4 a. Zeichnen Sie ein s-t-diagramm der gleichförmigen

Mehr

Arbeitsblatt Mathematik: Bewegungsaufgaben

Arbeitsblatt Mathematik: Bewegungsaufgaben Arbeitsblatt Mathematik: Bewegungsaufgaben Seite 1 von 12 Arbeitsblatt Mathematik: Bewegungsaufgaben Bewegungsaufgaben enthalten Angaben zu mindestens einem Objekt, das entlang einer Bahn bewegt wird bzw.

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach

Mehr

Physik für Bachelors

Physik für Bachelors Johannes Rybach Physik für Bachelors ISBN-0: 3-446-40787- ISBN-3: 978-3-446-40787-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-40787-9 sowie im Buchhandel Mechanik

Mehr

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 2 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

A Sie ist weniger als 1 kg/dm 3. B E F D A G C. Zusammengesetzte Grössen 15

A Sie ist weniger als 1 kg/dm 3. B E F D A G C. Zusammengesetzte Grössen 15 1. Richtig oder falsch? A Stoffe mit einer Dichte unter 1 kg/dm 3 schwimmen in Wasser. Richtig B Die Dichte von kleinen Körpern ist immer kleiner als die Dichte von grossen Körpern. Falsch C Schwere Körper

Mehr

Vorbereitung der Klausur Grundkurs Physik11-1 Mechanik

Vorbereitung der Klausur Grundkurs Physik11-1 Mechanik Vorbereitung der Klausur Grundkurs Physik11-1 Mechanik Themenschwerpunkte der Klausur 2014 Reibung und Reibungsarbeit Anwendungen des Energieerhaltungssatzes Grundlagen der Kinematik Definition der Bewegung,

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 3 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt: Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

Mehr

Lineare Funktion. Wolfgang Kippels 21. März 2011

Lineare Funktion. Wolfgang Kippels 21. März 2011 Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

4. Veranstaltung. 16. November 2012

4. Veranstaltung. 16. November 2012 4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 2 Analysis Ableitung, Änderungsrate, Tangente Teil 2 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 2 Analysis Ableitung, Änderungsrate, Tangente Teil 2 Gymnasium Klasse 10 www.mathe-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Aleander Schwarz www.mathe-aufgaben.com Oktober 06 www.mathe-aufgaben.com

Mehr

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind

Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1 Übungen: Den Graphen einer linearen Funktion zeichnen, wenn die Steigung und der y-achsenabschnitt bekannt sind 1. Zeichne die Graphen zu den folgenden Funktionen in ein Koordinatensystem, indem Du zuerst

Mehr

2.3 Quadratische Funktionen

2.3 Quadratische Funktionen 2.3 Quadratische Funktionen 2.3.1 Definition einer quadratischen Funktion Bisher hatten wir uns ganz auf lineare Funktionen beschränkt. Wir stellen sie im Koordinatensystem als Geraden dar.interessanter

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2

(f(xi ) y i ) 2. minimal ist: man will also die Summe der quadratischen Abweichungen minimieren ... f(x i ) y i, i=1 (t x i) 2 Mathematik für Biologen, Biotechnologen und Biochemiker Lineare Regression Gegeben seien Datenpaare (, ), (, ),, ( n, n ) Wir stellen die Frage, ob sich die Zahlen i als Werte einer linearen Funktion i

Mehr

KOMPETENZHEFT ZUM DIFFERENZIEREN, II. d) s(x) = 5 x x e) k(x) = 2 x 3. f) q(x) = 4 x 3 6 x 2 24 x + 31

KOMPETENZHEFT ZUM DIFFERENZIEREN, II. d) s(x) = 5 x x e) k(x) = 2 x 3. f) q(x) = 4 x 3 6 x 2 24 x + 31 KOMPETENZHEFT ZUM DIFFERENZIEREN, II 1. Aufgabenstellungen Aufgabe 1.1. Berechne die Punkte, an denen die Funktion eine waagrechte Tangente besitzt, sowie das globale Minimum bzw. Maximum der Funktion

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Was versteht man unter Bewegung?

Was versteht man unter Bewegung? Bewegungen Was versteht man unter Bewegung? Beobachten: Beschreiben: Ortsveränderung in einer bestimmten Zeit Messen: Objektivierte Darstellung durch Vergleiche mit allgemein gültigen Standards: Längenmaß,

Mehr

Zusammenfassung. Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten)

Zusammenfassung. Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten) Zusammenfassung Kriterien einer physikalischen Messung 1. reproduzierbar (Vergleichbarkeit von Messungen an verschiedenen Orten und Zeiten) 2. quantitativ (zahlenmäßig in Bezug auf eine Vergleichsgröße,

Mehr

Erste Schularbeit Mathematik Klasse 7A G am

Erste Schularbeit Mathematik Klasse 7A G am Erste Schularbeit Mathematik Klasse 7A G am 12.11.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Übungsauftrag zur Kinematik - Lösungen

Übungsauftrag zur Kinematik - Lösungen Übungsauftrag zur Kinematik - Lösungen Aufgaben zu Bewegungsdiagrammen 1. Autofahrt Die Bewegung eines Autos lässt sich durch folgendes Diagramm beschreiben: (a) Beschreibe die Bewegung so genau wie möglich

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Prüfungstermin Frühjahr 2002, Thema Nr. 2 Lineare Bewegungen

Prüfungstermin Frühjahr 2002, Thema Nr. 2 Lineare Bewegungen Staatsexamen Fachdidaktik Fächergruppe der Hauptschule Prüfungster Frühjahr 2002, Thema Nr. 2 Lineare Bewegungen 1. Beschreiben Sie zwei für den Unterricht geeignete Methoden zur Aufnahme des Zeit-Weg-Diagramms

Mehr

G G G. Die geschweiften Klammern {} bedeuten Zahlenwert von G und die eckigen Klammern Einheit von G.

G G G. Die geschweiften Klammern {} bedeuten Zahlenwert von G und die eckigen Klammern Einheit von G. Arbeiten mit physikalischen Grössen A. Physikalische Grössen Durch eine Messung erfasst man mit einer physikalischen Grösse quantitativ eine Eigenschaft eines Objekts, einen Zustand oder einen Vorgang.

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

gibb / BMS Physik Berufsmatur 2008 Seite 1

gibb / BMS Physik Berufsmatur 2008 Seite 1 gibb / BMS Physik Berufsmatur 008 Seite 1 Aufgabe 1 Kreuzen Sie alle korrekten Lösungen direkt auf dem Blatt an. Es können mehrere Antworten richtig sein. Alle 4 Teile dieser Aufgabe werden mit je einem

Mehr

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung

1 Vektorrechnung als Teil der Linearen Algebra - Einleitung Vektorrechnung als Teil der Linearen Algebra - Einleitung www.mathebaustelle.de. Einführungsbeispiel Archäologen untersuchen eine neu entdeckte Grabanlage aus der ägyptischen Frühgeschichte. Damit jeder

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Zweisprachiger Wettbewerb Physik 2. Schuljahr

Zweisprachiger Wettbewerb Physik 2. Schuljahr Zweisprachiger Wettbewerb Physik 2. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

3-1 [ ] Erkennen, was die Welt im Innersten zusammenhält. 3. Gleichmäßig beschleunigte Bewegungen. Definition der Beschleunigung

3-1 [ ] Erkennen, was die Welt im Innersten zusammenhält. 3. Gleichmäßig beschleunigte Bewegungen. Definition der Beschleunigung 3. Gleichmäßig beschleunigte Bewegung Im letzten Kapitel wurden nur Bewegungen behandelt, in denen die Geschwindigkeit konstant bleibt. In der Realität kommt dieser Fall eher selten vor. Die Einwirkung

Mehr

Differenzialrechnung. Zusammenfassung. 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten

Differenzialrechnung. Zusammenfassung. 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten Differenzialrechnung Zusammenfassung 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten 2.1 Funktionen Funktion: jeder reellen Zahl x aus einer Definitionsmenge D wird eine ganz bestimmte Größe,

Mehr

Didaktik der Analysis

Didaktik der Analysis Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 3.1 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff

Mehr

Lissajous-Kurven INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel. Text Nummer: Stand: 28.

Lissajous-Kurven INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.  Text Nummer: Stand: 28. Lissajous-Kurven Tet Nummer: 50 Stand: 8. März 06 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 55 Lissajous-Figuren Vorwort Lissajous-Figuren sind Kurven, die man sehr gut durch physikalische Eperimente erzeugen

Mehr

Lissajous-Kurven DEMO. Text Nummer: Stand: 28. März Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Lissajous-Kurven DEMO. Text Nummer: Stand: 28. März Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Lissajous-Kurven Tet Nummer: 50 Stand: 8. März 06 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 55 Lissajous-Figuren Vorwort Lissajous-Figuren sind Kurven, die man sehr gut durch physikalische Eperimente erzeugen

Mehr

Quadratische Gleichungen

Quadratische Gleichungen 1 Quadratische Gleichungen ax 2 + bx + c = 0 1. Löse folgende Gleichungen: a) x 2 + 2x 15 = 0 b) x 2 6x + 7 = 0 c) x 2 + 15x + 54 = 0 d) x 2 + 12x 64 = 0 e) x 2 34x + 64 = 0 f) x 2 + 15x 54 = 0 g) x 2

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Nullstellen ganzrationaler Funktionen

Nullstellen ganzrationaler Funktionen Nullstellen ganzrationaler Funktionen 1 Nikolausproduktion Gewinnoptimierung bei der Nikolausproduktion Weihnachten steht vor der Tür! Die Firma des Unternehmers Niko Laus will herausfinden, ab welcher

Mehr

Klausur 3 Klasse 11c Physik Lösungsblatt

Klausur 3 Klasse 11c Physik Lösungsblatt 16.05.00 Klausur 3 Klasse 11c Physik Lösungsblatt Bei den Aufgaben dürfen Sie ausschließlich die Programme Cassy-Lab, erive 5 und Excel benutzen. Alle schriftlichen Überlegungen und Ergebnisse müssen auf

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Zweisprachiger Wettbewerb Physik 1. Schuljahr

Zweisprachiger Wettbewerb Physik 1. Schuljahr Zweisprachiger Wettbewerb Physik 1. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

Geschwindigkeiten, Steigungen und Tangenten

Geschwindigkeiten, Steigungen und Tangenten Geschwindigkeiten, Steigungen und Tangenten 1-E Die Geschwindigkeit cc Wir beginnen mit dem Problem der Geschwindigkeit: Wie können wir die Geschwindigkeit eines bewegten Objektes in einem bestimmten Augenblick

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Massenpunkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung ist die Bahn vorgegeben:

Mehr