Ü b u n g s b l a t t 13

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ü b u n g s b l a t t 13"

Transkript

1 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben sind schriftlich abzugeben im Zettelkasten Nr. 5 auf dem D bis Mittwoch, , :00 Uhr. Lösungen von -Aufgaben sind per Web-Formular unter ( Lehre SS 07 Übungen abzuliefern bis spätestens Mittwoch, , 3 59 Uhr. Aufgabe 70: (Unabhängigkeit von Zufallsvariablen Aus der untenstehenden Urne wird ein Objekt gezogen. Sei X die Zahl auf dem Objekt, sei Y die Anzahl der Ecken. Bestimme E(X, σ(y und E(XY. Sind X und Y unabhängig? Die Verteilung von X bzw. Y ist gegeben durch P (X 0 5, P (X 5, P (X 5, P (Y 3 3 5, P (Y Die gemeinsame Verteilung von X und Y ist gegeben durch P (X 0 und Y 3 5, P (X und Y 3 5, P (X und Y 3 5, P (X 0 und Y 4 0, P (X und Y 4 5, P (X und Y 4 5. Die Verteilung der Produktvariable XY ist gegeben durch P (XY 0 P (X 0 und Y 3 + P (X 0 und Y 4 5, P (XY 3 P (X und Y 3 5, P (XY 4 P (X und Y 4 5, P (XY 6 P (X und Y 3 5, P (XY 8 P (X und Y 4 5.

2 Hiermit lässt sich alles berechnen, z.b.: E(X , E(Y , E(Y , σ (Y E(Y E(Y 59 5 ( Der Erwartungswert der Produktvariable XY kann auf mehrere Arten berechnet werden: E(XY i,j i j P (X i und Y j Alternative Rechnung: E(XY k Die Variablen X und Y sind abhängig, z.b. gilt k P (XY k P (X 0 und Y 3 5 P (X 0 P (Y Aufgabe 7: (Erwartungswerte, Unabhängigkeit Es seien X,..., X n unabhängige Zufallsvariable mit dem gemeinsamen Erwartungswert µ E(X i und der gemeinsamen Streuung σ σ(x i. Setze X n n i X i und V n n i (X i X. Zeige: E( X µ, E(V σ. Der Erwartungswert des Mittelwerts X ist offensichtlich der gemeinsame Erwartungswert: Für die Abweichungsquadratsumme V gilt: E( X i n E(X i i n µ µ. (n V i (X i X i (X i X X i + X ( ( ( i X i i i X X + n X i X i n X X + n X ( i X i n X. Für den Erwartungswert folgt hieraus ( E i (X i X ( i E(X i n E( X

3 und mit ergibt sich ( E i (X i X E(X i E(X i E(X i + E(X i σ + µ ( i (σ + µ n E( X n σ + n µ n E( X. (# Für den letzten Term berechnet man: n E( X (( n E i X i (( n E i i( X j X j n E(X i X j. i,j Für i j gilt wegen der Unabhängigkeit E(X i X j E(X i E(X j µ, während E(X i σ + µ für die Summanden mit i j gilt. Es folgt n E( X n n i E(X i + n E(X i X j i,j i j i (σ + µ + n σ + µ + n (n n i,j i j µ µ σ + n µ. Aus (# ergibt sich ( (n E(V E i (X i X n σ + n µ n E( X (n σ. Aufgabe 7: (Unabhängige Poisson-Variablen Zeige, dass die Summe von zwei unabhängigen Poisson-verteilten Zufallsvariablen wieder Poisson-verteilt ist. Seien X, X die Zufallsvariablen: e P (X k λk λ e, P (X k λk λ, k, k 0,,,.... k! k! Die Summenvariable Y X + X nimmt offensichtlich wieder Werte k {0,,,..., } an: P (Y k P (X + X k k 0 k 0 }{{} k +k k k P (X k und X k k. k 0 P (X k und X k. Wegen der Unabhängigkeit von X und X faktorisiert die gemeinsame Verteilung: P (X k und X k k P (X k P (X k k

4 Es folgt λk λ(k k λ k k! (k k! e λ λ e λ λ P (X + X k λ k e λ λ k k λ k e λ λ k k 0 ( λ λ ( λ λ ( λ λ k k! (k k!. k k! (k k! k k! (k k!. Es gilt, die verbleibende Summe zu vereinfachen. Wir erweitern zunächst mit k!: P (X + X k λ k e λ λ k! λ k e λ λ k! k k 0 ( λ λ k ( ( k k λ. k 0 k λ k k! k! (k k! Die verbleibende Summe lässt sich nach Binomi (a + b k k i0 ( k i a i b k i vereinfachen: ( k P (X + X k λ k λ e λ λ + λ k (λ e λ λ + λ k k! λ k! λ k (λ + λ k e (λ+λ. k! Dies ist wieder eine Poisson-Verteilung zum Parameter λ + λ. Anmerkung: Der λ-parameter der Poisson-Verteilung ist der Erwartungswert. Wegen E(X +X E(X + E(X war es von vornherein klar, dass der Poisson-Parameter der Summe die Summe der Poisson-Parameter sein muss (sobald man weiß, dass die Summe Poisson-verteilt ist. Aufgabe 73: (Faltung, Normalverteilung Es seien X und Y unabhängige kontinuierliche Zufallsvariablen mit den Dichten ρ X und ρ Y. a Zeige, dass die Dichtefunktion ρ X +X der Variablen X + X durch die Faltung ρ X +X (y gegeben ist. Verwende hierzu (ohne Beweis: P (X + X r ρ X (x ρ X (x y dx x +x r ρ X (x ρ X (x dx dx. b Zeige, dass die Summe zweier unabhängiger normalverteilter Zufallsvariablen wieder normalverteilt ist. (Vorsicht: Rechnerei!

5 a Wegen der vorausgesetzten Unabhängigkeit der Variablen ist die gemeinsame Verteilungsfunktion F X,X (r, r P (X r, X r ρ X (x ρ X (x dx dx. x r,x r Mit ergibt sich: P ((X, X E P (X + X r E x +x r ρ X (x ρ X (x dx dx ρ X (x ρ X (x dx dx. Mit der Variablentransformation (x, x (y, y mit y x, y x + x folgt (die Jakobi- Determinante ist : P (X + X r ρ X (y ρ X (y y dy dy mit b Mit y r ergibt sich aus a die Dichte ρ(y y R x +x r ρ X (y ρ X (y y dy dy ρ(y ρ Xi (x ρ X (x ρ X (y x dx y r ρ X (y ρ X (y y dy. e (x µ i σ i, i, σ i π ρ(y dy (x µ e σ (y x µ e σ dx σ σ π der Summenvariable X + X. Mit ewas Mühsal stell man fest, dass die Identität (x µ σ gilt, mit der ρ(y (y x µ σ (y µ µ (σ + σ ( (σ + σ x σ y + µ σ µ σ σ σ (σ + σ (y µ µ σ σ π e (σ + σ ( (σ + σ x σ y + µ σ µ σ e σ σ (σ + σ dx folgt. Das verbleibende Integral liefert mit der Substitution den Wert ξ (σ + σ x σ y + µ σ µ σ σ σ σ + σ ( (σ + σ x σ y + µ σ µ σ e σ σ (σ + σ σ σ dx e ξ dξ. σ + σ }{{} π

6 Damit ergibt sich ρ(y (y µ µ σ + σ π e (σ + σ. Dies ist wieder die Dichte einer Normalverteilung, dessen Parameter durch E(X + X µ + µ, Var(X + X σ + σ gegeben sind (bekannterweise addieren sich bei Summen von unabhängigen Variablen die Erwartungswerte und die Varianzen. Aufgabe 74**: (Normalverteilung. 0 Punkte Dies ist eine Online-Aufgabe, die bis zum , 3 59 Uhr, abzuliefern ist. In einer Anlage wird Milch in -Liter Flaschen abgefüllt. Die Abfüllmenge X variiert dabei etwas: Sie sei normalverteilt mit dem Erwartungswert.0 (Liter und der Standardabweichung 0.0. Die Flaschengöße variiert unabhängig davon ebenfalls gemäß einer Normalverteilung: Der Erwartungswert ist.06 (Liter, die Standabweichung ist 0.0. (Erwartungswerte und Standardabweichungen werden vom Aufgabenserver zufällig variiert. Mit welcher Wahrscheinlichkeit läuft eine Flasche beim Befüllen über? Anleitung: Betrachte die Variable Flaschengröße minus Einfüllmenge. Diese ist nach Aufgabe 73.b normalverteilt. Die Musterlösung gibt s demnächst. Sei X die Flaschengröße, sei X die Einfüllmenge. Die Variable Y X X ist wiederum normalverteilt mit dem Erwartungswert und der Varianz µ E(Y E(X E(X σ Var(Y Var(X + Var( X Var(X + Var(X , also σ Es geht um die Wahrscheinlichkeit, dass Y < 0 gilt (dann läuft die Flasche über. Mit der Substitution y (x µ/σ: P (Y 0 σ π 0 e y dy π }{{} / wobei eine Wertetabelle für 0 e (x µ σ dx µ/σ π µ/σ π Φ(r π r e y µ/σ } {{ } Φ(µ/σ r e y / dy e y dy dy ( µ Φ, σ

7 auf Seite 8 des Skripts angegeben ist. Mit findet man aus der Tabelle: P (Y 0 Alternativ (und einfacher mit MuPAD: µ σ / Φ( >> stats::normalcdf( , 0.0^ + 0.0^( Aufgabe 75: (Bedingte Erwartungswerte Mein Lotto system besteht darin, dass ich mir ein zufälliges k {,..., 49} vorgebe und dann in Zukunft jede Woche k (unabhängige Lottotips abgebe. Nach wievielen Wochen darf ich das erste Mal mit 6 Richtigen rechnen? (Vergleiche das Ergebnis mit dem Ergebnis von Aufgabe 5 auf Blatt 9. Der Stichprobenraum wird in das Ursachensystem U k (k,..., 49 zerlegt: Ω 49 k U k. Nachdem U k ich habe k gewählt festgelegt ist, folgt eine Wiederholung des Bernoulli-Experiments Lottospiel mit k Tips mit der Erfolgswahrscheinlichkeit P ( mindestens einmal 6 Richtige bei k Tips wobei P ( keine 6 Richtige bei k Tips q k ( p k, q P ( keine 6 Richtige bei einem Tip p, p P ( 6 Richtige bei einem Tip / ( Nach Aufgabe 47.a ist der Erwartungswert der Anzahl X der Spiele bis zum ersten Erfolg: E(X U k Erfolgswahrscheinlichkeit k ( p k. Wähle ich heute ein beliebiges k {,..., 49}, so ergibt sich nach Satz.59 der Vorlesung Der numerische Wert ist E(X 49 k E(X U k P (U k k ( p k. E(X (Versuche. Vergleich: der Erwartungswert für die Anzahl der Versuche des Lotto systems aus Aufgabe 5 (mit ständig wechselndem k war: ( (Versuche. 5 6

8 Aufgabe 76: (Bedingte Wahrscheinlichkeiten und Erwartungswerte, der Satz von Bayes, Chebyshev, Normalverteilung und all das... Bei einem neuen Automodell stellt der Hersteller fest, dass 0% aller bis jetzt eingebauten Kurbelwellen mit Materialfehlern behaftet sind. Die Konstruktion der Kurbelwellen ist auf eine mittlere Laufleistung von km ausgelegt mit einer Streuung von km, die fehlerhaften Wellen halten in der Regel nur km mit einer Streuung von km. a Mit welcher Wahrscheinlichkeit wird ein von mir gekauftes Auto dieses Modells die ersten km überstehen? b Nach etwa km bleibt mein Wagen mit defekter Kurbelwelle liegen. Sollte ich gerechterweise erwarten, dass der Schaden auf Kulanz behoben wird? Anmerkungen: a kann ohne Zusatzannahmen per Formel der totalen W keit und Chebyshev abgeschätzt werden. Für b braucht man Zusatzannahmen, z.b., die Verteilung für die Lebensdauer der Kurbelwellen: wähle eine Normalverteilung. Schätze das Verhältnis der Wahrscheinlichkeiten für eine gute/schlechte Kurbelwelle bei dem vorgegebenen Ereignis, dass die Kurbelwelle in einem kleinen Intervall um die Laufleistung km ihren Dienst einstellt. Sei X die Laufleistung (in km über einem unbekannten Stichprobenraum, der sich zerlegt in Ω Ω + Ω (Ω ± gute/schlechte Kurbelwelle. Gegeben sind die bedingten Erwartungswerte/Streuungen: µ + E(X , σ + σ(x , µ E(X 0 000, σ σ(x a Mit der Formel der totalen Wahrscheinlichkeit gilt: P (X P (X P (+ + P (X P ( Nach Chebyshev gilt die Abschätzung: 0.9 P (X P (X (# P (X P (X µ P ( X µ P ( X µ σ (X Für die andere bedingte Wahrscheinlichkeit erhält man per Chebyshev keine sinnvolle Abschätzung nach unten, wir können höchstens folgern, dass dieser Wert nicht allzu groß ist: P (X P (X µ P (X µ oder X µ P ( X µ σ (X (

9 Damit können wir in (# getrost den zweiten Term vernachlässigen: P (X P (X Setzt man für die Kurbelwellen jeweils eine N(µ ±, σ±-verteilung voraus, so ergeben sich konkretere Werte: P (X ± e (x µ± σ ± dx. σ ± π Die Substitution y (x µ ± /σ ± liefert: also und damit P (X ± π µ ± σ ± e y / dx ( ( µ± ( sign Φ µ ± σ ± P (X Φ( P (X Φ(3 σ ± 0.977, , P (X b Das Ereignis A Kurbelwellendefekt bei genau km hat für eine kontinuierliche Variable die Wahrscheinlichkeit 0, man sollte also nach der Wahrscheinlichkeit für das Ereignis A Defekt bei einer Laufleistung im Bereich von ɛ bis ɛ (mit kleinem ɛ fragen. Nach Bayes gilt P (± A P (A ± P (± P (A Die Kulanzfrage sollte man danach messen, mit welcher Wahrscheinlichkeit man sagen kann, ob der Defekt auf den Werksfehler zurückgeht. Die Frage ist also P ( A > P (+ A? Mit Bayes folgt P (+ A P ( A P (A + P (+ P (A P (. P (A P (A 0.. Um die benötigten P (A ± berechnen zu können, nehmen wir an (da wir nichts Besseres wissen, dass die Lebensdauer der Kurbelwellen N(µ ±, σ ±-verteilt ist. Für sehr kleines ɛ ergibt sich P (A ± σ ± π Im Quotienten fällt ɛ heraus: ɛ ɛ e (x µ± σ ± dx ɛ e ( µ ± σ ±. σ ± π P (+ A P ( A 9 P (A + P (A 9 σ σ + ( µ + σ e + e ( µ σ 9 5 e.9. e 9/ Die Wahrscheinlichkeit, dass es sich um einen üblichen Kurbelwellenschaden handelt, ist damit wesentlich größer als die Wahrscheinlichkeit, dass in meinen Wagen eine schlechte Kurbelwelle eingebaut worden war.

Ü b u n g s b l a t t 12

Ü b u n g s b l a t t 12 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 5. 6. 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Einführung in die Stochastik Sommersemester 07 Dr Walter Oevel 8 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden Lösungen von -Aufgaben sind

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Zweitklausur. b p b. q a. c 1. p a

Zweitklausur. b p b. q a. c 1. p a Elementare Stochastik SoSe 27 Zweitklausur Lösungen. Berechnen Sie für die angegebenen Übergangswahrscheinlichkeiten (mit p a,p b >, q a := p a, q b := p b ) die erwartete Anzahl von Schritten bis zum

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI

Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis Vorbemerkungen 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 6 Bedingte

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom

Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom Institut für Stochastik WS 009/10 Karlsruher Institut für Technologie (KIT) Dr. B. Klar Klausur Wahrscheinlichkeitstheorie und Statistik für Studierende des Maschinenbaus vom 08.0.010 Musterlösungen Aufgabe

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 21.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 401-0622-00 U 11 Zur Übungsstunde vom 21.05.2010 Aufgabe 31 (Rechnen mit der Normalverteilung

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60

Musterlösung zur Klausur im Fach Fortgeschrittene Statistik am Gesamtpunktzahl: 60 WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER Wirtschaftswissenschaftliche Faktultät Prof. Dr. Bernd Wilfling Professur für VWL, insbesondere Empirische Wirtschaftsforschung Musterlösung zur Klausur im Fach

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

Wiederholungsklausur DWT

Wiederholungsklausur DWT LÖSUNG Wiederholungsklausur DWT Sommersemester 2008 Hinweis: Alle Antworten sind zu begründen. Insbesondere sollte bei nicht-trivialen Umformungen kurz angegeben werden, weshalb diese Umformungen erlaubt

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik SS 06 Prof. Dr. J-D Deuschel 0. Juli 006 Juli Klausur Stochastik für Informatiker Name:... Vorname:... Matr. Nr.:... Studiengang:... Als

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Übung zur Vorlesung Statistik I WS Übungsblatt 12

Übung zur Vorlesung Statistik I WS Übungsblatt 12 Übung zur Vorlesung Statistik I WS 2013-2014 Übungsblatt 12 20. Januar 2014 Die folgenden ufgaben sind aus ehemaligen Klausuren! ufgabe 38.1 (1 Punkt: In einer Studie werden 10 Patienten therapiert. Die

Mehr

Probeklausur Statistik II

Probeklausur Statistik II Prof. Dr. Chr. Müller PROBE-KLAUSUR 1 1 2 3 4 5 6 7 8 Gesamt: 15 8 16 16 7 8 15 15 100 Probeklausur Statistik II Name: Vorname: Fachrichtung: Matrikel-Nummer: Bitte beachten Sie folgendes: 1) Die Klausur

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Mathematik 2 Probeprüfung 1

Mathematik 2 Probeprüfung 1 WWZ Wirtschaftswissenschaftliche Fakultät der Universität Basel Dr. Thomas Zehrt Bitte in Druckbuchstaben ausfüllen: Name Vorname Mathematik 2 Probeprüfung 1 Zeit: 90 Minuten, Maximale Punktzahl: 72 Zur

Mehr

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN

VERTEILUNGEN VON FUNKTIONEN EINER ZUFALLSVARIABLEN KAPITEL 15 VETEILUNGEN VON FUNKTIONEN EINE ZUFALLSVAIABLEN In diesem Kapitel geht es darum, die Verteilungen für gewisse Funktionen von Zufallsvariablen zu bestimmen. Wir werden uns auf den Fall absolut

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19

Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19 Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung

Mathematik für Informatiker III im WS 05/06 Musterlösung zur 4. Übung Mathematik für Informatiker III im WS 5/6 Musterlösung zur. Übung erstellt von K. Kriegel Aufgabe : Wir betrachten den Wahrscheinlichkeitsraum der Punkte P =(a, b) aus dem Einheitsquadrat [, ] [, ] mit

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Diskrete Zufallsvariable

Diskrete Zufallsvariable Diskrete Zufallsvariablen Slide 1 Diskrete Zufallsvariable Wir gehen von einem diskreten W.-raum Ω aus. Eine Abbildung X : Ω Ê heißt diskrete (numerische) Zufallsvariable oder kurz ZV. Der Wertebereich

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Wahrscheinlichkeitstheorie. Alea iacta est!

Wahrscheinlichkeitstheorie. Alea iacta est! Wahrscheinlichkeitstheorie Alea iacta est! "Wissenschaftliche Theorien, die auf Eigenschaften einer großen Zahl von Individuen rekurrieren, [...] werden anfällig gegen Fehlinterpretationen, wenn man die

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

Zufallsvariable: Verteilungen & Kennzahlen

Zufallsvariable: Verteilungen & Kennzahlen Mathematik II für Biologen 12. Juni 2015 Zufallsvariable Kennzahlen: Erwartungswert Kennzahlen: Varianz Kennzahlen: Erwartungstreue Verteilungsfunktion Beispiel: Exponentialverteilung Kennzahlen: Erwartungswert

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) Literatur Kapitel 7 n heisst für uns n gross * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Ü b u n g s b l a t t 4

Ü b u n g s b l a t t 4 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 30. 4. 2007 Ü b u n g s b l a t t 4 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Mathematische Stochastik WS 2006/2007 Universität Karlsruhe 12. Februar 2007 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Aufgabe 1 (15 Punkte) Klausur zur Vorlesung Statistik für Biologen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr