5. Fourier-Transformation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "5. Fourier-Transformation"

Transkript

1 Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf bei einer allgemeinen zeitabhängigen Belastung quasistatisch gerechnet werden? Sprungantwort oder Impulsantwort beschreiben vollständig das dynamische Verhalten eines linearen Systems. Wie lassen sich diese Funktionen aus dem zeitlichen Verlauf der Anregung und dem zeitlichen Verlauf der Antwort ermitteln? Wie muss ein Finite-Elemente-Modell aufgebaut sein, damit sich damit sinnvolle Ergebnisse für eine allgemeine zeitabhängige Belastung ermitteln lassen? 2.5-1

2 5. Fourier-Transformation Antworten auf diese Fragen lassen sich mithilfe der Fourier-Transformation der Belastung finden

3 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-3

4 5.1 Definition Definition: Die Fourier-Transformation einer Funktion f(t) ist definiert durch F = f t e i t dt Die untere und die obere Grenze streben unabhängig voneinander gegen unendlich

5 Beispiel 1: Rechteckimpuls 5.1 Definition t 0 : f t =0 0 t T : f t =1 t T : f t =0 1 F = f t e i t dt T t T = 0 e i t dt= 1 i e i T 1 = 1 i = 1 sin T i cos T 1 cos T 1 i sin T 2.5-5

6 5.1 Definition Wert für Ω = 0: 1 sin T = 1 T 1 3! T 3 =T 1 3! 2 T 3 1 Ω ( cos(ωt ) 1 )= 1 Ω( 1 2! (ΩT ) 2 ) = 1 2! ΩT 2 + F 0 =T Aus F 0 = f t dt folgt allgemein: Der Realteil von F(0) ist gleich der Fläche unter der Funktion f(t). Wenn f(t) reell ist, ist der Imaginärteil von F(0) null

7 5.1 Definition Ω 2.5-7

8 5.1 Definition Beispiel 2: Dreieckimpuls t T : f t =0 T t 0 : f t =1 t /T 0 t T : f t =1 t /T t T : f t =0 -T 1 T t F = 0 f t e i t dt =F = T aus Formelsammlung: 1 tt e i T t dt 1 0 tt e i t dt t e i t dt = e i t i t

9 5.1 Definition Nach einiger Rechnung folgt: F = 1 2 T 2 ei T e i T = 2 2 T 1 cos T Mit 1 cos T =2sin 2 T 2 wird daraus: F = 4 2 T sin2 T

10 5.1 Definition F(Ω) Ω

11 5.1 Definition Beobachtungen: Die Lage des ersten Nulldurchgangs ist umgekehrt proportional zur Impulsdauer T. Am Aufbau des Impulses sind alle Frequenzen beteiligt. Die Frequenzen bis zur ersten Nullstelle herrschen jedoch vor. Existenz der Fourier-Transformation: Eine notwendige Bedingung ist, dass die zu transformierende Funktion gegen null geht, wenn die Zeit gegen unendlich geht. Eine hinreichende Bedingung ist f (t ) dt<

12 Inverse Transformation: 5.1 Definition Die inverse Fourier-Transformation ist gegeben durch f t = 1 2 F e i t d Bei der inversen Transformation müssen die Grenzen in gleicher Weise gegen unendlich streben

13 5.1 Definition Deutung: Eine periodische Funktion f(t) kann als unendliche Summe von harmonischen Schwingungen dargestellt werden (Fourier-Reihe). Die Frequenzen sind ein Vielfaches einer Grundfrequenz Ω 0 : f t = c n e i n 0 t n= Eine nichtperiodische Funktion ist aus unendlich vielen Schwingungen aller Frequenzen aufgebaut

14 5.1 Definition Jede dieser Schwingungen ist beteiligt mit der infinitesimalen komplexen Amplitude c(ω)= 1 2π F (Ω) d Ω Dadurch erhält man das Fourier-Integral f t = 1 2 F ei t d Die Funktion F(Ω) wird als Spektralfunktion, Spektraldichte oder Frequenzfunktion bezeichnet. Die Funktion F(Ω) wird als Amplitudendichte bezeichnet

15 5.2 Eigenschaften Linearität: Sei F 1 (Ω) die Fourier-Transformierte der Funktion f 1 (t) und F 2 (Ω) die Fourier-Transformierte der Funktion f 2 (t), und seien c 1 und c 2 zwei Konstanten. Dann folgt für die Fourier-Transformierte der Funktion f t =c 1 f 1 t c 2 f 2 t : F =c 1 f 1 t e i t dt c 2 f 2 t e i t dt =c 1 F 1 c 2 F

16 Maßstabsänderung: 5.2 Eigenschaften Sei F(Ω) die Fourier-Transformierte der Funktion f(t). Für die Fourier-Transformierte G(Ω) der Funktion mit reellem, von Null verschiedenem a gilt: g t = f a t G = f a t e i t dt Die Substitution =a t, d =a dt führt auf G = f e i a 1 a d = 1 a F a

17 5.2 Eigenschaften Zeitverschiebung: Sei F(Ω) die Fourier-Transformierte der Funktion f(t). Für die Fourier-Transformierte G(Ω) der Funktion g t = f t t mit reellem Δt gilt: G = f t t e i t dt Die Substitution =t t, d =dt führt auf G = f e i t d =e i t F

18 5.2 Eigenschaften Transformation der Ableitung: Sei F(Ω) die Fourier-Transformierte der Funktion f(t). Für die Fourier-Transformierte G(Ω) der Ableitung g t = ḟ t gilt: G = ḟ t e i t dt Partielle Integration führt auf ḟ t e i t dt=[ f t e i t ] f t i e i t dt Da f(t) im Unendlichen verschwindet, ist der erste Summand auf der rechten Seite null. Es bleibt ḟ t e i t dt=i f t e i t dt=i F

19 5.2 Eigenschaften Beispiel: Schwingungsgleichung Schwingungsgleichung: m ẍ t d ẋ t c x t = f t Die Fourier-Transformation führt auf 2 m i d c X =F Dabei ist F(Ω) die Fourier-Transformierte von f(t) und X(Ω) die Fourier-Transformierte von x(t). Durch die Fourier-Transformation geht die lineare Differenzialgleichung in eine lineare algebraische Gleichung über

20 5.2 Eigenschaften Die algebraische Gleichung kann leicht nach X(Ω) aufgelöst werden Durch inverse Transformation kann die Lösung x(t) bestimmt werden. Faltung: Seien f(t) und h(t) zwei reelle Funktionen der Zeit t. Die Funktion g t = wird als Faltung bezeichnet. f h t d Beispiel: Berechnung der Antwort x(t) mithilfe der Impulsantwort oder der Sprungantwort

21 5.2 Eigenschaften Für die Fourier-Transformation der Faltung gilt: G =F H Dabei sind F(Ω), G(Ω) und H(Ω) die Fourier-Transformierten von f(t), g(t) und h(t). Durch die Fourier-Transformation geht das Faltungsintegral in ein Produkt zweier Funktionen über

22 5.3 Transformation reeller Funktionen Bei technischen Anwendungen ist die Funktion f(t) reell. Folgerungen für die Fourier-Transformation: Allgemein gilt: F = f t e i t dt= f t cos t i sin t dt = f t cos t dt i f t sin t dt Mit cos t =cos t, sin t = sin t folgt: F = f t cos t dt i f t sin t dt Für reelle Funktionen folgt: R F I F =R F = I F

23 5.3 Transformation reeller Funktionen Folgerungen für die inverse Transformation: Allgemein gilt: f t = 1 2 F e i t d = 1 2 = 1 2 i 2 R F i I F cos t i sin t d R F cos t I F sin t d R F sin t I F cos t d

24 5.3 Transformation reeller Funktionen Für reelle Funktionen f(t) gilt: R F cos t =R F cos t I F sin t =I F sin t R F sin t = R F sin t I F cos t = I F cos t Daraus folgt: f t = 1 R F cos t I F sin t d

25 5.3 Transformation reeller Funktionen Nullpunkt der Zeitachse: Bei technischen Anwendungen kann der Nullpunkt der Zeitachse meist so gewählt werden, dass gilt: f t =0 für t 0 Dann vereinfacht sich die Fourier-Transformation zu F = 0 = 0 f t e i t dt f t cos t dt i 0 f t sin t dt

26 5.4 Frequenzbereich und Zeitbereich Fourier-Transformation der Impulsantwort: Aus der Fourier-Transformation der Schwingungsgleichung, m 2 i d c X =F, folgt: F X = m 2 i d c Für die Antwort im Zeitbereich gilt: t x(t)= 0 f (τ)h I (t τ)d τ Die Fourier-Transformation dieses Faltungsintegrals ergibt X =F H mit H = 0 h I t e i t dt

27 5.4 Frequenzbereich und Zeitbereich Damit ist gezeigt: 1 H = m 2 i d c Die Fourier-Transformierte der Impuls-Antwort wird auch als komplexe Übertragungsfunktion bezeichnet. Mit dem Frequenzverhältnis η = Ω/ω gilt auch: H = 1 m i D

28 5.4 Frequenzbereich und Zeitbereich Komplexe Übertragungsfunktion:

29 5.4 Frequenzbereich und Zeitbereich Lösung der Schwingungsgleichung: Mit der Fourier-Transformation kann die Lösung der Schwingungsgleichung gefunden werden, ohne dass eine Differenzialgleichung gelöst werden muss: f t F X =H F x t Die Schwierigkeit liegt dabei in der Regel in der Berechnung der inversen Fourier-Transformation. In der Praxis werden beide Transformationen numerisch mit Hilfe der FFT (Fast Fourier Transform) durchgeführt

30 5.4 Frequenzbereich und Zeitbereich Ermittlung der Impulsantwortfunktion: Mit der Fourier-Transformation lässt sich die Impulsantwortfunktion aus den Zeitreihen der Last und der Antwort berechnen: f t x t F X H = X F h I t In der Praxis wird die komplexe Übertragungsfunktion in der Regel aus Leistungs- und Kreuzleistungsdichtespektren ermittelt

31 5.4 Frequenzbereich und Zeitbereich Grenzfrequenz: Bei impulsartigen Lasten gilt F 0, wenn Ω größer als eine Frequenz Ω 0 ist. Gilt für die Kreisfrequenz ω der Schwingung 3 0, so antwortet der Schwinger quasi-statisch. Die Frequenz Ω 0 kann durch inverse Fourier-Transformation der bei Ω 0 abgeschnittenen Spektralfunktion F(Ω) überprüft werden

3. Übertragungsfunktionen

3. Übertragungsfunktionen Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

Kontinuierliche Fourier-Transformation. Laplace-Transformation

Kontinuierliche Fourier-Transformation. Laplace-Transformation Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 16. Juni 2010, 17:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?

Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie? Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Laplacetransformation

Laplacetransformation Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 28. März 2015, 21:30 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation

18 Kontinuierliche Fourier-Transformation. Laplace-Transformation 18 Kontinuierliche Fourier-Transformation. Laplace-Transformation Jörn Loviscach Versionsstand: 21. März 2014, 21:10 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos:

Mehr

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 3: Zeitkontinuierliche Systeme Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 2005 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 3 Zeitkontinuierliche

Mehr

4. Gleichungen im Frequenzbereich

4. Gleichungen im Frequenzbereich Stationäre Geräusche: In der technischen Akustik werden überwiegend stationäre Geräusche untersucht. Stationäre Geräusche sind zusammengesetzt aus harmonischen Schallfeldern p x,t = p x cos t x Im Folgenden

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

3.2 Die Fouriertransformierte

3.2 Die Fouriertransformierte 5 3.2 Die Fouriertransformierte Eine Funktion f : R C heißt absolut integrabel, falls sie stückweise stetig und fx dx < ist. Definition: Sei f : R C absolut integrabel. Dann bezeichnen wir die durch fω

Mehr

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 2: Zeitkontinuierliche Signale Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 2 Zeitkontinuierliche

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Skriptum zur Vorlesung Mathematik für Ingenieure Fourier- und Laplace- Transformation Teil : Fourier-Transformation Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

2 Periodische, nicht harmonische Signale

2 Periodische, nicht harmonische Signale Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen

Mehr

Fourierreihen periodischer Funktionen

Fourierreihen periodischer Funktionen Fourierreihen periodischer Funktionen periodische Funktion: (3.1) Fourierkoeffizienten und (3.2) (3.3) Fourier-Reihenentwicklungen Cosinus-Reihe: (3.4) (3.5) Exponentialreihe: (3.6) (3.7-3.8) Bestimmung

Mehr

15.5 Beschreibung von linearen Systemen

15.5 Beschreibung von linearen Systemen 5.5 Beschreibung von linearen Systemen 965 5.5 Beschreibung von linearen Systemen Um das Übertragungsverhalten von Systemen zu bestimmen, untersucht man in der Regelungs- und Systemtechnik den Zusammenhang

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Zeitfunktionen. Kapitel Elementarfunktionen

Zeitfunktionen. Kapitel Elementarfunktionen Kapitel Zeitfunktionen Systeme werden durch Eingangsgrößen (Ursache, Eingangssignal, Erregung) angeregt und man interessiert sich für die Ausgangsgrößen (Wirkung, Ausgangssignal, Antwort). Die praktisch

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

3.3 Das Abtasttheorem

3.3 Das Abtasttheorem 17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

:. (engl.: first harmonic frequency)

:. (engl.: first harmonic frequency) 5 Fourier-Reihen 5.1 Schwingungsüberlagerung 5.2 "Oberschwingungen" f 0 :. (engl.: fundamental frequency) :. (engl.: first harmonic frequency) Jede ganzzahlige (n) vielfache Frequenz von f 0 nennt man

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

Grundlagen der Elektrotechnik 3. Übungsaufgaben

Grundlagen der Elektrotechnik 3. Übungsaufgaben Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung

FOURIERREIHEN. a) Periodische Funktionen. 3) Rechteckschwingung. b) Stückweise stetige Funktionen. Skizze= Sägezahnschwingung FOURIERREIHEN 1. Grundlagen a) Periodische Funtionen Beispiele: 1) f( x) = sin( x+ π / 3), T = 2 π /. 2) f( t) = cos( ωt+ ϕ), T = 2 π / ω. 3) Rechtecschwingung, 1< t < f() t =, f( t+ 2) = f() t 1, < t

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Einführung in die Laplace Transformation

Einführung in die Laplace Transformation Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

LAPLACE Transformation

LAPLACE Transformation LAPLACE Transformation Bei der LAPLACE-Transformation wird einer (geeigneten) Funktion f(t) eine Funktion F (s) zugeordnet. Diese Art von Transformation hat u.a. Anwendungen bei gewissen Fragestellungen

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder

Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Behandlung der komplexen Darstellung von Wellen: Negative Frequenzen und komplexe Felder Bei der Behandlung reeller elektromagnetischer Felder im Fourierraum ist man mit der Tatsache konfrontiert, dass

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

f(t) = a 2 + darstellen lasst Periodische Funktionen.

f(t) = a 2 + darstellen lasst Periodische Funktionen. 7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

einige Zusatzfolien für s Seminar

einige Zusatzfolien für s Seminar Signale und Systeme einige Zusatzfolien für s Seminar Dr. Mike Wolf, Fachgebiet Nachrichtentechnik Signale und Systeme Fourierreihe reelle Fourierreihe betrachtet wird ein periodisches Zeitsignal u p mit

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

10. Wellenpakete im Vakuum

10. Wellenpakete im Vakuum ω m. Wellenpakete im Vakuum. Informationsübertragung durch elektromagnetische Wellen Ein wichtiger Anwendungsbereich elektromagnetischer Strahlung ist die Informationsübertragung. Monochromatische ebene

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Signalanalyse. Übersicht. Training Frequenzanalyse 6. Signalanalyse. Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum

Signalanalyse. Übersicht. Training Frequenzanalyse 6. Signalanalyse. Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum Übersicht Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum Signalanalyse Systembeschreibung Übersicht Systembeschreibung Auto-/ Kreuzkorrelation Auto-/ Kreuzspektrum Signalanalyse Systembeschreibung

Mehr

Primzahlen Darstellung als harmonische Schwingung

Primzahlen Darstellung als harmonische Schwingung Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der

Mehr

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen

Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 12. Dezember 2007 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Die Zylinderfunktionen

Die Zylinderfunktionen Die Zylinderfunktionen Betrachten Schwingungen einer Pauke. Auslenkung v = v(t, x, y) des Trommelfells ist Lösung der Wellengleichung 2 v t = v := 2 v 2 x + 2 v 2 y 2 als Produkt aus zeitabhängiger und

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Biosignalverarbeitung (Schuster)

Biosignalverarbeitung (Schuster) Biosignalverarbeitung (Schuster) 9. FOURIER - TRANSFORMATION: 4 Ausprägungen der Transformation: Zeitbereich Frequenzbereich Laplace-Transformation Fourier-Transformation kontinuierlicher Signale (FT,

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme Übungsaufgaben. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme Übungsaufgaben. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Inhalt... Übungsaufgaben - Zeitkontinuierliche Signale... 4. Geschlossene Darstellung

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 29.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Fourier-Transformation

Mehr

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme

Hauptseminar SOI Regelalgorithmen für Totzeitsysteme Hauptseminar SOI 6. Juli 2006 Gliederung des Vortrags Motivation Grundlagen Totzeitsysteme und deren Schwierigkeiten Lösungsansätze für Totzeitsysteme Zusammenfassung Gliederung des Vortrags Motivation

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden:

SiSy1, Praktische Übung 3. Fourier-Analyse (periodischer Signale) kann als Fourier-Reihe 1 beschrieben werden: /5 Fourier-Analyse (periodischer Signale) Grundlagen Ein periodisches, kontinuierliches Signal x(t) der Periodendauer kann als Fourier-Reihe beschrieben werden: wie folgt ( ) = c k x t + e j k 2πf t k=

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Technische Beschreibung der akustischen Signalkette

Technische Beschreibung der akustischen Signalkette Technische Beschreibung der akustischen Signalkette Wichtige Aufgabe: Vielfältige Medien Gestaltung akustischer Kommunikationsketten (Sprache, Geräusche, Musik, CD, Radio, mp3,...) Unterschiedlichste Information

Mehr

8 Laplace-Transformation

8 Laplace-Transformation 8 Laplace-Transformation Ausgangspunkt: Die Heaviside-Funktion für t < u(t) = 1 für t besitzt keine Fourier-Transformation. Denn: Formal bekommt man das unbestimmte Integral ^u(ω) = e iωτ dτ = 1 iω das

Mehr

3. Fluid-Struktur-Kopplung

3. Fluid-Struktur-Kopplung 3. Fluid-Struktur-Kopplung Bei einer schwingenden Struktur muss die Normalkomponente der Schallschnelle mit der Normalkomponente der Geschwindigkeit an der Oberfläche der Struktur übereinstimmen. Dadurch

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Passiver Bandpass (RLC-Schaltung). Berechnung der komplexen Übertragungsfunktion mit zwei Methoden: mit komplexer Rechnung und mit FFT

Passiver Bandpass (RLC-Schaltung). Berechnung der komplexen Übertragungsfunktion mit zwei Methoden: mit komplexer Rechnung und mit FFT R. Kessler, C:\ro\Si5\Andy\komptep\Bandpass_FFT_2.doc, S. 1/1 Passiver Bandpass (RLC-Schaltung). Berechnung der komplexen Übertragungsfunktion mit zwei Methoden: mit komplexer Rechnung und mit FFT Bandpass

Mehr

Argumente für die diskrete Realisierung der Fourierintegrale

Argumente für die diskrete Realisierung der Fourierintegrale Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Tiefpaß Systeme. Inhaltsverzeichnis. Abbildungsverzeichnis. TP I Tiefpaß Systeme

Tiefpaß Systeme. Inhaltsverzeichnis. Abbildungsverzeichnis. TP I Tiefpaß Systeme TP I Tiefpaß Systeme Tiefpaß Systeme Inhaltsverzeichnis 1 Das ideale Tiefpaß System (Küpfmüller Tiefpaß) 1 1.1 Die Übertragungsfunktion des Küpfmüller TP............................. 1 1.2 Die Impulsantwort

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik

Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Die Laplace-Transformation und ihre Anwendung in der Elektrotechnik Jürgen Struckmeier j.struckmeier@gsi.de, www.gsi.de/ struck Vortrag im Rahmen des Winterseminars Aktuelle Probleme der Beschleuniger-

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 07 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Kontrollfragen Zeichnen Sie den typischen Verlauf einer Verformungskurve

Mehr

1. Fourierreihe und Fouriertransformation

1. Fourierreihe und Fouriertransformation . Fourierreihe und Fouriertransformation. Motivation Die Fourieranalyse hat in der Quantenmechanik mehrere wichtige Anwendungen. a Basistransformation: Durch Fouriertransformation kann man zwischen Ortsraum

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr