Elektrische Grundlagen einer Drehstromlichtmaschine

Größe: px
Ab Seite anzeigen:

Download "Elektrische Grundlagen einer Drehstromlichtmaschine"

Transkript

1 Elektrische Grundlagen einer Drehstromlichtmaschine Im nachfolgenden werden die elektrischen Grundlagen einer Drehstromlichtmaschine erläutert mit dem Ziel eine defekte Drehstromlichtmaschine prüfen und reparieren zu können. Es wird versucht die Physik möglichst anschaulich und einfach zu erklären. Die wesentliche physikalische Grundlage der Drehstromlichtmaschine ist die elektromechnische Induktion. Diese sagt aus, wenn ein Leiter durch ein Magnetfeld bewegt wird (im Bild VEKTOR F), entsteht im Leiter eine Spannung (+ - ), die einen Strom zur Folge hat. Der Strom ist in der Drehstromlichtmaschine dann der Ladestrom. Magnetfeld (Feldlinien), Leiter und Bewegungsrichtung sind jeweils senkrecht zueinander. Ob der Magnet für die Magnetfelderzeugung ein Permanentmagnet oder ein Elektromagnet (Spule um einen Kern) ist, ist im Prinzip unerheblich. Bei einem Fahrraddynamo ist der Magnet ein Permanantmagnet. Um die Zusammenhänge zu verstehen muss man nun weitere Eigenschaften der Induktion wissen. 1. Die induzierte Spannung ist proportional steigend mit der Geschwindigkeit, mit der der Leiter durch das Magnetfeld bewegt wird. 2. Die induzierte Spannung ist proportional zur Feldstärke des Magneten. Nun wieder zu unserem Fahrraddynamo mit dem Permanentmagneten. Der Permanentmagnet ist mit dem Reibrad verbunden und bewegt sich bei Bewegung an der Spule vorbei und induziert in der Spule eine Spannung/Strom. Die Richtung der Spannung (wo ist + und minus) ist abhängig davon, ob sich der Magnet auf die Spule zubewegt oder von ihr wegbewegt. Es entsteht also eine Wechselspannung. Da die Spannung abhängig von der Geschwindigkeit ist, steigt diese bei höherer Geschwindigkeit des Fahrrades. Jeder hat dies vielleicht schon festgestellt wenn er mit dem Fahrrad Nachts den Berg hinunterfährt. Wenn es dumm kommt, steigt die Spannung so an, dass die Birne durchbrennt. Dies ist auch der Grund, warum die Drehstromlichtmaschine keine Permanentmagnete hat, sondern das Feld mit einem Elektromagneten erzeugt. Die Feldstärke eines Elektromagneten lässt sich über den Strom steuern. Dies macht der Regler der Lichtmaschine, der den Strom durch die Feldwicklung

2 so steuert, dass die Ausgangsspannung 14,4 Volt nicht übersteigt, und dies möglichst auch schon bei Leerlaufdrehzahl. Das nachfolgende Bild zeigt einen ausgebauten Läufer (Elektromagnet der Feldwicklung) einer Drehstromlichtmaschine. Die Pole sind so ausgebildet, dass mit einer Wicklung jeweils 6 Nord (linke Klauenköpfe) und Südpole (rechte Klauenköpfe) entstehen. Dies erhöht die Geschwindigkeit, mit der sich die Spulen der Generatorwicklungen an den Polen vorbeibewegen. Es wird also früher Strom erzeugt. Rechts im Bild die beiden Schleifringe. Sie sind plan und nicht eingelaufen. Dies ist auch bei unserer Lichtmaschinenrevision zu prüfen. Bei Lucas Lichtmaschinen sind die Schleifringe jedoch tangential und nicht wie hier radial angeordnet. Die beiden Lager links und rechts auf der Welle sind entfernt. Diese werden auch bei unserer Revision erneuert. Über die beiden Schleifringe wird der Erregerstrom auf die Feldwicklung übertragen. Mit dem Ohmmeter kann man die Feldwicklung prüfen. Eine Oldtimerdrehstromlichtmaschine, die etwa 300Watt leistet (34A) hat einen Erregerstrom von etwa 0,5 Ampere Der Ohmwert der Feldwicklung ist daher etwa 24 Ohm (U/I = R ; 12/0,5 = 24) Die beiden Pole des Messgerätes werden dazu an die beiden Schleifringe gehalten. Der Messbereich des Gerätes ist dazu auf 200 Ohm zu stellen. Zeigt das Gerät keinen Ohmwert an, ist die Wicklung durchgebrannt (Kabelbruch). Werte kleiner 10 Ohm sind auch nicht plausibel. Hier könnten die Windungen der Wicklung untereinander Schuss haben. Hier besteht die Gefahr dass der Regler überlastet wird da ein zu hoher Feldstrom fließt. Links die Drehstrom Generatorwicklung. Drehstrom ist ein Strom in 3 Leitern ( Phasen), hier mit U,V,W gekennzeichnet, bei dem der Verlauf der Wechselspannung jeweils um 120 Grad versetzt ist. Man sieht dass die 3 Wicklungen jeweils wieder um den drittnächsten Pol gewickelt sind. Insgesamt gibt es jeweils 6 U, V und W Pole. Diese sind fest im Gehäuse. An diesen bewegen sich die 6 Feldpole des Läufers vorbei. So wird ein Drehstrom mit einer Frequenz die 6 mal so groß wie die Drehzahl des Läufers ist erzeugt. Rechts unten an der hinteren Platte sieht man die 3 Anschlüsse der 3 Wicklungen an die Diodenplatte. Im Schaltplan unten habe ich diese Anschlüsse rot umkreist. Diese Anschlüsse müssen für die Prüfung des Ohmwertes nicht unbedingt nicht unbedingt ausgelötet werden. Wenn der Regler

3 abgebaut ist und keine weiteren Anschlüsse angeschlossen sind kann an diesen Punkten der Ohmwert der 3 Wicklungen U,V und W gemessen werden. Wie im Schaltplan ersichtlich sind die 3 Wicklungen in Sternschaltung angeschlossen, ein Ende aller Wicklungen sind also miteinander verbunden. Von einem Anschlusspunkt an die Diodenplatte zur anderen sind also immer 2 Wicklungen hintereinandergeschaltet. Der Ohmwert muss dabei so zwischen 0,5 und 1,5 Ohm liegen. Wichtig ist es, dass alle 3 Werte annähernd gleich sind. Kann kein Wert gemessen werden, so ist eine Wicklung durchgebrannt oder der Draht gebrochen. Im Besten Fall ist dieser beim Anschluss an die Diodenplatte gebrochen. Hier kann man ihn reparieren. Der Austausch einer defekten Drehstromwicklung lohnt sich nicht. Hier sollte man in eine neue LIMA (oder gebrauchte, funktionierende ) investieren. Die Diodenplatte und den Regler sollte man ausbauen und als Ersatzteil verwenden (Prüfung siehe unten) Ausser den Spulen im Schaltplan, die mit schwarzen Rechtecken dargestellt sind, gibt es als wesentliche Elemente noch die Halbleiter Dioden. Diese werden hier als Gleichrichterdioden verwendet, die den Wechselstrom der 3 Phasen U,V und W in Gleichstrom richten. Eine Halbleiterdiode ist ein elektrisches Ventil, die den Strom in eine Richtung (Pfeilrichtung des Symbols) durchlässt und in die andere Richtung sperrt. In den 3 Wicklungen U,V und W werden 3 Wechselspannungen induziert die jeweils um 120 Gad versetzt sind (siehe linkes Bild) und zwischen der negativen und positiven Amplitude wechseln. Die positive Amplitude ist im eingeschwungenen

4 Zustand des Reglers die Abregelspannung von 14,4 Volt. Für jede Wicklung gibt es nun ein Diodenpaar, das die jeweilige Wechselspannung gleichrichtet. Eine Diode steuert den Stromfluss Richtung Plus Pol der Batterie (im Bild mit 1 markiert) und die andere Richtung Minus Pol der Batterie(im Bild mit 2 markiert). Strom kann nur fließen wenn die Spannung der Wicklung größer ist als die Spannung der Batterie. Bei angenommener Batteriespannung von 12,4 Volt also im oberen Bogen jeder Kurve (u,v,w) von 12,4 Volt bis 14,4 Volt und zurück. Bei nur einer Wicklung wäre dies ein sehr pulsierender Strom, der nur über einen Phasenwinkel von ca. 45 Grad fließt und die restlichen 315 Grad nicht fließt. Da die 3 Phasen aber jeweils um 120 Grad versetzt sind verringert sich die Welligkeit erheblich. Man kann sich dies folgendermaßen vorstellen. Wenn man mit einer Luftpumpe einen Reifen aufpumpt. Muss auch erst der Druck in der Luftpumpe den Druck im Reifen übersteigen, bis Luft aus der Luftpumpe in den Reifen gelangt. Entsprechend der Diode1 ist hier das Ventil im Schlauch das steuernde Element. Das Ventil in der Luftpumpe entspricht der Diode 2. Beim Zurückziehen der Luftpumpe kann so neue Luft in den Kolben gelangen. Wenn der Schlauch 3 Ventile (entsprechend den 3 Wicklungen und Diodenpaaren) hätte könnten 3 Personen den Schlauch viel gleichmäßiger und schneller aufpumpen. Die 6 Hauptdioden werden mit dem Ohmmessgerät gemessen. Messbereich auf 1000 Ohm stellen. Der Messstrom bei Ohmmessung fließt von dem roten Kabel zum schwarzen. Wird hier ein Ohmwert kleiner 1000 Ohm gemessen so gibt es Durchgang (üblicher Wert ca.600 Ohm). Die drei Dioden Richtung plus Klemme müssen Durchgang haben (von den 3 Wicklungsanschlüssen nach B+ Klemme messen). In Gegenrichtung müssen sie sperren (Ohmwert > 1000 KOhm). Die Dioden Richtung Masse (oben 2) müssen nach Masse sperren, in Gegenrichtung Durchgang. Die 3 Erregerdioden müsssen Richtung Regleranschluss (rot) Durchgang haben und rückwärts sperren. Der Strom durch diese Dioden dient dem Regler zum regeln des Feldstromes. Fließt hier noch kein Strom, so nimmt der Regler den Feldstrom von der Batterie durch die Ladekontrolleuchte. Diese leuchtet, sobald die Spannung aus den Wicklungen aber ca. 10 Volt überschreitet, geht die Ladekontrolleuchte aus. Funktion des Reglers Aufgabe des Reglers ist es die Ausgangsspannung der Lichtmaschine auf 14,4 Volt zu begrenzen. Die erreicht er durch die Regelung des Feldstroms. Die Feldstärke der Feldspule ist proportional zum Strom im Quadrat. Der Strom wird durch einen Leistungstransistor gesteuert. Dieser muss dazu einen Teil des Stroms in Wäme umwandeln. Der Regler kann entweder auf der Plus Seite der Feldwicklung sitzen, wie oben im Schaltplan, oder auf der Minusseite. Die Regler unterscheiden sich dann jedoch.

5 Einzelschritte bei der Überholung der Lichtmaschine. 1. Spannungs- und Strommessung auf dem Prüfstand 2. Auseinanderbau der Lichtmaschine 3. Prüfung Kollektor (eingelaufen) Abnutzung Kohlen (Ersetzen) 4. Ohmmessung Feldwicklung 5. Ohmmessung Drehstromwicklungen 6. Durchgangsmessung Hauptdioden 7. Durchgangsmessung Erregerdioden 8. Ersetzen Kugellager 9. Optische Überholung (streichen, fetten) 10. Zusammenbau 11. Spannungs uns Strommessung auf dem Prüfstand.

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Workshop Lichtmaschine BMW 69-96. 31.01.2015 Rhein-Main

Workshop Lichtmaschine BMW 69-96. 31.01.2015 Rhein-Main Workshop Lichtmaschine BMW 69-96 31.01.2015 Rhein-Main Hans-Günter Kahl Stand 14.03.2015 Seite 1 Ziel des Workshop Verständnis für Aufbau und Funktion der Lichtmaschine (LiMa) zur nachgelagerten Entstörung

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

Kapitel. Eins zurück, zwei vor: die ersten Schritte

Kapitel. Eins zurück, zwei vor: die ersten Schritte Kapitel 1 Eins zurück, zwei vor: die ersten Schritte ASIMO ist ein dem Menschen nachempfundener Roboter, der sich auf zwei Beinen fortbewegen kann. Er vereint alle Inhalte der Elektrotechnik und Elektronik

Mehr

Experimente zur elektromagnetischen Induktion I

Experimente zur elektromagnetischen Induktion I Fließt ein elektrischer Strom durch eine Spule, entsteht in der Spule ein Magnetfeld. Der umgekehrte Fall gilt allerdings nicht: Ein Stabmagnet, der sich im Innern einer Spule befindet, verursacht in der

Mehr

Elektrische Antriebe in der Kältetechnik

Elektrische Antriebe in der Kältetechnik Kapitel 8 Elektrische Antriebe in der Kältetechnik In diesem Kapitel sollen die elektromotorischen Antriebe, die im Kälteanlagenbau eine wichtige Stellung einnehmen, näher betrachtet werden. Einen wesentlichen

Mehr

Die Gleichstrom-Lichtmaschine

Die Gleichstrom-Lichtmaschine Die Gleichstrom-Lichtmaschine kurz vorweg: Ich bin kein Elektriker, hoffe aber, dass ich bei den wenigen Fachbegriffen die richtige Wortwahl getroffen habe. Alles was ich hier zusammengetragen habe, habe

Mehr

Hans M. Strauch. Elektrische Ladung

Hans M. Strauch. Elektrische Ladung Hans M. Strauch Elektrische Ladung Themenfeld 6: Spannung und Induktion 2 Hydraulikstromkreis als Energieträger Hydraulik Wassermenge Wasserstromstärke Druck E-Lehre Q I V 3 Geschlossener Stromkreis als

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Schülerübung Elektromagnetismus

Schülerübung Elektromagnetismus Station 1 Magnetisches Feld Untersuchen Sie mit Hilfe kleiner Magnetnadeln bzw. mit Eisenfeilspänen das magnetische Feld verschiedener Magnete. Wo befinden sich die Magnetpole? Skizzieren Sie sauber in

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Die Gleichstrom-Lichtmaschine

Die Gleichstrom-Lichtmaschine Ein kurzes Wort vorweg. Also ich bin kein Elektriker, hoffe aber, dass ich bei den wenigen Fachbegriffen die richtige Wortwahl getroffen habe. Alles was ich hier zusammengetragen habe, habe ich im Internet

Mehr

Magnetfeldrichtung - +

Magnetfeldrichtung - + S. 280 Aufgabe 1: In Versuch 2 gilt (ohne Änderungen): Die Richtung der Lorentzkraft auf einen stromdurchflossenen Leiter erhält man durch Anwendung der 3-Finger-Regel der linken Hand. Dabei (S.280 V2)

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Instandsetzung einer Drehstrom-LiMa

Instandsetzung einer Drehstrom-LiMa 1 Instandsetzung einer Drehstrom-LiMa Hinweis: Keine Gewähr für Richtigkeit! Es gilt das Werkstatthandbuch! Copyright Detlef Zühlke 2003 / nur zum privaten Gebrauch / kommerzielle Verwertung untersagt!

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

Fachkunde Strom, Elektromotoren und Antriebarten

Fachkunde Strom, Elektromotoren und Antriebarten Skizzieren Sie einen Stromkreislauf und beschriften Sie daran den Druck (Spannung), den Leitungswiderstand und den Strom Wie gross ist die Spannung im normalen Leitungsnetz? U = 230 / 400 Volt. Nennen

Mehr

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus

vor ca Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus vor ca. 2000 Jahren gefunden Kleinasien, Magnesia: Steine ziehen kleine Eisenstücke an. --> Magnetismus Magnetismus ist permanent, durch Überstreichen können andere magnetische Materialien

Mehr

Im Beispiel der 3-Element-Regler 240W/30A Bosch Typ bzw. RS/UAA 240/12/43

Im Beispiel der 3-Element-Regler 240W/30A Bosch Typ bzw. RS/UAA 240/12/43 "Die Blackbox" Der Bosch-Reglerschalter für Gleichstromlichtmaschinen Im Beispiel der 3-Element-Regler 240W/30A Bosch Typ 0 0190 309 009 bzw. RS/UAA 240/12/43 (hier Bild 1) Wer kennt sie nicht, die Blackbox

Mehr

Permeabilitätsbrückengenerator Beschreibung

Permeabilitätsbrückengenerator Beschreibung Beschreibung Stand der Technik: Es gibt verschiedene elektromagnetische Generatoren. Es werden dabei Magnete oder Spulen gegenüber Magnete oder Spulen bewegt. Der elektrische Strom wird damit erzeugt,

Mehr

ELEXBO. ELektro - EXperimentier - BOx

ELEXBO. ELektro - EXperimentier - BOx ELEXBO ELektro - EXperimentier - BOx 1 Inhaltsverzeichnis 2 Einleitung.3 Grundlagen..3 Der elektrische Strom 4 Die elektrische Spannung..6 Der Widerstand...9 Widerstand messen..10 Zusammenfassung der elektrischen

Mehr

Netzgerät mit integriertem Festspannungsregler

Netzgerät mit integriertem Festspannungsregler mit integriertem Festspannungsregler 1. Allgemeines Ein paar Grundlagen müssen schon sein, denn ohne geht es nicht. Vor Beginn der Arbeit sind einige Symbole ( Bild 1 ) aus der verwendeten Schaltung zu

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

2 Elektrische Ladung, Strom, Spannung

2 Elektrische Ladung, Strom, Spannung 2 Elektrische Ladung, Strom, Spannung In diesem Kapitel lernen Sie, ein Grundverständnis der Elektrizität zur Beschäftigung mit Elektronik, welche physikalischen Grundgrößen in der Elektronik verwendet

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Versuchsprotokoll zum Versuch Nr. 2 Messungen am Generator

Versuchsprotokoll zum Versuch Nr. 2 Messungen am Generator Ein Generator ist das Gegenstück zum Motor. Mit ihm ist es möglich mech. Energie in elektrische umzuwandeln. Beim Generator dreht sich in einem Magnetfeld eine Leiterschleife (Spule), wodurch ein Strom

Mehr

KRG NW, Physik Klasse 10, Elektromagnetismus, Fachlehrer Stahl Seite 15

KRG NW, Physik Klasse 10, Elektromagnetismus, Fachlehrer Stahl Seite 15 Seite 15 Zieht man den Stabmagneten aus dem Ring, kehren sich die oben beschriebenen Verhältnisse um. Der Ring baut mittels Induktionsspannung und daraus resultierendem Strom ein Magnetfeld auf, das dem

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Wie funktioniert der Wellenschnüffler? 10 Antworten.

Wie funktioniert der Wellenschnüffler? 10 Antworten. Wie funktioniert der Wellenschnüffler? 10 Antworten. 1 2 4 5 7 19 10 8 3 6 1) Dioden funktionieren wie elektrische Ventile: Sie lassen den Strom nur in eine Richtung durch. Die Diode dient hier als Schutzdiode

Mehr

[Erklärung] Das Netzteil

[Erklärung] Das Netzteil [Erklärung] Das Netzteil Inhaltsverzeichnis Grundlagen von PC-Netzteilen Seite 2 Der Stromfluss im Netzteil Seite 3 Die Funktion der wichtigsten Bauteile Seite 3 Die DC/DC Brücke Seite 3 Der Microcontroller

Mehr

Erzeugung von drei Phasen verschobenen Wechselspannungen

Erzeugung von drei Phasen verschobenen Wechselspannungen Erzeugung von drei Phasen verschobenen Wechselspannungen Werden in einem Generator nicht nur eine, sondern drei Spulen im Winkel von 120 versetzt angebracht, so bekommt man in jeder der drei Spulen einen

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung Lösungen I.1 1. 33 km/h. (a) Energieerhaltung (b) Impulserhaltung Lösungen II.1 1.1 T ~ a 3 T nimmt mit a streng monoton zu; wenn a zwischen den Werten für Mars und Jupiter liegt, dann muss also auch T

Mehr

Motor-Generator-Modell Best.-Nr. MT01745

Motor-Generator-Modell Best.-Nr. MT01745 Motor-Generator-Modell Best.-Nr. MT01745 1. Vorstellung des Motors 1.1 Pädagogische Ziele Mit Hilfe dieses Motors können Sie Ihren Schülern Grundbegriffe wie: die Wirkung eines Magneten, Erzeugen von induziertem

Mehr

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren.

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren. Elektrizitätslehre 1 Ein elektrischer Strom fließt nur dann, wenn ein geschlossener Stromkreis vorliegt. Batterie Grundlagen Schaltzeichen für Netzgerät, Steckdose: Glühlampe Schalter Stoffe, durch die

Mehr

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch:

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch: Die Lorentzkraft Versuch: und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Wie kann man die Bewegungsrichtung der Leiterschaukel bei bekannter technischer

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft):

Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): Wiederholung: 1 r F r B Kraft auf ein geladenes Teilchen im Magnetfeld (Lorentzkraft): = r q v q = Ladung des Teilchens v = Geschwindigkeit des Teilchens B = magnetische Kraftflussdichte Rechte Hand Regel

Mehr

Schriftliche Abschlussprüfung Physik 1991/92

Schriftliche Abschlussprüfung Physik 1991/92 Schriftliche Abschlussprüfung Physik 1991/92 Lösungen Hinweise: 1. Die vorliegenden Lösungen sind Musterlösungen von Uwe Hempel, Georg-Schumann-Schule in Leipzig, und keine offiziellen Lösungen des Sächsischen

Mehr

Was ist ein Elektromotor?

Was ist ein Elektromotor? Was ist ein Elektromotor? Ein elektrischer Motor wandelt elektrische Energie in mechanische Energie um. Wenn wir uns einen Gleichstrommotor näher anschauen, finden wir in dessen Gehäuse einige Komponenten,

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Elektrizität in den Themenfeldern 6 und 9

Elektrizität in den Themenfeldern 6 und 9 Elektrizität in den Themenfeldern 6 und 9 1 Intention TF 6 Entwicklung von Vorstellungen zum Energietransport mit dem Träger Elektrizität Energienutzung im Alltag; Einheiten J und kwh Zusammenhang von

Mehr

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel 10. Elektrodynamik 10.5.4 Das Ampere sche Gesetz 10.5.5 Der Maxwellsche Verschiebungsstrom 10.5.6 Magnetische Induktion 10.5.7 Lenz sche Regel 10.6 Maxwell sche Gleichungen 10.7 Elektromagnetische Wellen

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005 Lehrstuhl für Elektromagnetische Felder Prof Dr-Ing T Dürbaum Friedrich-Alexander niversität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 9 September 2005 Bearbeitungszeit:

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995)

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) 1) Drei Drähte liegen parallel in werden von Strömen in den I 1 = 2 A I 2 = 5 A I 3 = 6 A angegebenen Richtungen durchflossen.

Mehr

Hertzsche Wellen. Physik 9

Hertzsche Wellen. Physik 9 Hertzsche Wellen Physik 9 ohne Hertzsche Wellen geht nichts? Wie entstehen Hertzsche Wellen? Man braucht eine Spule mit Eisenkern und einen Kondensator Fließt durch eine Spule ein Strom, so wird ein magnetisches

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds

Aufbau. Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Der Transformator Aufbau Zwei Spulen liegen auf einem Eisen-Kern Der Eisen-Kern dient der Führung des Magnetfelds Wirkungsweise Zwei Spulen teilen sich den magnetischen Fluss Primärspule : Es liegt eine

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Magnete die geheimnisvolle Kraft?

Magnete die geheimnisvolle Kraft? Magnete die geheimnisvolle Kraft? Magnete stellen für viele Leute etwas Mysteriöses dar. Schließlich kann der Mensch Magnetismus weder sehen, hören, riechen, schmecken noch direkt fühlen. Zudem ziehen

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

DE740-2M Motor-Generator-Einheit, Demo

DE740-2M Motor-Generator-Einheit, Demo DE740-2M Motor-Generator-Einheit, Demo Versuchsanleitung INHALTSVERZEICHNIS 1. Generator ELD MG 1.1 ELD MG 1.2 ELD MG 1.3 Die rotierende Spule Wechselstromgenerator Gleichstromgenerator 2. Motor ELD MG

Mehr

Was machen wir heute?

Was machen wir heute? Ortsverband München-Süd des Deutschen Amateur-Radio-Club e.v. Was machen wir heute? Technik E-08 Das elektromagnetische Feld Das Elektromagnetische Feld Mit Hilfe der Funktechnik sollen Informationen drahtlos

Mehr

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz

Mehr

Vielfachmessgerät digital Best.-Nr. MT01266

Vielfachmessgerät digital Best.-Nr. MT01266 Vielfachmessgerät digital Best.-Nr. MT01266 Die neue Serie der Vielfachmessgeräte Conatex ist besonders zuverlässig und präzise. Diese Geräte sind alle mit einem breiten Messbereich ausgestattet und sind

Mehr

Motorrad umrüsten auf LED Blinker

Motorrad umrüsten auf LED Blinker Motorrad umrüsten auf LED Blinker Besitzer eines Motorrades stehen vielleicht vor der Entscheidung herkömmliche Blinker mit Glühlampen auf LED (Light Emitting Diode) umzurüsten. Wird bei einem lastabhängigen

Mehr

Der Model T Cut Out enthält eine Schaltwippe mit Feder und Kontakt, manchmal noch eine Einstellschraube und immer zwei Wicklungen auf einem Kern.

Der Model T Cut Out enthält eine Schaltwippe mit Feder und Kontakt, manchmal noch eine Einstellschraube und immer zwei Wicklungen auf einem Kern. Ford Model T Cut Out Lasst uns damit beginnen, dass es zwei grundlegend unterschiedliche Arten beim Model T gibt: mechanische Cut Outs (Trennrelais) und elektronische Regulators (Laderegler), welche häufig

Mehr

Beispiele Berechnungen Hier ein paar Beispiele, was man alles ausrechnen kann.

Beispiele Berechnungen Hier ein paar Beispiele, was man alles ausrechnen kann. Berechnungen 15 Beispiele Berechnungen Hier ein paar Beispiele, was man alles ausrechnen kann. Batterie Gegeben: 70 Ah Batterie, 4 Glühlampen á 5 W = 20 W, Spannung 12 V Gesucht: Parkdauer mit Standlicht

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 18. 06. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 18. 06. 2009

Mehr

Schaltungen zum Stecken mit den Kosmos Elektrokästen

Schaltungen zum Stecken mit den Kosmos Elektrokästen Schaltungen zum Stecken mit den Kosmos Elektrokästen Bitte baut jede Schaltung nach dem Schaltplan auf und macht eine Skizze, wie ihr die einzelnen Komponenten im Kasten gesteckt habt. Falls kein Schaltplan

Mehr

Der Transistor (Grundlagen)

Der Transistor (Grundlagen) Der Transistor (Grundlagen) Auf dem Bild sind verschiedene Transistoren zu sehen. Die Transistoren sind jeweils beschriftet. Diese Beschriftung gibt Auskunft darüber, um welchen Transistortyp es sich handelt

Mehr

Bestimmende die fehlenden Angaben bei der Induktion! + +

Bestimmende die fehlenden Angaben bei der Induktion! + + Bestimmende die fehlenden Angaben bei der Induktion! + + N S Bewegung Bewegung S N Polarität? + N keine Induktionsspannung Bewegungsrichtung? N Bewegung S S Bewegung Magnetpole? Polarität? Induktion durch

Mehr

Elektromagnetismus und eletromagnetische Induktion

Elektromagnetismus und eletromagnetische Induktion Praktikumsbericht Demonstrationsgerätepraktikum Schirdewahn: Elektromagnetismus/ Induktion Seite 1 Physikalisches Demonstrationsgerätepraktikum für Lehramtskandidaten D3 Leiter: Prof. Dr. Alfred Pflug

Mehr

Grundlagen der Elektrotechnik Teil 3

Grundlagen der Elektrotechnik Teil 3 Grundlagen der Elektrotechnik Teil 3 Dipl.-Ing. Ulrich M. Menne ulrich.menne@ini.de 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen

Mehr

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen Grundlagen der Konsultation 12: Elektrische aschinen 1. Einleitung Bei den elektrischen aschinen unterscheidet man Transformatoren, Gleichstrommaschinen, Asynchronmaschinen und Synchronmaschinen. Daneben

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus

Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen

Mehr

Induktion. Methoden zum Nachweis dieser Magnetfelder:

Induktion. Methoden zum Nachweis dieser Magnetfelder: Induktion 1. Aufgabe a) Beschreiben Sie grundsätzliche Möglichkeiten, um im Physikunterricht zeitlich konstante sowie zeitlich variierende Magnetfelder zu erzeugen! Erläutern Sie für beide Fälle jeweils

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Klausur Experimentalphysik II

Klausur Experimentalphysik II Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Induktion Diagramme

Illustrierende Aufgaben zum LehrplanPLUS. Induktion Diagramme Jahrgangsstufen FOS 12, BOS 12 Induktion Diagramme Stand: 04.03.2019 Fach Physik Übergreifende Bildungs- und Erziehungsziele Benötigtes Material Kompetenzerwartungen Lehrplan Physik FOS 12 (T) LB 4 Lehrplan

Mehr

Grundwissen. Physik. Jahrgangsstufe 7

Grundwissen. Physik. Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus

Mehr

Bewegter Leiter im Magnetfeld

Bewegter Leiter im Magnetfeld Bewegter Leiter im Magnetfeld Die Leiterschaukel mal umgedreht: Bewegt man die Leiterschaukel im Magnetfeld, so wird an ihren Enden eine Spannung induziert. 18.12.2012 Aufgaben: Lies S. 56 Abschnitt 1

Mehr

Kälteanlagentechnik. Elektro- und Steuerungstechnik. Bearbeitet von Dietmar Schittenhelm

Kälteanlagentechnik. Elektro- und Steuerungstechnik. Bearbeitet von Dietmar Schittenhelm Kälteanlagentechnik Elektro- und Steuerungstechnik Bearbeitet von Dietmar Schittenhelm 6., überarbeitete Auflage 2015. Buch. XIV, 320 S. Kartoniert ISBN 978 3 8007 3650 8 Format (B x L): 17 x 24 cm Gewicht:

Mehr

Name: Punkte: Note: Ø: 3. Musterklausur

Name: Punkte: Note: Ø: 3. Musterklausur ame: Punkte: ote: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben: e =,602 0-9

Mehr

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ INDUKTION, EINPHASEN-WECHSELSTROM PETITIONEN KONDENSATOR IM WECHSELSTROMKIS 7 Frequenzverhalten eines Kondensators Ein Kondensator hat bei 0 Hz einen kapazitiven Blindwiderstand

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Projekt: Elektromotor

Projekt: Elektromotor Projekt: Elektromotor Wir bauen einen Gleichstrommotor aus fünf Teilen das Elektrotechnik- und Informatik-Labor der Fakultät IV http://www.dein-labor.tu-berlin.de Projekt: Elektromotor Liebe Schülerinnen

Mehr

Versuchsprotokoll zum Versuch Nr. 1

Versuchsprotokoll zum Versuch Nr. 1 Durch den Motor ist es möglich, elektrische Energie in mechanische Energie umzuwandeln. Wird eine Leiterschleife in einem Magnetfeld drehbar gelagert und schickt man einen Strom durch die Leiterschleife,

Mehr

Physikalische Grundlagen Inhalt

Physikalische Grundlagen Inhalt Physikalische Grundlagen Inhalt Das Atommodell nach Bohr Die Gleichspannung Der Gleichstrom Der Stromfluss in Metallen Der Stromfluss in Flüssigkeiten Die Elektrolyse Die Wechselspannung Der Wechselstrom

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr